• No results found

Modeling the negative capacitance effect in dispersive organic materials using modified Drude theory

N/A
N/A
Protected

Academic year: 2021

Share "Modeling the negative capacitance effect in dispersive organic materials using modified Drude theory"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation for this paper:

Wu, Y., Lin, J. & Kwok, H.L. (2019). Modeling the negative capacitance effect in

dispersive organic materials using modified Drude theory. Solid State Electronics

Letters, 1(2), 105-109. https://doi.org/10.1016/j.ssel.2020.01.005

UVicSPACE: Research & Learning Repository

_____________________________________________________________

Faculty of Engineering

Faculty Publications

_____________________________________________________________

Modeling the negative capacitance effect in dispersive organic materials using

modified Drude theory

You-Lin Wu, Jing-Jenn Lin, H.L. Kwok

July 2019

©2020 Published by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This

is an open access article under the CC BY-NC-ND license.

(

https://creativecommons.org/licenses/by-nc-nd/4.0/

).

This article was originally published at:

(2)

You-Lin

Wu

,

Jing-Jenn

Lin

,

H.L.

Kwok

a Department of Electrical Engineering, National Chi Nan University, 301 University Rd., Puli, Nantou, Taiwan b Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Puli, Nantou, Taiwan c Department of Electrical and Computer Engineering, University of Victoria, Canada

a

r

t

i

c

l

e

i

n

f

o

Article history:

Received 7 November 2019 Revised 20 January 2020 Accepted 21 January 2020 Available online 13 February 2020 Keywords:

Complex carrier mobility Dispersive polymers Drude theory Negative capacitance

Organic polymer light-emitting diodes

a

b

s

t

r

a

c

t

Frequency- andmobility-dependent admittance have beenobserved inorganicpolymerlight-emitting diodes.Inthispaper,wedevelopedamodeltodescribethisdispersivebehaviorusingamodifiedDrude theory.Inthismodel,aphaseangledifferencebetweentheappliedelectric fieldandtheaverage dis-placementofthechargecarriersisintroducedratherthanusingacomplexmobility.Thisnewlyproposed modelsuccessfullydescribesthedispersivenature,aswellasthenegativecapacitanceeffect,atlow fre-quenciesinorganicpolymers.Thesimulationresultsofthismodelalsofitthenegativecapacitancedata reportedintheliterature,providedthatasuitablephaseangledifferenceisgiven.

© 2020PublishedbyElsevierB.V.onbehalfofKeAiCommunicationsCo.,Ltd. ThisisanopenaccessarticleundertheCCBY-NC-NDlicense. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

It hasbeenreportedthat theadmittance oforganicpolymer light-emittingdiodes isfrequency-andcarriermobility-dependent,and becomesnegativeundercertainbiasedconditions[1,2].This dispersiveproperty hasbeenattributedto carriertrapping andhoppingin thepolymerlayer[1,3–5].BasedonDrudetheory[6,7],oneofourauthors,H.L.Kwok,proposedamodeltodescribethenegative capac-itance effectfoundindispersiveorganicpolymers[8,9].Inhis model,complexcarriermobilityisassumedtoaccount forthe dispersive behavior ofthe medium.The modelhas successfullydescribedthefrequency-dependentcapacitance andnegativecapacitance effectof organicpolymers.Inaddition,thesimulationresultsofKwok’smodelareingoodagreementwiththeexperimentaldatareportedinthe extant literature [1].However, the physicalconcept of complexcarriermobility isnot simple to understand.In thiswork, we propose analternativemodel,alsobasedonDrudetheorybutwithrealcarriermobility.Insteadofusingcomplexcarriermobility,aphaseangle difference betweentheapplied electricfield andtheaveragedisplacementofchargecarriersisintroduced toaccount forthedispersive natureofthemediuminournewlyproposedmodel.

2. Themodel

Here,wetake theorganiclayerasaplasmamedium,inwhichacollectionofpositive andnegativechargesexists.Thesechargesare assumedtooscillatewithaHook’slawforceconstantK0,andanacelectricfieldwithanangularfrequency

ω

,E=E0ejωt,isapplied.From

theDrudetheory,wecanobtainthefollowingequation(byconsideringpositivechargeonlyforconvenience)[8,9]:

md 2x dt2 + q

μ

dx dt +K0x=qE (1)

where m isthe massof thepositive charges; xis the averageposition ofthe charges;q is the electronic charge;and

μ

isthe carrier mobility.Notethat,inKwok’smodel,acomplexparameter

γ

isusedtorepresentthefrequencyofoccurrenceofinelasticcollisionsper

Corresponding author.

E-mail address: ylwu@ncnu.edu.tw (Y.-L. Wu).

https://doi.org/10.1016/j.ssel.2020.01.005

2589-2088/© 2020 Published by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

(3)

106 Y.-L. Wu, J.-J. Lin and H.L. Kwok / Solid State Electronics Letters 1 (2019) 105–109

Fig. 1. Simulated capacitance versus frequency curves under various phase angle difference ( θ= 0–180 °) for mobility μequals to (a) 10 −11 , (b) 10 −10 , and (c) 10 −9 m 2 V −1 s −1 . unitcharge fordispersivemedium,andequals tothe reciprocalofthe carriermobility

μ

,i.e.,

γ

=1/

μ

=

γ

1 +j

γ

2 [8,9].However, the

physicalconceptofcomplexmobilityisnotsimpletocomprehend.Inourmodel,weintroducedaphasedifference

θ

betweentheapplied electricfieldandtheaveragepositionofthechargesx,ratherthanutilizingcomplexmobilitytoaccountforthedispersivenatureofthe medium.Therefore,thesolutiontoEq.(1)canbe expressedasx=xo ej(ωt+θ).Thephase angledifference indicateshowfastthecharge

carrierscanfollowthevariationoftheappliedfield.BysubstitutingE=E0ejωtandx=xoej(ωt+θ)intoEq.(1),onecaneasilyfindthat:

x0=

(

qE0/m

)

e− jθ



(

ω

2 0−

ω

2

)

+j

ω

q/

μ

m



(2)

where

ω

0=K0/misthecharacteristicfrequencyoftheplasma.ThepolarizationvectorPcanthenbeexpressedasfollows:

P=pqx0=

(

pq2E 0/m

)

e− jθ



(

ω

2 0−

ω

2

)

+j

ω

q/

μ

m



(3)

Assumeaparallelplatecapacitorofarea AandplateseparationLhavingtheorganicdispersivemediumasthedielectric.Capacitanceis thengivenby:

C=Re



(

EP 0

)(

A L

)



=Re



(

pq2A/Lm

)

e− jθ



(

ω

2 0−

ω

2

)

+j

ω

q/

μ

m





=Re



C0e− jθ [

(

1−

ξ

2

)

+j

ξ

q/

μω

0m]

=Re



C0

(

cos

θ

− jsin

θ

)

[

(

1−

ξ

2

)

+j

ξ

q/

μω

0m]

(4)

(4)

Fig. 2. Calculated capacitance versus frequency curves with carrier mobility varying from 10 −8 to 10 −12 m 2 V −1 s −1 for phase angle difference (a) θ= 60 °, (b) θ= 90 °, and

(c) θ= 120 °.

whereC0=pq2A/Lmand

ξ

=

ω

/

ω

0.Notethatthemobilityhereisreal.FromEq.(4),wecaneasilyfindthat:

C=C0



(

1−

ξ

2

)

cos

θ

(

ξ

q/

μ

m

ω

0

)

sin

θ

(

1−

ξ

2

)

2+

(

ξ

q/

μ

m

ω

0

)

2

(5)

ItisobviousthatCbecomesnegativewhen:

(

1−

ξ

2

)

cos

θ

<

(

ξ

q/

μ

m

ω

0

)

sin

θ

(6) or

θ

>tan−1

(

1−

ξ

2

)

ξ

q/

μ

m

ω

0 (7)

Forthecaseofnon-dispersivemedium,

θ

=0,andthecapacitancegiveninEq.(5)reducesto:

C=C0



(

1−

ξ

2

)

(

1−

ξ

2

)

2+

(

ξ

q/

μ

m

ω

0

)

2

(8)

whichisexactlythesameastheonegiveninRefs.[8]and[9].

3. Resultsanddiscussion

ByusingEq.(5)andthesameparameter valuesgiveninreferences[8]and[9],i.e., A/L=100, p= 1× 1021 (m−3),

ω

0 = 1× 1012 (rads−1),m=0.91× 10−31(kg),andq=1.6× 10−19(C),wecalculatedthecapacitanceoftheorganicmediumwithmobility

μ

=10−11, 10−10,and10−9 (m2 V−1 s−1)forvarious phaseangle differencesandforthefrequencyrangingfrom10 to120,000(rad/s). Ingeneral, thecarriermobilityfororganicpolymersisintherangeof10−8–10−12m2 V−1 s−1 [10,11].Thecalculated capacitanceversus frequency curvesare showninFig. 1(a),(b)and(c). As observed,the capacitanceis afunction ofcarriermobility, frequencyoftheapplied field,

(5)

108 Y.-L. Wu, J.-J. Lin and H.L. Kwok / Solid State Electronics Letters 1 (2019) 105–109

Fig. 3. Comparison of the simulated capacitance data at low frequencies using the proposed model and the reported experimental data given in Ref. [1] . The parameter values for the simulation are presented in Table 1 .

Table 1

Parameter values used for the calculation of Fig. 1.

ω (rad s −1 ) P (m −3 ) ω0 (rad s −1 ) θ( °) μ(m 2 V −1 s −1 ) 30 4.50 × 10 21 2.30 × 10 21 91.67 3.00 × 10 −13 100 4.50 × 10 21 2.30 × 10 21 95.68 3.35 × 10 −13 300 4.50 × 10 21 2.30 × 10 21 106.00 3.00 × 10 −13 1000 4.00 × 10 21 2.30 × 10 21 111.00 2.30 × 10 −13 Table 2

Comparison of the negative capacitance of the reported experimental data shown in Ref. [1] , the previous data from Kwok’s model given in Ref. [9] , and the calculation results using the model proposed in this work. The numbers shown in the parentheses are the percentage error compared with the reported data.

ω (rad s −1 ) C (nF)

Reported [1] Kwok’s Model [9] This work

0 −66.6 −66.9 (0.45%) −66.6 (0%)

100 −28.8 −23.0 (20.13%) −24.0 (16.67%)

300 −69.8 −65.0 (6.88%) −69.7 (0.14%)

1000 −14.8 −14.0 (5.41%) −14.1 (4.73%)

andphaseangledifference.Forthecaseofnon-dispersivemedium,i.e.,

θ

=0,weseethatthecapacitancesaturatesatlowfrequencies, andthesaturationvaluesbecomehigherasthecarriermobilityincreases.Itisreadilyunderstoodthathighercarriermobilitycausesless carriercollisionortrapping,andthusthecapacitanceishigher.Itisalsonoticedthat,exceptfor

θ

=0,thecapacitancebecomesnegative afteracriticalfrequencyisreached.Thiscriticalfrequencydecreases withincreasingphase angledifference whenthemobilityisfixed, whileitincreaseswithincreasingcarriermobilitywhenthephaseangledifferenceisfixed.Foradispersivemediumwithfixedmobility, ahigher

θ

valuemeanshigherpolarizationcharge,andalowerfrequencyisneededtoyieldthesamecapacitance. Whenthe

θ

valueis fixed,inamediumwithhighercarriermobility,the polarizationcharge moreeasilyfollowsthechangesoftheapplied field,andhence negativecapacitance occursathigherfrequency.Moreimportantly,itisfound thatthecapacitance becomesall negativewhen

θ

> 90°. Thesebehaviorsarebasicallyinagreementwiththenatureofthedispersivemedium.Alloftheargumentsdiscussedabovecanbemore clearlyseen inFig.2,whichshowsthecapacitanceversus frequencycurvesundervariouscarriermobilitiesfor

θ

= 60°,90°,and120°. Wecomparethecalculationresultsofourmodelandtheexperimentaldataofthenegativecapacitancereportedinreference[1]toverify theproposedmodel,asshowninFig.3.ThevaluesoftheparametersusedforthecalculationaregiveninTable1.Itisobviousthatthe calculationresultsagreewell withtheexperimental data.As observedinTable 1, the

θ

valuesincrease withincreasingfrequency. This isbecausehigherpolarization chargesare neededwhenthefrequencyis higher.Inaddition,the valuesoftheparameters usedforthe calculationareallreasonable.Table2comparesthenegativecapacitancevaluesobtainedfromthereportedexperimentaldatagiveninRef.

[1],thecalculateddatafromKwok’spreviousmodel[9],andthesimulationresultsofthepresentwork.Wealsospecifiedinparentheses thepercentageerrorofKwok’smodelandourmodelcomparedwiththereportedexperimentaldata.Itcanbeseenthatourmodelgives smallerdeviationerrorthandoesthepreviousKwok’smodel.Forconjugatepolymers,ithasbeenshownthatcarriermobilityvariesina field-dependentmannerandcanbewrittenas

μ

=

μ0

(

β

E1/2),where

μ

0isthezerofieldmobility,

β

isthefieldactivationfactor,andE istheappliedfield[2,12].Weutilizethiscorrelationbetweentheappliedfield(voltage)andthecarriermobilityinEq.(5)tocalculatethe capacitanceofthedispersivemedium.Fig.4comparesthecalculationresultswiththeexperimentalnegativecapacitancedatareportedin Ref.[2]atlowfrequencies.Inthecalculation,thefollowingparametersareused:

μ

0=10−10m2V−1s−1;A/L=8;andp=2× 1020cm−3. FromFig.4,itcanbeseenthat ourcalculationresultsagreewellwiththereporteddata,exceptfortheonewithapplied voltageof3V at

ω

=16rads−1.Thisdiscrepancyisbelievedtobeduetothefluctuationintheexperimentaldataatextremelylowfrequencies[2].

(6)

Fig. 4. Comparison of the simulated negative capacitance under different applied voltages (2 V and 3 V) using the proposed model and the reported experimental data given in Ref. [2] .

4. Conclusion

Inthiswork,we havedevelopedamodelbasedonDrude theorytodescribe negativecapacitance indispersiveorganicpolymers.In themodel,weusedrealcarriermobility,andintroducedaphaseangledifferencebetweentheaveragepositionofthechargesandapplied anelectricfield,insteadofutilizingcomplexmobility.Whenasuitablephaseangledifferenceisgiven,ourmodelcanaccuratelydescribe thedispersivenature,aswellasthenegativecapacitanceeffect,oforganicpolymerswithagoodmatchinkeyparameters,suchascarrier mobility,carrier concentration,etc. Moreimportantly, theconcept ofphase angledifference used inthismodelprovides a moredirect physicalinsightintonegativecapacitancethantheoneusingcomplexmobility.

DeclarationofCompetingInterest None.

CRediTauthorshipcontributionstatement

You-LinWu:Conceptualization,Methodology,Fundingacquisition,Writing-originaldraft.Jing-JennLin:Datacuration,Visualization, Formalanalysis.H.L.Kwok:Supervision,Investigation,Resources.

Acknowledgment

TheauthorswouldliketoexpresstheirappreciationforfinancialsupportfromtheMinistryofScienceandTechnology,Taiwan,R.O.C. undercontractno.MOST107-2221-E-260-013.

References

[1] H.C.F. Martens , W.F. Pasveer , H.B. Brom , J.N. Huiberts , P.W.M. Blom , Crossover from space-charge-limited to recombination-limited transport in polymer light-emitting diodes, Phys. Rev. B 63 (2001) 125328-1–125328-7 .

[2] H.C.F. Martens, J.N. Huiberts, P.W.M. Blom, Simultaneous measurement of electron and hole mobilities in polymer light-emitting diodes, Appl. Phys. Lett. 77 (20 0 0) 1852–1854, doi: 10.1063/1.1311599 .

[3] H.L. Kwok, Understanding negative capacitance effect using an equivalent resistor-capacitor circuit, Phys. Stat. Sol. (C) 5 (20 08) (20 08) 638–640, doi: 10.1002/pssc. 200776806 .

[4] P. Pendzig , W. Dieterich , Dispersive transport and dipolar effects in ionic glasses, Solid State Ion. 105 (1998) 209–216 .

[5] H. Meyer , D. Haarer , H. Naarmann , H.H. Horhold , Trap distribution for charge carriers in poly(paraphenylene vinylene) (PPV) and its substituted derivative DPOP-PPV, Phys. Rev. B 52 (1995) 2587–2598 .

[6] P. Drude , Zur elektronentheorie der metalle, Ann. Phys 306 (1900) 566–613 .

[7] P. Drude , Zur elektronentheorie der metalle: II. Teil. galvanomagnetische und thermomagnetische effecte, Ann. Phys. 308 (1900) 369–402 .

[8] H.L. Kwok, Modeling negative capacitance effect in organic polymers, Proc. SPIE 4806 (2002) 330–337, doi: 10.1117/12.473002 .

[9] H.L. Kwok, Modeling negative capacitance effect in organic polymers, Solid State Electron. 47 (2003) 1089–1093, doi: 10.1016/S0038-1101(02)00471-9 . [10] P.W.M. Blom , M.J.M. de Jong , J.J.M. Vleggaar , Electron and hole transport in poly(p-phenylene vinylene) devices, Appl. Phys. Lett. 68 (1996) 3308–3310 .

[11] B. Chen , S. Liu , Measurement of electron/hole mobility in organic/polymeric thin films using modified time-of-flight apparatus, Synth. Met. 91 (1997) 169–171 .

Referenties

GERELATEERDE DOCUMENTEN

When looking at Figure 3.2, we see that the difference between the estimation scores of the Figure 3.2: The estimation scores for the different ToM-orders of the estimator given

To assess the voltage dependence of the SCL current in blends we have used the mobility data for a blend of average feature size b = 6 nm and for neat material in a one-

Ten westen van de reeds eerder _genoemde 'donk\ in het centrwn van het onderzoeks _g. vertoont de top van het zandsubstraat een 400-tal m brede depressie die opgevuld is met

aggregation in solution, by increasing the ionic strength of the solution. The large negative charge of the FeTSPc ring hinders the adsorption of FeTSPc on the

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Komputermode: de besturing van het meetsysteem is volledig in handen van de externe komputer, Na opgave van een k a n a a l n ~ m ~ e r wordt direkt een meting uitgevoerd en

Vallen is de meest voorkomende oorzaak van letsel door een ongeval bij ouderen.. Elke 5 minuten valt één 55-plusser waarna er behandeling

Omdat de cosinussen van de twee hoeken gelijk zijn en beide hoeken duidelijk kleiner dan... En dus gaat de bissectrice door