Intention
detection
of
gait
initiation
using
EMG
and
kinematic
data
E.C.
Wentink
a,*
,
S.I.
Beijen
a,
H.J.
Hermens
a,b,
J.S.
Rietman
b,c,
P.H.
Veltink
aaBiomedicalSignalsandSystemsgroup,MIRAInstituteforBiomedicalTechnologyandTechnicalMedicine,UniversityofTwente,TheNetherlands bRoessinghResearchandDevelopment,TheNetherlands
c
BiomedicalEngineering,MIRAInstituteforBiomedicalTechnologyandTechnicalMedicine,UniversityofTwente,TheNetherlands
1. Introduction
Gaitinitiationintransfemoralamputees(TFA)isdifferentfrom
non-amputees[1,2].In non-amputeesitconsistsoftwophases.
First,preparationsaremadeforthestepexecution[1,3,4].During
thisphaseposturaladjustmentsaremade,thecenterofpressure
movestowardstheleadinglimbandthebodyistiltedforward.
Subsequentlythecenterofpressuremovestowardsthetrailing
limbandthebodyistiltedfurtherforward.Thehipandkneeofthe
leadinglimbstarttoflexandtheanklestartstodorsiflextoprepare
fortoe-off,whichistheendofthefirstphase.Inthesecondphase
thestepisexecuted.Itstartsattoe-offoftheleadinglimbandthe
bodyistiltedfurtherforward.Musclesinthetrailinglimbstabilize
thebody,duringswingoftheleadinglimb,andgeneratepush-off.
Theexecutionphaseendsatheel-strikeoftheleadinglimb[1–5].
InTFAthesetwophasesaresimilar,butthedurationdiffers
dependingonwhichlegisleading,theprostheticlegorthesound
leg.ItappearsthatTFAhavethetendencytostandontheirsound
leg for as longas possible and load theprosthesis as shortas
possible[1,2,5].
Artificial push-off of a transfemoral prosthesis during gait
initiationmaybebeneficial,toallowamorenaturalprocessand
reduce effort needed from the sound leg [2]. However, gait
initiationmust bepredicted, becausetimingofpush-offis very
important.Push-offingaitisdescribedasthepartofthegaitcycle
whichbeginsatonsetofankleplantarflexionandendsattoe-off
[6].Startingpush-offtooearlywillpropeltheamputeebackwards.
Startingtoolatewilldissipatepush-offorevencauseastumble.To
providecontrolinputsforsupportedprostheticgaitinitiation,the
beginningandendoftheexecutionphase,toe-offandheel-strike
of theleading limb respectively, need to be detected for both
leading limb conditions. If in amputees the prosthetic leg is
leading,theprosthetickneeshouldflexattoe-offandbereadyto
taketheloadatheel-strike.Whentheprostheticlegistrailing,the
prosthesisshouldprovidepush-off[3,7].
Forthedetectionofgaitinitiationseveralsensorsmaybeused
like gyroscopesand accelerometers, but alsoelectromyography
(EMG)fromtheremainingmuscles.EMGofgaitinitiationin
non-amputeeswasmeasured inseveral studiesbutprimarilyatthe
lowerleg[3,8,9].EMGactivityinamputeesduringgaithasbeen
measured in a few studies and is comparable to that of
non-amputees[10–12].EMGduringgaitinitiationinTFAhasnotbeen
studiedpreviously.
Inertial sensors have frequently been used to assess gait.
However, few studieswerefound that used inertial sensorsto
assessgaitinitiation[13].
Most studies used a combination of an optical position
measurement system and force plates [1–3,5,8]. The authors
foundnostudiesonreal-timeintentiondetectionofgaitinitiation
in(non-)amputees.Wethereforestudiedgaitinitiationdetection
ARTICLE INFO
Articlehistory: Received9August2011
Receivedinrevisedform14March2012 Accepted13July2012 Keywords: Electromyography Transfemoral Intentiondetection Gaitinitiation ABSTRACT
Gaitinitiationintransfemoralamputees(TFA)isdifferentfromnon-amputees.
Thisismainlycausedbythelackofstabilityandpush-offfromtheprostheticleg.Addingcontroland artificialpush-offtotheprosthesismaythereforebebeneficialtoTFA.
Inthisstudythefeasibilityofreal-timeintentiondetectionofgaitinitiationwasdeterminedby mimickingtheTFAsituationinnon-amputees.EMGandinertialsensordatawasmeasuredin10 non-amputees.OnlydataavailableinTFAwasusedtodetermineifgaitinitiationcanbepredictedintimeto controlatransfemoralprosthesistogeneratepush-offandstability.Toe-offandheel-strikeoftheleading limbareimportantparameterstobedetected,tocontrolaprosthesisandtotimepush-off.
Theresultsshowthattoe-offandheel-strikeoftheleadinglimbcanbedetectedusingEMGand kinematic data in non-amputees 130–260ms in advance. This leaves enough time to control a prosthesis.BasedontheseresultswehypothesizethatsimilarresultscanbefoundinTFA,allowingfor adequatecontrolofaprosthesisduringgaitinitiation.
ß2012ElsevierB.V.Allrightsreserved.
*Correspondingauthorat:BiomedicalSignalsandSystemsgroup,MIRAInstitute forBiomedicalTechnologyandTechnicalMedicine,UniversityofTwente,P.O.Box 217,7500AEEnschede,TheNetherlands.Tel.:+31534892766.
E-mailaddress:[email protected](E.C.Wentink).
ContentslistsavailableatSciVerseScienceDirect
Gait
&
Posture
j our na l ho me pa g e : w ww . e l se v i e r . com / l oca t e / ga i t po st
0966-6362/$–seefrontmatterß2012ElsevierB.V.Allrightsreserved.
innon-amputees,beforeadvancingtoTFA,butmimickingtheTFA
situation.WeuseddatawhichcanbemeasuredinTFA,i.e.upper
legmuscleactivityandinertialsensors.Thereforethedatacanbe
usedforupperlegprosthesis,lowerlegprosthesisorevenorthosis.
Intheseapplicationstheneedforstabilityandcontrolisdesiredin
ordertoimprovegaitinitiationandgait[1,2,13–15].
Thegoalofthisstudyistodetermineifgaitinitiationcanbe
detected from EMG of the upper leg muscles and/or inertial
sensors. Detection should be sufficiently early to eventually
support gait initiation in transfemoral prostheses users. The
currentstudywasperformedinnon-amputees.
2. Methods
2.1. Participants
Tenhealthyvolunteersparticipatedinthestudy,noneofthem
hadahistoryoflowerlimbinjuries,neurodegenerativediseasesor
anyskinconditions.Theexperimentswereapprovedbythelocal
EthicsCommitteeandaninformedconsentwasobtainedbefore
theexperiments.
2.2. Measurements
Kinematicdatawasmeasured(100Hz)using2inertialsensors
from Xsens (Enschede, Netherlands), with 3D accelerometers,
gyroscopesandmagnetometers.Electrodeswereplacedaccording
totheSENIAMstandards[16].Oneachmuscletwoselfadhesive
electrodes (Kendal, H93SG, Tyco healthcare, Germany) were
placedascloselytogetheraspossible.EMGmeasurementswere
performed with a 16 bipolar channel Porti-system from TMSi
(Oldenzaal,Netherlands)atasamplefrequencyof2048Hz,no
pre-filteringwasapplied.
Nine muscles were measured, due to a limited number of
availableEMGchannelsandtomimictheprostheticsituation.The
upperlegmusclesand inertial sensorswereplacedon oneleg,
whichisthe‘‘simulatedprostheticleg’’.Themeasuredupperleg
musclesare:them.gluteusmaximus(GMa),m.gluteusmedius
(GMe),m.tensor fasciaelatae(TFL),m. rectusfemorus(RF), m.
vastuslateralis(VL),m.bicepsfemoris(BF).Infivesubjectsone
extramuscle,them.erectorspinea(ES),wasmeasured.
Atthelowerlegonthecontralateralsidethem.tibialisanterior
(TA), m. gastrocnemius medialis (GaM), m. soleus (Sol) were
measured,for referencepurposes.Thisis the‘‘simulatedsound
leg’’.Infivesubjectsthesimulatedsoundlegwasthedominantleg
andintheotherfiveitwasthenon-dominantleg.
Footswitches,placedmid-heelandatthefirstmetatarsalhead
of each foot, gave information about heel-strike and toe-off.
Subjectsworetheir ownlow-heeledshoes.Fig.1illustrates the
placement of the inertial sensors and EMG electrodes. To
synchronizeEMG,footswitchesandinertialsensorsa
synchroni-zationpulsewasgivenatthestartandendofeachmeasurement
whichwasvisibleinalldatasets.
2.3. Procedures
Forthegaitinitiationexperimentsthesubjectswererequiredto
standuprightwiththeirweightequallydistributedonbothfeet,
theinitialposture.Datarecording wasstarted. After 5s in the
initialposturethesubjectswereaskedtopressthe
synchroniza-tionbutton(sync)andstartwalking.After fivepacestheywere
askedtostop,turnaround,returntotheinitialposture,wait2–3s,
pressthesyncandwalkback.Thiswasrepeatedfourtimeswithin
eachmeasurement.Twomeasurementswereperformedforeach
leadinglimbcondition,16trialspercondition.
In additiona postural swaymeasurement wasperformed, a
forwardandbackwardswayingmotion,withoutfallingforwardor
backward.Thiswasusedtocalculatethethresholdsfortheinertial
sensorsforgaitinitiationdetection.
2.3.1. Sensortobodycalibration
Theinertialsensorsexpresstheirdatainthesensorcoordinate
system(~s).Twocalibrationexerciseswereperformedtoconvert
this datatothebody coordinatesystem(~f),using therotation
matrix(Rfs)(~f¼Rfs~s).Inshortthecalibrationofthelowerlegwas
as follows.The subjectstoodupright, whereby thebody z-axis
equalsthegravity vectorwhich canbedescribed in thesensor
coordinatesystem.Subsequentlythesubjectsflexedthekneefive
timestoabout908,wherethekneeisthebodyy-axis,allowingthis
axistobedefinedinthesensorcoordinatesystem.Thex-axisis
subsequentlyobtainedbyacrossproductoftheyandzaxes.A
similarprocedurewasfollowedfortheupperlegsensor,usingthe
squatascalibrationexercise[17,18].Thisdatawassubsequently
low-passfilteredat10Hz.Finallytheaxiswithlargestamplitude
wasusedforfurtheranalysis.Fortheangularvelocitythiswasthe
bodyy-axis,fortheaccelerationitwasthebodyz-axis(seeFig.1).
2.4. Dataanalysis
EMGdataanalysiswasperformedintwoparts.Firstthelinear
envelopesoftheensembleaverageswerecalculated,todetermine
whichmusclesshowaclearchangeinactivitybeforetoe-off or
heel-strikeoftheleadinglimb.Secondly,fromtheselectedmuscles
theonsetoroffsettimingsweredetermined.
TheEMGdatawasfirsthigh-passfilteredusingasecondorder
Butterworth filter with a cut-off frequency of 20Hz [19]. To
calculatethelinearenvelopesthedatawassubsequentlyrectified
andlow-passfilteredwithasecondorderButterworthfilterat9Hz
[19].Tocalculatethetimings,thehigh-passfiltereddatawas
low-passfilteredat500Hz[19].
Fig.1.Placementoftheinertialsensors(IS)andEMGelectrodesonthebody.One legsimulatestheprostheticleg(SPL,ingray).Atthislegalltheupperlegmuscles weremeasuredandtheinertialsensorswereplacedattheupperandlowerleg.At theotherleg,thesimulatedsoundleg(SSL),onlythelowerlegmuscleswere measuredforreference.
Onsetsof theselectedmuscles werecalculated using a
log-likelihood-ratiotest(AGLR),asdescribedbyStaude[20,21].This
algorithmissuitableforreal-timeEMGonsetoroffsetdetection.
Thewindow-sizeusedforthedetectionwas20ms,thethreshold
ofthealgorithmforon-offdetectionwassetat20[20–22].
Thedifferentphasesofgaitinitiationweredeterminedusing
thefootswitchdata.Push-offtakesplacebetweenheel-offofthe
trailinglimb,whichistheonsetofplantarflexion,andtoe-offofthe
trailinglimb[6].Forbothleadingandtrailinglimbheel-off,toe-off
andheel-strikeweredetermined.Thedataofeachmeasurement
wassubsequentlyseparatedintotrialsandthetrialswerealigned
at heel-strike of the leading limb. From the aligned trials the
ensembleaverageswerecalculatedpersubject.
TheintrasubjectvariabilityoftheEMGtrialswasdetermined
using the variance ratio for each subject and muscle for the
preparationandtheexecutionphase[8,23].Thevarianceratiois
thevarianceofthedatabetweengaitinitiationcyclesnormalized
to the total variance. The lower the score is, the higher the
repeatability.Differencesbetweenthepreparationandexecution
phasewereanalyzedusingapairedt-testwithap-valueof0.05
andBonferonnicorrections[8].
Postural sway measurements were performed to determine
thresholdsforthekinematicdataaftercalibration,todecideifthe
subjectwasperformingposturalswayorwasinitiatinggait.Ifthe
datafromthemeasurementsexceededtheswaythresholds,then
toe-offorheel-strikeoftheleadinglimbcouldbedetected.
3. Results
3.1. Ensembleaverages
Fig.2showsatypicalexampleoftheensembleaveragesofthe
upperlegmusclesandtheinertialsensors,ofonesubjectwhere
the simulated prosthetic leg was leading (left) and where the
simulatedprostheticlegwastrailing(right).Thearrowsshowthe
musclesandinertialsensorsthathaveconsistentactivitychanges
beforetoe-offorheel-strikeoftheleadinglimbforallsubjects.
Thevarianceratiosofthedifferentmusclesinthepreparation
andexecutionphaseareshowninFig.3(b).Theexecutionphaseis
significantly better reproducible compared to the preparation
phaseincasetheprostheticlimbwasleading.Themusclesthat
canbeusedforthedetectionofgaitinitiationshowgenerallya
lower variance ratio than the other muscles, but this is not
significant.Thestandarddeviations,thebetweensubject
varia-tion,arelargeinsomecasesbutdonotdifferbetweenthedifferent
conditions.
3.2. Timings
Heel-strikeoftheleadinglimbwasdetectedinallcasesandwas
usedasareferencemeasureforalltimings,becausetoe-offofthe
leading limb was not detected in all trials. This was due to
inaccurateormissingfoot-switchdata.Sometrialswereexcluded,
because subjects started walking with the wrong leg or no
detection took place at all. The number of subjects and the
percentageoftrialsincludedinthecalculationofthetimingsare
specifiedinTable2.
Results for the timings of thefootswitches can befound in
Table1.Totalpush-offtime(SD)was285ms(75),starting166ms
(66)beforeandending125ms(38)afterheel-strikeoftheleading
limb. Table2shows theonand offsettimings oftheupperleg
muscles before toe-off or heel-strikeof the leading limb in all
subjects.Table2alsoshowsthedetectionoftoe-offoftheleading
limbusinginertialsensordata,whichwasonlypossiblewhenthe
prostheticlegwasleading.
3.3. Simulatedprostheticlegleading
The TFL and the RF showed activity onset in the ensemble
averages,whichisconfirmedbytheaverageonsetof129–199ms
beforetoe-offoftheleadinglimb.TheVLandtheBFshowedonset
of activityabout 150ms before heel-strike.Accelerometer and
gyroscopedataexceededtheswaythresholds160–260msbefore
toe-off.Heel-strikecouldnotbepredictedfromthekinematicdata,
itcouldhoweverbedetected.
Fig.2.Muscleactivityoftheupperlegmusclesandinertialsensordataofthesimulatedprostheticlimb(SPL)duringgaitinitiation.Theensembleaverageistakenover16 trialsofonetypicalsubject.Thickblacklinesindicatetheaverageactivityandthegraysurfaceindicatesplusandminusonestandarddeviation.Theverticallinesindicatethe events:toe-offleadinglimb,heel-strikeleadinglimbandtoe-offtrailinglimb,respectively.Ontheleft,wheretheSPLwasleading,activitychangesareseenbeforetoe-offof theleadinglimbintheTFL,theRFandtheinertialsensordataandintheVLandBFbeforeheel-strikeoftheleadinglimb.Ontheright,theSPLwastrailingactivitychangesare seenintheGMe,theGMe,theTFLandtheBFbeforetoe-offoftheleadinglimb.TheGMaandESshowactivitychangesbeforeheel-strikeoftheleadinglimb.
3.4. Simulatedprostheticlegtrailing
Forthiscondition,theGMa,theGMe,theTFLandtheBFcould
predict toe-off of the leading prosthetic limb 200–224ms in
advance. Heel-strike of the leading limb was detected for this
conditionbytheGMa(offset)andtheES(onset)163–199msin
advance.Kinematicdatacouldnotbeusedtopredicttoe-offor
heel-strike.
4. Discussion
Thegoaloftheexperimentswastodetermineifgaitinitiation
canbe predicted in non-amputees using data which would be
availableinprostheticusersontheprostheticside,e.g.EMGand
kinematic data. EMG of the upper leg muscles shows distinct
patternsduringgait initiationand wassimilar tothat inother
studies[3,8,9].ForbothleadinglimbconditionsEMGoftheupper
legmusclesshowedactivitychanges130–220msbeforetoe-off
andheel-strike.TheRFandTFLcanbeusedforthepredictionof
toe-offandtheVLandBFforpredictionofheel-strikeoftheleading
(prosthetic)limb.TheGMa,theGMe,theTFLandtheBFcanpredict
toe-offandtheGMaandEScanpredictheel-strikeoftheleading
(sound)limb.Kinematicdatacouldpredicttoe-offoftheleading
(prosthetic)limb,158–260msinadvance.
4.1. Simulatedprostheticlegleading
PreviousstudiesshowedthatTFAhaveatendencytostartgait
initiation with the prosthetic limb, because fewer adjustment
strategies are needed to initiate gait withthe prosthesis [1,2].
Whentheprosthesisisleading,thekneeshouldflexattoe-offand
extendatheelstrike[3,7].Ashortpreparationandalongexecution
phasewereseeniftheprostheticlegwasleadingcomparedto
non-amputees[1].ButevenifthepreparationphaseinTFAishalfthe
Fig.3.Varianceratiosofallmusclesaveragedoverallsubjectswithonestandarddeviation.Thelowerthescoreis,thebetterthereproducibility.Thepreparationphaseshows asignificantlylowerreproducibilitythantheexecutionphasewhenthesimulatedprostheticlimbwasleading.(a)Thereproducibilitywithinsubjectswhenthesimulated prostheticlegwasleadingand(b)whenthesimulatedprostheticlegwastrailing.
Table1
Timingfootcontacts.
HOLL TOLL HOTL HSLL TOTL HSTL TOTL-HOTL HOLL-TOLL
Time(ms) 549 462 166 0 125 652 285 87
SD 49 49 66 38 18 75 61
Timingsdeterminedusingthefootswitchesaveragedoveralltrialsofallsubjects.TOLL,toe-offleadinglimb;HOLL,heel-offleadinglimb;HOTL,heel-offtrailinglimb;TOTL, toe-offtrailinglimb;HSLL,heel-strikeleadinglimb;HSTL,heel-striketrailinglimb.AminussignreferstotheeventtakingplacebeforeHSLL.Timingsareaveragedoverall subjects.
durationofthatinnon-amputeesthecurrentresultssuggestthere
is enough time to control the prosthesis. Due to the lower
reproducibilityofEMGinthepreparationphase,thepredictionof
toe-offneedstheinertialsensordata.Inmicroprocessorcontrolled
kneessomeoftheseinertialsensorsarealready buildin.
Heel-strikecanbepredictedusingtheEMGdata.
4.2. Simulatedprostheticlegtrailing
Ifinamputeesthesoundlegwasleadingthepreparationphase
waslongerandtheexecutionphaseshortercomparedtohealthy
individuals[1].Duetothelongerpreparationtheremaybemore
timetodetecttoe-offoftheleadinglimbinTFAcomparedto
non-amputees.Timingofpush-off,whentheprostheticlimbistrailing,
mayneedsomeconsideration.Toaddpush-offtoprostheticgait,
heel-offand toe-offof thetrailinglimbneedtobedetectedfor
correcttiming[3,6,7].However,ifnoankleflexiontakesplacein
theprosthesisheel-offandtoe-offwilloccuralmostatthesame
time.Detectionofheel-strikeandtoe-offoftheleadinglimbwillbe
moreuseful.Theresultsshowthatfourmusclesareabletopredict
toe-off of the leading (sound) limb with good reproducibility.
However,onlytheGMahasahighreproducibilityinheel-strike
detection. Heel-strike of the leading limb may not need to be
predicted (only detected) in this case, because push-off ends
125msafterheel-strike.
4.3. Methodicalconsiderations
Toe-offwasnotdetectedinalltrials,thefootswitchesdidnot
provideanyinformationabouttheappliedpressure.Furthermore,
attheinitialstancephaseofgaitinitiationtheweightofthesubject
shiftsbackwardsalittlewhichmayunloadthetoeswitchesofthe
leadinglimbandthereforeunloadstheswitchesbeforeactual
toe-off.
Theerectorspinaewasonlymeasuredinfivesubjects,during
the experiments we found that the erector spinae may give
valuableinformationonposturalchanges,thereforeitwasadded
later.DataoftheESmaybeusedfordetectionofheel-strikeifthe
prostheticlimbistrailing,butthevarianceratioswereamongthe
highest.Forthefinalapplicationitisthereforenotuseful.
Inpreviousstudies,durationofactivityofsomemusclesinTFA
wasfoundtobealittlelongerthaninnon-amputees[10–12].This
shouldnotbeaproblemforgaitinitiationdetectioninTFA,aslong
asclearchangesinmuscleactivitycanbedetectedbeforetoe-off
andheel-strikeoftheleadinglimb.Foroffsetdetectionofamuscle
thismaymeanthatlesstimeisavailablepriortotheevent,butthis
wasonlyrelevantintheGMaifthesimulatedprostheticlegwas
trailing.Forlongerstumplengths,amputationatthedistalhalfof
theupperleg,allthesuggestedmusclesarelikelytobeavailableif
myodesis of myoplasty has been performed. For short stump
lengths, however, some of the suggested muscles may not be
availableanymore[10].
Although all data was processed in such a way that onset
detectioncanbeperformedreal-time,thereisneedforadecision
algorithm.Toimplementcontrolintoaprosthesis,similarresults
mustbefoundinTFAandmoreactivitiesshouldbeanalyzed.
4.4. Conclusions
DetectionofgaitinitiationfromEMGoftheupperlegmuscles
and kinematic data in simulated amputee gait initiation was
possible.Intentiondetectionofgaitinitiationallows130–260ms
forcontrolofaprosthesis.However,furtherstudiesareneededto
determinethepossibilitiestopredictgaitinitiationinTFA.
Acknowledgments
ThisresearchissupportedbytheDutchTechnologyFoundation
STW,whichispartoftheNetherlandsOrganizationforScientific
Research(NWO)andpartlyfundedbytheMinistryofEconomic
Affairs,AgricultureandInnovation,undergrantno.08003.
Conflictsofintereststatement
Authors statethat no conflictsofinterest arepresent inthe
research. References
[1]vanKeekenH,VrielingAH,HofAL,HalbertsmaJPK,SchoppenT,PostemaK, etal.Controllingpropulsiveforcesingaitinitiationintransfemoralamputees. JournalofBiomechanicalEngineering2008;130(011002):1–9.
[2]VrielingA,KeekenH,SchoppenT,OttenE,HalbertsmaJ,HofA,etal.Gait initiationinlowerlimbamputees.Gait&Posture2008;27:423–30. [3]MannR,HagyJ,WhiteV,LiddellD.Theinitiationofgait.JournalofBoneand
JointSurgery1979;61:232–9.
[4]WinterD.Thebiomechanicsandmotorcontrolofhumangait.Waterloo: UniversityofWaterlooPress;1987.
[5]MichelV,ChongR.Thestrategiestoregulateandtomodulatethepropulsive forces duringgait initiationin lowerlimbamputees. Experimental Brain Research2004;158:356–65.
[6]ErdemirA,PiazzaS.Rotationalfootplacementspecifiestheleverarmofthe groundreactionforceduringthepush-offphaseofwalkinginitiation.Gait& Posture2002;15:212–9.
Table2
Timingsoftheupperlegmuscles.
Leadinglimb Muscle On/off TOLL(SD)inms #Sub %Trials HSLL(SD)inms #Sub %Trials
SSL GMa On 220(97) 10 90 – – – GMe On 216(49) 10 87 – – – TFL On 224(62) 10 95 – – – BF On 200(89) 10 81 – – – GMa Off – – – 199(70) 10 78 ES On – – – 163(67) 5* 82 SPL TFL On 129(90) 10 82 – – – RF On 199(108) 10 82 – – – VL On – – – 145(71) 9 88 BF On – – – 155(45) 10 95
Sensor TOLL(SD)inms #Sub %Trials
Acc UL 232(34) 10 95
Acc LL 158(90) 10 95
Gyro UL 260(67) 10 95
Gyro LL 258(34) 10 95
Aminussignreferstotheeventtakingplacebeforetheevent.TOLL,toe-offleadinglimb;HSLL,heel-strikeleadinglimb;SPL,simulatedprostheticleg;SSL,simulatedsound leg;Acc,accelerometerdata;Gyro,gyroscopedata;UL,upperleg;LL,lowerleg;#,thenumberofsubjectsincluded,%,thepercentageoftrialsincluded,*,theESwasonly measuredin5subjects.
[7]RoseJ, Gamble J.Human walking.Philadelphia: LippincottWilliamsand Wilkins;2006.
[8]MickelboroughJ,vanderLindenM,TallisR,A.R.E.Muscleactivityduringgait initiationinnormalelderlypeople.Gait&Posture2004;19:50–7. [9]QueraltA,Valls-SoleJ,CastelloteJ.Speedingupgaitinitiationandgait-pattern
withastartlingstimulus.Gait&Posture2010;31:185–90.
[10]JaegersS,ArendzenJ,deJonghH.Anelectromyographicstudyofthehip muscles oftransfemoralamputees inwalking.Clinical Orthopaedicsand RelatedResearch1996;328:119–28.
[11]HuangH,KuikenTA,LipschutzRD.Astrategyforidentificationlocomotion modes usingsurface electromyography.IEEE TransactionsonBiomedical Engineering2009;56(1):65–73.
[12]HaK,VarolH,GoldfarbM.Volitionalcontrolofaprosthetickneeusingsurface electromyography. IEEE TransactionsonBiomedical Engineering2011;58 (1):144–51.
[13]NajafiB,MillerD,JarettB,WrobelJ.Doesfootweartypeimpactthenumber of stepsrequiredto reach gaitsteady state?:an innovative lookatthe impact of foot orthoses on gait initiation. Gait & Posture 2010;32: 29–33.
[14]TokunoC,EngJ.Gaitinitiationisdependentonthefunctionoftheparetic trailing limb in individuals with stroke. Gait & Posture 2006;24: 424–8.
[15]HansenA,MiffS,ChildressD,GardS,MeierM.Netexternalenergyofthe biologic and prosthetic ankle during gait initiation. Gait & Posture 2010;31:13–7.
[16]HermensH,FreriksB,MerlettiR,StegemanD,BlokJ,RauG,etal.European recommendationsforsurfaceelectromyography.Enschede:Roessingh Re-searchandDevelopment;1999.
[17]LuingeH,VeltinkPH,BatenC.Ambulatorymeasurementofarmorientation. JournalofBiomechanics2007;40:78–85.
[18]ZwartjesD,HeidaC,vanVugtJ,GeelenJ,VeltinkPH.Ambulatorymonitoringof activitiesandmotorsymptomsinParkinson’sdisease.IEEETransactionson BiomedicalEngineering2010;57(11):2778–86.
[19]MerlettiR,ParkerP.Electromyography.Hoboken:WileyInterscience;2004. [20]StaudeG, Wolf W.Objective motor responseonsetdetection in surface myoelectricsignals.MedicalEngineering&Physics1999;21(6–7):449–67. [21]StaudeG,FlacheneckerC,DaumerM,WolfW.Onsetdetectioninsurface
electromyographicsignals:asystematiccomparisonofmethods.In:EURASIPJ ApplSigProc2001,vol.1.2001.p.67–81.
[22]RoetenbergD, BuurkeJ, VeltinkP,FornerCorderoA,HermensH.Surface electromyographyanalysisforvariablegait.Gait&Posture2003;18(2):109–17. [23]HershlerC,MorrisM.Anoptimalitycriterionforprocessingelectromyography (emg)signalsrelatingtohumanlocomotion.IEEETransactionsonBiomedical Engineering1978;25(5):413–20.