• No results found

Intention detection of gait initiation using EMG and kinematic data

N/A
N/A
Protected

Academic year: 2021

Share "Intention detection of gait initiation using EMG and kinematic data"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Intention

detection

of

gait

initiation

using

EMG

and

kinematic

data

E.C.

Wentink

a,

*

,

S.I.

Beijen

a

,

H.J.

Hermens

a,b

,

J.S.

Rietman

b,c

,

P.H.

Veltink

a

aBiomedicalSignalsandSystemsgroup,MIRAInstituteforBiomedicalTechnologyandTechnicalMedicine,UniversityofTwente,TheNetherlands bRoessinghResearchandDevelopment,TheNetherlands

c

BiomedicalEngineering,MIRAInstituteforBiomedicalTechnologyandTechnicalMedicine,UniversityofTwente,TheNetherlands

1. Introduction

Gaitinitiationintransfemoralamputees(TFA)isdifferentfrom

non-amputees[1,2].In non-amputeesitconsistsoftwophases.

First,preparationsaremadeforthestepexecution[1,3,4].During

thisphaseposturaladjustmentsaremade,thecenterofpressure

movestowardstheleadinglimbandthebodyistiltedforward.

Subsequentlythecenterofpressuremovestowardsthetrailing

limbandthebodyistiltedfurtherforward.Thehipandkneeofthe

leadinglimbstarttoflexandtheanklestartstodorsiflextoprepare

fortoe-off,whichistheendofthefirstphase.Inthesecondphase

thestepisexecuted.Itstartsattoe-offoftheleadinglimbandthe

bodyistiltedfurtherforward.Musclesinthetrailinglimbstabilize

thebody,duringswingoftheleadinglimb,andgeneratepush-off.

Theexecutionphaseendsatheel-strikeoftheleadinglimb[1–5].

InTFAthesetwophasesaresimilar,butthedurationdiffers

dependingonwhichlegisleading,theprostheticlegorthesound

leg.ItappearsthatTFAhavethetendencytostandontheirsound

leg for as longas possible and load theprosthesis as shortas

possible[1,2,5].

Artificial push-off of a transfemoral prosthesis during gait

initiationmaybebeneficial,toallowamorenaturalprocessand

reduce effort needed from the sound leg [2]. However, gait

initiationmust bepredicted, becausetimingofpush-offis very

important.Push-offingaitisdescribedasthepartofthegaitcycle

whichbeginsatonsetofankleplantarflexionandendsattoe-off

[6].Startingpush-offtooearlywillpropeltheamputeebackwards.

Startingtoolatewilldissipatepush-offorevencauseastumble.To

providecontrolinputsforsupportedprostheticgaitinitiation,the

beginningandendoftheexecutionphase,toe-offandheel-strike

of theleading limb respectively, need to be detected for both

leading limb conditions. If in amputees the prosthetic leg is

leading,theprosthetickneeshouldflexattoe-offandbereadyto

taketheloadatheel-strike.Whentheprostheticlegistrailing,the

prosthesisshouldprovidepush-off[3,7].

Forthedetectionofgaitinitiationseveralsensorsmaybeused

like gyroscopesand accelerometers, but alsoelectromyography

(EMG)fromtheremainingmuscles.EMGofgaitinitiationin

non-amputeeswasmeasured inseveral studiesbutprimarilyatthe

lowerleg[3,8,9].EMGactivityinamputeesduringgaithasbeen

measured in a few studies and is comparable to that of

non-amputees[10–12].EMGduringgaitinitiationinTFAhasnotbeen

studiedpreviously.

Inertial sensors have frequently been used to assess gait.

However, few studieswerefound that used inertial sensorsto

assessgaitinitiation[13].

Most studies used a combination of an optical position

measurement system and force plates [1–3,5,8]. The authors

foundnostudiesonreal-timeintentiondetectionofgaitinitiation

in(non-)amputees.Wethereforestudiedgaitinitiationdetection

ARTICLE INFO

Articlehistory: Received9August2011

Receivedinrevisedform14March2012 Accepted13July2012 Keywords: Electromyography Transfemoral Intentiondetection Gaitinitiation ABSTRACT

Gaitinitiationintransfemoralamputees(TFA)isdifferentfromnon-amputees.

Thisismainlycausedbythelackofstabilityandpush-offfromtheprostheticleg.Addingcontroland artificialpush-offtotheprosthesismaythereforebebeneficialtoTFA.

Inthisstudythefeasibilityofreal-timeintentiondetectionofgaitinitiationwasdeterminedby mimickingtheTFAsituationinnon-amputees.EMGandinertialsensordatawasmeasuredin10 non-amputees.OnlydataavailableinTFAwasusedtodetermineifgaitinitiationcanbepredictedintimeto controlatransfemoralprosthesistogeneratepush-offandstability.Toe-offandheel-strikeoftheleading limbareimportantparameterstobedetected,tocontrolaprosthesisandtotimepush-off.

Theresultsshowthattoe-offandheel-strikeoftheleadinglimbcanbedetectedusingEMGand kinematic data in non-amputees 130–260ms in advance. This leaves enough time to control a prosthesis.BasedontheseresultswehypothesizethatsimilarresultscanbefoundinTFA,allowingfor adequatecontrolofaprosthesisduringgaitinitiation.

ß2012ElsevierB.V.Allrightsreserved.

*Correspondingauthorat:BiomedicalSignalsandSystemsgroup,MIRAInstitute forBiomedicalTechnologyandTechnicalMedicine,UniversityofTwente,P.O.Box 217,7500AEEnschede,TheNetherlands.Tel.:+31534892766.

E-mailaddress:[email protected](E.C.Wentink).

ContentslistsavailableatSciVerseScienceDirect

Gait

&

Posture

j our na l ho me pa g e : w ww . e l se v i e r . com / l oca t e / ga i t po st

0966-6362/$–seefrontmatterß2012ElsevierB.V.Allrightsreserved.

(2)

innon-amputees,beforeadvancingtoTFA,butmimickingtheTFA

situation.WeuseddatawhichcanbemeasuredinTFA,i.e.upper

legmuscleactivityandinertialsensors.Thereforethedatacanbe

usedforupperlegprosthesis,lowerlegprosthesisorevenorthosis.

Intheseapplicationstheneedforstabilityandcontrolisdesiredin

ordertoimprovegaitinitiationandgait[1,2,13–15].

Thegoalofthisstudyistodetermineifgaitinitiationcanbe

detected from EMG of the upper leg muscles and/or inertial

sensors. Detection should be sufficiently early to eventually

support gait initiation in transfemoral prostheses users. The

currentstudywasperformedinnon-amputees.

2. Methods

2.1. Participants

Tenhealthyvolunteersparticipatedinthestudy,noneofthem

hadahistoryoflowerlimbinjuries,neurodegenerativediseasesor

anyskinconditions.Theexperimentswereapprovedbythelocal

EthicsCommitteeandaninformedconsentwasobtainedbefore

theexperiments.

2.2. Measurements

Kinematicdatawasmeasured(100Hz)using2inertialsensors

from Xsens (Enschede, Netherlands), with 3D accelerometers,

gyroscopesandmagnetometers.Electrodeswereplacedaccording

totheSENIAMstandards[16].Oneachmuscletwoselfadhesive

electrodes (Kendal, H93SG, Tyco healthcare, Germany) were

placedascloselytogetheraspossible.EMGmeasurementswere

performed with a 16 bipolar channel Porti-system from TMSi

(Oldenzaal,Netherlands)atasamplefrequencyof2048Hz,no

pre-filteringwasapplied.

Nine muscles were measured, due to a limited number of

availableEMGchannelsandtomimictheprostheticsituation.The

upperlegmusclesand inertial sensorswereplacedon oneleg,

whichisthe‘‘simulatedprostheticleg’’.Themeasuredupperleg

musclesare:them.gluteusmaximus(GMa),m.gluteusmedius

(GMe),m.tensor fasciaelatae(TFL),m. rectusfemorus(RF), m.

vastuslateralis(VL),m.bicepsfemoris(BF).Infivesubjectsone

extramuscle,them.erectorspinea(ES),wasmeasured.

Atthelowerlegonthecontralateralsidethem.tibialisanterior

(TA), m. gastrocnemius medialis (GaM), m. soleus (Sol) were

measured,for referencepurposes.Thisis the‘‘simulatedsound

leg’’.Infivesubjectsthesimulatedsoundlegwasthedominantleg

andintheotherfiveitwasthenon-dominantleg.

Footswitches,placedmid-heelandatthefirstmetatarsalhead

of each foot, gave information about heel-strike and toe-off.

Subjectsworetheir ownlow-heeledshoes.Fig.1illustrates the

placement of the inertial sensors and EMG electrodes. To

synchronizeEMG,footswitchesandinertialsensorsa

synchroni-zationpulsewasgivenatthestartandendofeachmeasurement

whichwasvisibleinalldatasets.

2.3. Procedures

Forthegaitinitiationexperimentsthesubjectswererequiredto

standuprightwiththeirweightequallydistributedonbothfeet,

theinitialposture.Datarecording wasstarted. After 5s in the

initialposturethesubjectswereaskedtopressthe

synchroniza-tionbutton(sync)andstartwalking.After fivepacestheywere

askedtostop,turnaround,returntotheinitialposture,wait2–3s,

pressthesyncandwalkback.Thiswasrepeatedfourtimeswithin

eachmeasurement.Twomeasurementswereperformedforeach

leadinglimbcondition,16trialspercondition.

In additiona postural swaymeasurement wasperformed, a

forwardandbackwardswayingmotion,withoutfallingforwardor

backward.Thiswasusedtocalculatethethresholdsfortheinertial

sensorsforgaitinitiationdetection.

2.3.1. Sensortobodycalibration

Theinertialsensorsexpresstheirdatainthesensorcoordinate

system(~s).Twocalibrationexerciseswereperformedtoconvert

this datatothebody coordinatesystem(~f),using therotation

matrix(Rfs)(~f¼Rfs~s).Inshortthecalibrationofthelowerlegwas

as follows.The subjectstoodupright, whereby thebody z-axis

equalsthegravity vectorwhich canbedescribed in thesensor

coordinatesystem.Subsequentlythesubjectsflexedthekneefive

timestoabout908,wherethekneeisthebodyy-axis,allowingthis

axistobedefinedinthesensorcoordinatesystem.Thex-axisis

subsequentlyobtainedbyacrossproductoftheyandzaxes.A

similarprocedurewasfollowedfortheupperlegsensor,usingthe

squatascalibrationexercise[17,18].Thisdatawassubsequently

low-passfilteredat10Hz.Finallytheaxiswithlargestamplitude

wasusedforfurtheranalysis.Fortheangularvelocitythiswasthe

bodyy-axis,fortheaccelerationitwasthebodyz-axis(seeFig.1).

2.4. Dataanalysis

EMGdataanalysiswasperformedintwoparts.Firstthelinear

envelopesoftheensembleaverageswerecalculated,todetermine

whichmusclesshowaclearchangeinactivitybeforetoe-off or

heel-strikeoftheleadinglimb.Secondly,fromtheselectedmuscles

theonsetoroffsettimingsweredetermined.

TheEMGdatawasfirsthigh-passfilteredusingasecondorder

Butterworth filter with a cut-off frequency of 20Hz [19]. To

calculatethelinearenvelopesthedatawassubsequentlyrectified

andlow-passfilteredwithasecondorderButterworthfilterat9Hz

[19].Tocalculatethetimings,thehigh-passfiltereddatawas

low-passfilteredat500Hz[19].

Fig.1.Placementoftheinertialsensors(IS)andEMGelectrodesonthebody.One legsimulatestheprostheticleg(SPL,ingray).Atthislegalltheupperlegmuscles weremeasuredandtheinertialsensorswereplacedattheupperandlowerleg.At theotherleg,thesimulatedsoundleg(SSL),onlythelowerlegmuscleswere measuredforreference.

(3)

Onsetsof theselectedmuscles werecalculated using a

log-likelihood-ratiotest(AGLR),asdescribedbyStaude[20,21].This

algorithmissuitableforreal-timeEMGonsetoroffsetdetection.

Thewindow-sizeusedforthedetectionwas20ms,thethreshold

ofthealgorithmforon-offdetectionwassetat20[20–22].

Thedifferentphasesofgaitinitiationweredeterminedusing

thefootswitchdata.Push-offtakesplacebetweenheel-offofthe

trailinglimb,whichistheonsetofplantarflexion,andtoe-offofthe

trailinglimb[6].Forbothleadingandtrailinglimbheel-off,toe-off

andheel-strikeweredetermined.Thedataofeachmeasurement

wassubsequentlyseparatedintotrialsandthetrialswerealigned

at heel-strike of the leading limb. From the aligned trials the

ensembleaverageswerecalculatedpersubject.

TheintrasubjectvariabilityoftheEMGtrialswasdetermined

using the variance ratio for each subject and muscle for the

preparationandtheexecutionphase[8,23].Thevarianceratiois

thevarianceofthedatabetweengaitinitiationcyclesnormalized

to the total variance. The lower the score is, the higher the

repeatability.Differencesbetweenthepreparationandexecution

phasewereanalyzedusingapairedt-testwithap-valueof0.05

andBonferonnicorrections[8].

Postural sway measurements were performed to determine

thresholdsforthekinematicdataaftercalibration,todecideifthe

subjectwasperformingposturalswayorwasinitiatinggait.Ifthe

datafromthemeasurementsexceededtheswaythresholds,then

toe-offorheel-strikeoftheleadinglimbcouldbedetected.

3. Results

3.1. Ensembleaverages

Fig.2showsatypicalexampleoftheensembleaveragesofthe

upperlegmusclesandtheinertialsensors,ofonesubjectwhere

the simulated prosthetic leg was leading (left) and where the

simulatedprostheticlegwastrailing(right).Thearrowsshowthe

musclesandinertialsensorsthathaveconsistentactivitychanges

beforetoe-offorheel-strikeoftheleadinglimbforallsubjects.

Thevarianceratiosofthedifferentmusclesinthepreparation

andexecutionphaseareshowninFig.3(b).Theexecutionphaseis

significantly better reproducible compared to the preparation

phaseincasetheprostheticlimbwasleading.Themusclesthat

canbeusedforthedetectionofgaitinitiationshowgenerallya

lower variance ratio than the other muscles, but this is not

significant.Thestandarddeviations,thebetweensubject

varia-tion,arelargeinsomecasesbutdonotdifferbetweenthedifferent

conditions.

3.2. Timings

Heel-strikeoftheleadinglimbwasdetectedinallcasesandwas

usedasareferencemeasureforalltimings,becausetoe-offofthe

leading limb was not detected in all trials. This was due to

inaccurateormissingfoot-switchdata.Sometrialswereexcluded,

because subjects started walking with the wrong leg or no

detection took place at all. The number of subjects and the

percentageoftrialsincludedinthecalculationofthetimingsare

specifiedinTable2.

Results for the timings of thefootswitches can befound in

Table1.Totalpush-offtime(SD)was285ms(75),starting166ms

(66)beforeandending125ms(38)afterheel-strikeoftheleading

limb. Table2shows theonand offsettimings oftheupperleg

muscles before toe-off or heel-strikeof the leading limb in all

subjects.Table2alsoshowsthedetectionoftoe-offoftheleading

limbusinginertialsensordata,whichwasonlypossiblewhenthe

prostheticlegwasleading.

3.3. Simulatedprostheticlegleading

The TFL and the RF showed activity onset in the ensemble

averages,whichisconfirmedbytheaverageonsetof129–199ms

beforetoe-offoftheleadinglimb.TheVLandtheBFshowedonset

of activityabout 150ms before heel-strike.Accelerometer and

gyroscopedataexceededtheswaythresholds160–260msbefore

toe-off.Heel-strikecouldnotbepredictedfromthekinematicdata,

itcouldhoweverbedetected.

Fig.2.Muscleactivityoftheupperlegmusclesandinertialsensordataofthesimulatedprostheticlimb(SPL)duringgaitinitiation.Theensembleaverageistakenover16 trialsofonetypicalsubject.Thickblacklinesindicatetheaverageactivityandthegraysurfaceindicatesplusandminusonestandarddeviation.Theverticallinesindicatethe events:toe-offleadinglimb,heel-strikeleadinglimbandtoe-offtrailinglimb,respectively.Ontheleft,wheretheSPLwasleading,activitychangesareseenbeforetoe-offof theleadinglimbintheTFL,theRFandtheinertialsensordataandintheVLandBFbeforeheel-strikeoftheleadinglimb.Ontheright,theSPLwastrailingactivitychangesare seenintheGMe,theGMe,theTFLandtheBFbeforetoe-offoftheleadinglimb.TheGMaandESshowactivitychangesbeforeheel-strikeoftheleadinglimb.

(4)

3.4. Simulatedprostheticlegtrailing

Forthiscondition,theGMa,theGMe,theTFLandtheBFcould

predict toe-off of the leading prosthetic limb 200–224ms in

advance. Heel-strike of the leading limb was detected for this

conditionbytheGMa(offset)andtheES(onset)163–199msin

advance.Kinematicdatacouldnotbeusedtopredicttoe-offor

heel-strike.

4. Discussion

Thegoaloftheexperimentswastodetermineifgaitinitiation

canbe predicted in non-amputees using data which would be

availableinprostheticusersontheprostheticside,e.g.EMGand

kinematic data. EMG of the upper leg muscles shows distinct

patternsduringgait initiationand wassimilar tothat inother

studies[3,8,9].ForbothleadinglimbconditionsEMGoftheupper

legmusclesshowedactivitychanges130–220msbeforetoe-off

andheel-strike.TheRFandTFLcanbeusedforthepredictionof

toe-offandtheVLandBFforpredictionofheel-strikeoftheleading

(prosthetic)limb.TheGMa,theGMe,theTFLandtheBFcanpredict

toe-offandtheGMaandEScanpredictheel-strikeoftheleading

(sound)limb.Kinematicdatacouldpredicttoe-offoftheleading

(prosthetic)limb,158–260msinadvance.

4.1. Simulatedprostheticlegleading

PreviousstudiesshowedthatTFAhaveatendencytostartgait

initiation with the prosthetic limb, because fewer adjustment

strategies are needed to initiate gait withthe prosthesis [1,2].

Whentheprosthesisisleading,thekneeshouldflexattoe-offand

extendatheelstrike[3,7].Ashortpreparationandalongexecution

phasewereseeniftheprostheticlegwasleadingcomparedto

non-amputees[1].ButevenifthepreparationphaseinTFAishalfthe

Fig.3.Varianceratiosofallmusclesaveragedoverallsubjectswithonestandarddeviation.Thelowerthescoreis,thebetterthereproducibility.Thepreparationphaseshows asignificantlylowerreproducibilitythantheexecutionphasewhenthesimulatedprostheticlimbwasleading.(a)Thereproducibilitywithinsubjectswhenthesimulated prostheticlegwasleadingand(b)whenthesimulatedprostheticlegwastrailing.

Table1

Timingfootcontacts.

HOLL TOLL HOTL HSLL TOTL HSTL TOTL-HOTL HOLL-TOLL

Time(ms) 549 462 166 0 125 652 285 87

SD 49 49 66 38 18 75 61

Timingsdeterminedusingthefootswitchesaveragedoveralltrialsofallsubjects.TOLL,toe-offleadinglimb;HOLL,heel-offleadinglimb;HOTL,heel-offtrailinglimb;TOTL, toe-offtrailinglimb;HSLL,heel-strikeleadinglimb;HSTL,heel-striketrailinglimb.AminussignreferstotheeventtakingplacebeforeHSLL.Timingsareaveragedoverall subjects.

(5)

durationofthatinnon-amputeesthecurrentresultssuggestthere

is enough time to control the prosthesis. Due to the lower

reproducibilityofEMGinthepreparationphase,thepredictionof

toe-offneedstheinertialsensordata.Inmicroprocessorcontrolled

kneessomeoftheseinertialsensorsarealready buildin.

Heel-strikecanbepredictedusingtheEMGdata.

4.2. Simulatedprostheticlegtrailing

Ifinamputeesthesoundlegwasleadingthepreparationphase

waslongerandtheexecutionphaseshortercomparedtohealthy

individuals[1].Duetothelongerpreparationtheremaybemore

timetodetecttoe-offoftheleadinglimbinTFAcomparedto

non-amputees.Timingofpush-off,whentheprostheticlimbistrailing,

mayneedsomeconsideration.Toaddpush-offtoprostheticgait,

heel-offand toe-offof thetrailinglimbneedtobedetectedfor

correcttiming[3,6,7].However,ifnoankleflexiontakesplacein

theprosthesisheel-offandtoe-offwilloccuralmostatthesame

time.Detectionofheel-strikeandtoe-offoftheleadinglimbwillbe

moreuseful.Theresultsshowthatfourmusclesareabletopredict

toe-off of the leading (sound) limb with good reproducibility.

However,onlytheGMahasahighreproducibilityinheel-strike

detection. Heel-strike of the leading limb may not need to be

predicted (only detected) in this case, because push-off ends

125msafterheel-strike.

4.3. Methodicalconsiderations

Toe-offwasnotdetectedinalltrials,thefootswitchesdidnot

provideanyinformationabouttheappliedpressure.Furthermore,

attheinitialstancephaseofgaitinitiationtheweightofthesubject

shiftsbackwardsalittlewhichmayunloadthetoeswitchesofthe

leadinglimbandthereforeunloadstheswitchesbeforeactual

toe-off.

Theerectorspinaewasonlymeasuredinfivesubjects,during

the experiments we found that the erector spinae may give

valuableinformationonposturalchanges,thereforeitwasadded

later.DataoftheESmaybeusedfordetectionofheel-strikeifthe

prostheticlimbistrailing,butthevarianceratioswereamongthe

highest.Forthefinalapplicationitisthereforenotuseful.

Inpreviousstudies,durationofactivityofsomemusclesinTFA

wasfoundtobealittlelongerthaninnon-amputees[10–12].This

shouldnotbeaproblemforgaitinitiationdetectioninTFA,aslong

asclearchangesinmuscleactivitycanbedetectedbeforetoe-off

andheel-strikeoftheleadinglimb.Foroffsetdetectionofamuscle

thismaymeanthatlesstimeisavailablepriortotheevent,butthis

wasonlyrelevantintheGMaifthesimulatedprostheticlegwas

trailing.Forlongerstumplengths,amputationatthedistalhalfof

theupperleg,allthesuggestedmusclesarelikelytobeavailableif

myodesis of myoplasty has been performed. For short stump

lengths, however, some of the suggested muscles may not be

availableanymore[10].

Although all data was processed in such a way that onset

detectioncanbeperformedreal-time,thereisneedforadecision

algorithm.Toimplementcontrolintoaprosthesis,similarresults

mustbefoundinTFAandmoreactivitiesshouldbeanalyzed.

4.4. Conclusions

DetectionofgaitinitiationfromEMGoftheupperlegmuscles

and kinematic data in simulated amputee gait initiation was

possible.Intentiondetectionofgaitinitiationallows130–260ms

forcontrolofaprosthesis.However,furtherstudiesareneededto

determinethepossibilitiestopredictgaitinitiationinTFA.

Acknowledgments

ThisresearchissupportedbytheDutchTechnologyFoundation

STW,whichispartoftheNetherlandsOrganizationforScientific

Research(NWO)andpartlyfundedbytheMinistryofEconomic

Affairs,AgricultureandInnovation,undergrantno.08003.

Conflictsofintereststatement

Authors statethat no conflictsofinterest arepresent inthe

research. References

[1]vanKeekenH,VrielingAH,HofAL,HalbertsmaJPK,SchoppenT,PostemaK, etal.Controllingpropulsiveforcesingaitinitiationintransfemoralamputees. JournalofBiomechanicalEngineering2008;130(011002):1–9.

[2]VrielingA,KeekenH,SchoppenT,OttenE,HalbertsmaJ,HofA,etal.Gait initiationinlowerlimbamputees.Gait&Posture2008;27:423–30. [3]MannR,HagyJ,WhiteV,LiddellD.Theinitiationofgait.JournalofBoneand

JointSurgery1979;61:232–9.

[4]WinterD.Thebiomechanicsandmotorcontrolofhumangait.Waterloo: UniversityofWaterlooPress;1987.

[5]MichelV,ChongR.Thestrategiestoregulateandtomodulatethepropulsive forces duringgait initiationin lowerlimbamputees. Experimental Brain Research2004;158:356–65.

[6]ErdemirA,PiazzaS.Rotationalfootplacementspecifiestheleverarmofthe groundreactionforceduringthepush-offphaseofwalkinginitiation.Gait& Posture2002;15:212–9.

Table2

Timingsoftheupperlegmuscles.

Leadinglimb Muscle On/off TOLL(SD)inms #Sub %Trials HSLL(SD)inms #Sub %Trials

SSL GMa On 220(97) 10 90 – – – GMe On 216(49) 10 87 – – – TFL On 224(62) 10 95 – – – BF On 200(89) 10 81 – – – GMa Off – – – 199(70) 10 78 ES On – – – 163(67) 5* 82 SPL TFL On 129(90) 10 82 – – – RF On 199(108) 10 82 – – – VL On – – – 145(71) 9 88 BF On – – – 155(45) 10 95

Sensor TOLL(SD)inms #Sub %Trials

Acc UL 232(34) 10 95

Acc LL 158(90) 10 95

Gyro UL 260(67) 10 95

Gyro LL 258(34) 10 95

Aminussignreferstotheeventtakingplacebeforetheevent.TOLL,toe-offleadinglimb;HSLL,heel-strikeleadinglimb;SPL,simulatedprostheticleg;SSL,simulatedsound leg;Acc,accelerometerdata;Gyro,gyroscopedata;UL,upperleg;LL,lowerleg;#,thenumberofsubjectsincluded,%,thepercentageoftrialsincluded,*,theESwasonly measuredin5subjects.

(6)

[7]RoseJ, Gamble J.Human walking.Philadelphia: LippincottWilliamsand Wilkins;2006.

[8]MickelboroughJ,vanderLindenM,TallisR,A.R.E.Muscleactivityduringgait initiationinnormalelderlypeople.Gait&Posture2004;19:50–7. [9]QueraltA,Valls-SoleJ,CastelloteJ.Speedingupgaitinitiationandgait-pattern

withastartlingstimulus.Gait&Posture2010;31:185–90.

[10]JaegersS,ArendzenJ,deJonghH.Anelectromyographicstudyofthehip muscles oftransfemoralamputees inwalking.Clinical Orthopaedicsand RelatedResearch1996;328:119–28.

[11]HuangH,KuikenTA,LipschutzRD.Astrategyforidentificationlocomotion modes usingsurface electromyography.IEEE TransactionsonBiomedical Engineering2009;56(1):65–73.

[12]HaK,VarolH,GoldfarbM.Volitionalcontrolofaprosthetickneeusingsurface electromyography. IEEE TransactionsonBiomedical Engineering2011;58 (1):144–51.

[13]NajafiB,MillerD,JarettB,WrobelJ.Doesfootweartypeimpactthenumber of stepsrequiredto reach gaitsteady state?:an innovative lookatthe impact of foot orthoses on gait initiation. Gait & Posture 2010;32: 29–33.

[14]TokunoC,EngJ.Gaitinitiationisdependentonthefunctionoftheparetic trailing limb in individuals with stroke. Gait & Posture 2006;24: 424–8.

[15]HansenA,MiffS,ChildressD,GardS,MeierM.Netexternalenergyofthe biologic and prosthetic ankle during gait initiation. Gait & Posture 2010;31:13–7.

[16]HermensH,FreriksB,MerlettiR,StegemanD,BlokJ,RauG,etal.European recommendationsforsurfaceelectromyography.Enschede:Roessingh Re-searchandDevelopment;1999.

[17]LuingeH,VeltinkPH,BatenC.Ambulatorymeasurementofarmorientation. JournalofBiomechanics2007;40:78–85.

[18]ZwartjesD,HeidaC,vanVugtJ,GeelenJ,VeltinkPH.Ambulatorymonitoringof activitiesandmotorsymptomsinParkinson’sdisease.IEEETransactionson BiomedicalEngineering2010;57(11):2778–86.

[19]MerlettiR,ParkerP.Electromyography.Hoboken:WileyInterscience;2004. [20]StaudeG, Wolf W.Objective motor responseonsetdetection in surface myoelectricsignals.MedicalEngineering&Physics1999;21(6–7):449–67. [21]StaudeG,FlacheneckerC,DaumerM,WolfW.Onsetdetectioninsurface

electromyographicsignals:asystematiccomparisonofmethods.In:EURASIPJ ApplSigProc2001,vol.1.2001.p.67–81.

[22]RoetenbergD, BuurkeJ, VeltinkP,FornerCorderoA,HermensH.Surface electromyographyanalysisforvariablegait.Gait&Posture2003;18(2):109–17. [23]HershlerC,MorrisM.Anoptimalitycriterionforprocessingelectromyography (emg)signalsrelatingtohumanlocomotion.IEEETransactionsonBiomedical Engineering1978;25(5):413–20.

Referenties

GERELATEERDE DOCUMENTEN

In de eenentwintigste eeuw komen conflicten zoals in de elfde eeuw tussen de paus en de regeringen van westerse landen niet meer voor.. 2p 10 † Leg

Nu zou de fout minder groot moeten zijn, als dit niet zo is heb je waarschijnlijk de taylorexpansie van cos(x) fout genomen (een doordenkertje).. Waarom geeft dit een

Ook hier geeft de wetsgeschiedenis weinig richting, anders dan dat de hoogte van de vergoeding gerelateerd moet zijn aan de omstandigheden van het geval en dat daarin geen

Zo heb ik recent gemerkt dat een toonaangevende centrale overheids instelling willens en weten heeft gekozen voor een nieuwe technische oplossing welke geen DNSSEC Authenticatie kan

De RBV schrijven voor dat rijksoverheden in hun jaarverslag van 2011 rapporteren over afwijkingen van de open standaarden die zijn opgenomen op de 'pas toe of leg uit'-lijst van

Metadateren van publieke overheidsinformatie op internet Overheden en instellingen uit de (semi-) publieke

In onderstaand overzicht geeft Logius verantwoording over de toepassing van open standaarden in de door haar beheerde voorzieningen.. Het gaat

ƒ Het voorgaande heeft tot gevolg dat een (semi-) publieke organisatie bij de aanschaf van een ICT-dienst of ICT-product verplicht is om te kiezen voor een ICT-dienst of