Reinforced Tire Tread Compounds by using
p
y
g
Chemically Modified Natural Rubbers
K. Sahakaro
1, K. Sengloyluan
1,2, P. Saramolee
1, W.K. Dierkes
2,
J.W.M. Noordermeer
21
Department of Rubber Technology and Polymer Science, Faculty of Science and Technology,
Prince of Songkla University, Pattani Campus, Thailand
Prince of Songkla University, Pattani Campus, Thailand
2
Elastomer Technology and Engineering, Faculty of Engineering Technology,
University of Twente, the Netherlands
1
Since 1967
Faculties @Pattani Campus
Science and Technology
gy
Education
Humanities and Social Science
Communication Science
Surat Thani
Communication Science
Fine and Applied Arts
Political Science
PSU
P tt
i
Phuket
Surat Thani
Pattani
College of Islamic Studies
Graduate School
2
Hat Yai
Since 1985
Department of Rubber Technology and Polymer Science
ff
B S (R bb
T h
l
)
Since 1985
offers B.Sc. (Rubber Technology)
M.Sc. (Polymer Technology)
Ph.D. (Polymer Technology)
Introduction
− Tire development
Introduction Tire development
www.asdreports.com A.Blume, F. Thibault-Starzyk. 2017. Rubber Fibres Plastics International 12(3), 152-157
Moving towards more “Green” tire industry
-
More energy-efficient and less CO
2emission tires
-
Use of safe compounding ingredients
-
Less dependence on petroleum-based raw materials, but more
4
Introduction
− Low rolling resistance tires
Introduction Low rolling resistance tires
The basis for low rolling resistance tire treads
g
Enhanced Filler-Elastomer Interactions
A.Blume. Reinforcement. In Elastomer Science and Engineering. University of Twente.
Double network (crosslinking &
coupling) reduces hysteresis,
i e less energy loss during dynamic
5
i.e. less energy loss during dynamic
Introduction
− Silica/silane technolgy
Introduction Silica/silane technolgy
Si O
O
H
Primary silanization reaction
Silica particle Si Si O O O O H S4 Si OC2H5 OC2H5 OC H Si (CH2)3 (CH2)3 OC2H5 H5C2O OC H +
Based on model compound study,
Si O H O OC2H5 OC2H5 1) Direct condensation 2) Hydrolysis of alkoxy group to form reactive hydroxyl group
•
Only isolated and geminal
silanol groups react, and
approx. 25% of the Si-OH
Si O O O H OC H OC2H5 form reactive hydroxyl group prior to condensation reaction
groups react with silanes due
to the accessibility;
•
Small molecules such as
+ EtOH Silica particle Si Si O O O O S4 Si OC2H5 OC2H5 OC2H5 Si OC2H5 OC2H5 (CH2)3 (CH2)3
alcohols or amines can further
increase the hydrophobation of
the silica surface.
O H
Mixing dump temperature is the key parameter.
6
C. Hayichelaeh et al. Polymers10(6), 584; doi:10.3390/polym1006058
A.Blume, F. Thibault-Starzyk. 2017. Rubber Fibres Plastics International 12(3), 152-157
I t d
ti
Alt
ti
Introduction − Alternatives
St t
i
t
h
fill
bb
i t
ti
9
Use of silane coupling agents
Strategies to enhance filler-rubber interactions
9
Silica surface modification,e.g. by plasma treatment, silane
pretreatment , admicellar polymerization, grafting of functional
groups
9
Use of polar rubber as compatibilizers
, e.g. CR, NBR, ENR
Natural rubber grafted with 3-octanoylthio-1-propyltriethoxysilane (NR-g-NXT)
Epoxidized natural rubber (ENR)
Epoxidized low molecular weight natural rubber (ELMWNR)
Preparation of NR-g-NXT
O C CH3 CH3 CH3 or CH3 S CH2 Si OCH2CH3 OCH2CH3 OCH2CH3 3 C H2C H3C O 6Preparation of NR-g-NXT
Melt mixing
CH3 (I) (II) OCH2CH3 OCH CH O O CHRadical from initiator decomposition 3-Octanoylthio-1-propyltriethoxysilane (NXT)
Melt mixing
at 140
°C for 12 mins
Initiator:
1,1′-di(tert-b t l
) 3 3 5
S CH2 Si OCH2CH3 OCH2CH3 OCH2CH3 3 H3C H2C C O 6 C H2C H3C O 6 CH3 or O C CH3 CH3 CH3butylperoxy)-3,3,5-trimethylcyclohexane
(Luperox® 231XL40)
H2C C CH H3C CH2 nNXT 10, 20 phr
Initiator 0.1 phr
H3C H3C CH O O O C CH3 CH3 CH3 O C CH3 CH3 CH3 CH2 C CH2 CH2 n C3H6 Si OCH2CH3 OCH2CH3 S H2C C CH CH n OCH2CH3 SNR-g-NXT
CH3 CH3 CH38
3 6 Si OCH2CH3 OCH2CH3 Si OCH2CH3 OCH2CH3 C3H6NR g NXT
Characterization of NR-g-NXT
Virgin NR NXT 10 phr H2C C C H3C CH n Si OCH2CH3 OCH2CH3 S C3H6 Hag
m it ta n c e (a .u .) NXT 20 phr 3270 1125 NXT 20 phr Si OCH2CH3 OCH2CH3 C3H6 a b b Tr a n s 2908 2848 1670 1375 838 565 1010 1035 1075 1125 NXT 10 phr 400 800 1200 1600 2000 2400 2800 3200 3600 4000 Wave number (cm-1) 2956 2908 1467 ppm 0 1 2 3 4 5 6 7 8 9 Virgin NR Analysis results Amount of NXT (phr) virgin NR 10 20R value from ATR-FTIR
R1075=A1075/A1375 0.31 0.49 0.55 R1035=A1035/A1375 0.22 0.42 0.49
Mol% of NXTfrom1H NMR 0.00 0.66 1.32
Peaks at 1075 and 1035 cm-1 are assigned
to Si-O-C and Si-OSi deformations.
9
Amount of grafted NXT (wt%) - 3.43 6.68 Amount of NXT used (wt%) - 9.09 16.67
Effect of NR g NXT on silica filled NR compounds
1600 1800 kPa ) (a) (b) 80 90Effect of NR-g-NXT on silica-filled NR compounds
Zeosil 1165MP 55
1200 1400 1600 -G ′(1 00 % )] ( k None TESPT NXT NR-g-NXT 60 70 80 0 o C)Zeosil 1165MP 55
TDAE 8
ZnO 3
Stearic acid 1
TMQ
1
600 800 1000 ct [ G ′(0 .5 6% ) 30 40 50 M L 1+ 4 ( 1 0 0 NoneTMQ 1
DPG 1
CBS 1.5
Sulfur 1.5
0 200 400 P ayn e e ff ec 0 10 20 TESPT NXT NR-g-NXT 0 0 2 4 6 8 Silane contents (wt% rel. to silica) 0 0 2 4 6 8 Silane contents (wt% rel. to silica) mixing De‐mixing (fl l ti )10
agglomerates
aggregates
(flocculation)Effect of NR-g-NXT on silica-filled NR vulcanizates
(a) 10 12 a ) 25 30 a ) (a) 30 35 a ) (b)(b)
(c)
(d)
6 8 o dul us ( M P a 15 20 tre n g th (MP a 15 20 25 tr e ngt h ( M P a(a)
2 4 300% M o None TESPT NXT 5 10 Te ns ile s t None TESPT NXT 5 10 15 Tensi le s t None TESPT NXT 0 0 2 4 6 8 Silane contents (wt% rel to silica) NR-g-NXT 0 0 2 4 6 8 Silane contents NR-g-NXT 0 5 20 30 40 50 60Chemically bound rubber
NR-g-NXT
(wt% rel. to silica) (wt% rel. to silica) C e ca y bou d ubbe
contents (%)
(d)
)(c)
(a)
(b)
(a)
(b)
(c)
(d)
11 SEM micrographs of tensile fractured surfaces at 800xEffect of NR-g-NXT & sulfur compensation on the properties
Effect of NR g NXT & sulfur compensation on the properties
25 (b) 12 (a) 30 (a) 15 20 e ( d N .m ) ( ) 8 10 (MP a ) 20 25 (MP a ) 10 15 q ue di ff e re n c None 4 6 0 % M odul us 10 15 s ile st re n g th 0 5 Tor q TESPT NR-g-NXT NR-g-NXT+S 0 2 30 0 None TESPT NR-g-NXT NR-g-NXT+S 0 5 Te n s None TESPT NR-g-NXT NR-g-NXT+S 0 0 2 4 6 8 Silane contents (wt% rel. to silica) 0 0 2 4 6 8 Silane contents (wt% rel. to silica) 0 0 2 4 6 8 Silane contents (wt% rel. to silica)Sulfur compensation for the system having NR-g-NXT by taking the compound
with TESPT as reference results in enhanced modulus and tensile strength.
12
1.2 (b) 1.2 (b) 0.8 1.0 (b) 0.8 1 (b) 0.6 0.8
Ta
n
δ
0.6 0.8Ta
n
δ
NR-g-NXT+S 0.2 0.4 None TESPT 0.2 0.4 TESPT None 0.0 -80 -60 -40 -20 0 20 40 60 80 Temperature (oC) NR-g-NXT 0 -80 -60 -40 -20 0 20 40 60 80 Temperature (oC) NR-g-NXTCompatibilizer types
T
g(
oC)
Values of Tan δ
at 5
oC
at 60
oC
Without
-47
0.09
0.11
TESPT
-45
0.10
0.07
NR g NXT
44
0 08
0 05
13
NR-g-NXT
-44
0.08
0.05
NR-g-NXT + sulfur
-42
0.08
0.06
U
f ENR
ibili
Use of ENR as compatibilizer
Si OH Si O HO O H OH O H O H Si OH
14
K. Sengloyluan et al. 2014. European Polymer Journal. 51, 69-79.
U
f ENR
tibili
TESPT
lf
ti
35Use of ENR as compatibilizer + TESPT + sulfur compensation
ENR-51 7.5 phr + TESPT
ENR-51 7.5 phr + TESPT+S
25 30
M
Pa
)
15 20s
tr
e
n
g
th
(
M
5 10T
e
n
s
ile
s
ENR+TESPT ENR+TESPT+S TESPT 0 0 2 4 6 8TESPT contents
None(wt% rel. to silica)
TESPT 8.6 wt% rel.to silica
Without
With only half or smaller amount of TESPT is needed when ENR 51 is
15
With only half or smaller amount of TESPT is needed when ENR-51 is
1.0 None TESPT
(b)
0.14 0.16 (a) 0 12 0.14 (b) 0 6 0.8 0.10 0.12 5 oC 0.08 0.10 0.12 6 0 o C 0.4 0.6Ta
n
δ
ENR+TESPT+S None 0 04 0.06 0.08 Ta n δ at ENR+TESPT 0.04 0.06 0.08 Ta n δ at 6 ENR+TESPT 0.2 ENR ENR+TESPT ENR TESPT S 0.00 0.02 0.04 ENR+TESPT+S TESPT None 0.00 0.02 ENR+TESPT+S TESPT None 0.0 -80 -60 -40 -20 0 20 40 60 80Temperature (
oC)
TESPT 0 2 4 6 8 TESPT contents (wt% rel. to silica) 0 2 4 6 8 TESPT contents (wt% rel. to silica)Temperature (
oC)
From the perspective of the “Magic Triangle of Tire Technology”, when the wet
skid resistance needs to be boosted e g for “Winter Tires” the combination of
16
skid resistance needs to be boosted, e.g. for Winter Tires , the combination of
ENR-51, TESPT and sulfur compensation presents itself as a better option.
Use of ELMWNR as compatibilizer
Use of ELMWNR as compatibilizer
600 700 a ) silica/TESPT non-compatibilizer LMWNR (a) 1 0 1.2 non-compatibilizer silica/TESPT 400 500 600 ul us , G ' ( M P a LMWNR ELMWNR-12 ELMWNR-28 ELMWNR-51 0.8 1.0 p ELMWNR-12 200 300 400 e sh ear m o d 0.4 0.6 Ta n δ 0 100 200 St o ra g e 0.2 ELMWNR-28 ELMWNR-51
ELMWNR
M
w 0 0.1 1 10 100 1000 Strain (% ) 0.0 -100 -80 -60 -40 -20 0 20 40 60 80 100 Temperature (oC)ELMWNR
M
w(mole% epoxide)
(g/mol)
0
65,000
12
55,000
28
49 000
With 10 phr of low molecular weight rubber
17
28
49,000
51*
N/A
Use of ELMWNR as compatibilizer
ll
t f TESPT
+small amount of TESPT
120 140 No compatibilizer (b) 30 35 TESPT only 10 phr ELMWNR-28 + TESPT (c) 0.9 1.0 TESPT only 10 phr ELMWNR-28 + TESPT (b) 80 100 0 0 o C 20 25 30 th ( M P a ) no compatibilizer ELMWNR-28 0 6 0.7 0.8 )] M P a p tibili 60 80 M L (1 + 4 )1 0 TESPT 15 20 s ile s tr e n g t 0.4 0.5 0.6 G '( 0.56) -G '( 100 ) no compatibilizer ELMWNR-28 20 40 ELMWNR-12 ELMWNR-28 5 10 Te n 0.1 0.2 0.3 [G
18
0 0 5 10 15 20Low MW rubber content (phr)
00 0 0.0 1.5 3.0 4.5 TESPT content (phr) 0.0 0.0 1.5 3.0 4.5 TESPT content (phr)