• No results found

Ground-based observations of exoplanet atmospheres Mooij, E.J.W. de

N/A
N/A
Protected

Academic year: 2021

Share "Ground-based observations of exoplanet atmospheres Mooij, E.J.W. de"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Ground-based observations of exoplanet atmospheres

Mooij, E.J.W. de

Citation

Mooij, E. J. W. de. (2011, September 28). Ground-based observations of exoplanet atmospheres. Retrieved from https://hdl.handle.net/1887/17878

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/17878

Note: To cite this publication please use the final published version (if applicable).

(2)

Ground-based Observations of

Exoplanet Atmospheres

(3)
(4)

Ground-based Observations of

Exoplanet Atmospheres

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op woensdag 28 september 2011 klokke 11.15 uur

door

Ernst Johan Walter de Mooij

geboren te ’s-Gravenhage in 1983

(5)

Promotiecommissie

Promotor: Prof. dr. K. H. Kuijken Co-promotor: Dr. I. A. G. Snellen

Overige leden: Dr. M. Lopez-Morales (Institute for Space Science, Spain)

Dr. R. J. de Kok (Netherlands Institute for Space Research, Utrecht) Prof. dr. M. Fridlund

Dr. M. A. Kenworthy Prof. dr. H. V. J. Linnartz Prof. dr. E. F. van Dishoeck

(6)

Voor mijn ouders

(7)

Cover image: Night-time on La Palma. This photo was taken during a night with full moon from the south balcony of the Isaac Newton Telescope. The telescope domes seen in this image are the William Herschel Telescope (back cover), The Liverpool Telescope (left on front cover) and the Mercator Tele- scope (right on front cover). On the front cover, both Mars and part of the con- stellation Leo are visible, including γ1Leonis (Algieba), which hosts a planet.

(8)

Contents vii

Contents

Page

Chapter 1. Introduction 1

1.1 Discovering exoplanets . . . 1

1.2 Studying atmospheres of transiting exoplanets . . . 3

1.3 Hot Jupiter atmospheres . . . 6

1.3.1 The atmospheric temperature structure . . . 6

1.3.2 Inversion layers in hot Jupiter atmospheres . . . 7

1.4 Observing tool: high precision photometry . . . 8

1.5 GROUnd-based Secondary Eclipse project (GROUSE) . . . 10

1.6 This thesis . . . 11

1.7 Outlook . . . 12

Chapter 2. The GROUSE project I: Ground-based detection of emission from TrES-3b 15 2.1 Introduction . . . 16

2.2 Observations, data reduction and analysis . . . 16

2.2.1 The transit of TrES-3b . . . 16

2.2.2 The secondary eclipse of TrES-3b . . . 19

2.3 Results and discussion . . . 20

2.3.1 The transit of TrES-3b . . . 20

2.3.2 The secondary eclipse of TrES-3b . . . 22

2.4 Conclusions . . . 23

Chapter 3. The GROUSE project II: The secondary eclipse of HAT-P-1b 25 3.1 Introduction . . . 26

3.2 Observations, data reduction and analysis . . . 27

3.2.1 Crosstalk, non-linearity corrections and flat-fielding . . . 28

3.2.2 Removal of bad-pixels . . . 28

3.2.3 Background subtraction . . . 28

3.2.4 Diffraction spokes from the secondary mirror support . . . 29

3.2.5 Aperture Photometry . . . 29

3.2.6 Correction for systematic effects . . . 31

3.3 Results . . . 32

3.3.1 Atmospheric models . . . 33

3.4 Conclusion . . . 37

Chapter 4. The GROUSE project III: The secondary eclipse of WASP-33b 39 4.1 Introduction . . . 40

4.2 Observations and data reduction . . . 41

4.2.1 Observations . . . 41

(9)

viii Contents

4.2.2 Data reduction . . . 43

4.3 Correction for systematic effects and stellar pulsations . . . 43

4.3.1 Stellar pulsations . . . 43

4.3.2 Light curve fitting . . . 45

4.4 Results and discussion . . . 53

4.4.1 A low albedo and rapid re-radiation of incident light . . . 53

4.5 Conclusion . . . 55

Chapter 5. Transmission spectroscopy of GJ1214b 57 5.1 Introduction . . . 58

5.2 Observations . . . 60

5.2.1 WFC observations . . . 60

5.2.2 GROND griz-band observations . . . 60

5.2.3 NOTCam Ks-band observations . . . 60

5.2.4 LIRIS Kc-band observations . . . 61

5.3 Data reduction . . . 61

5.3.1 Optical data . . . 61

5.3.2 Near-infrared data . . . 64

5.4 Transit fitting . . . 65

5.4.1 Optical transits . . . 65

5.4.2 Near-infrared transits . . . 66

5.5 Stellar variability . . . 67

5.5.1 Correcting for the stellar variability . . . 69

5.6 Discussion . . . 70

5.6.1 The transmission spectrum of GJ1214b . . . 70

5.6.2 Atmospheric models . . . 70

5.6.3 Comparison with previous measurements . . . 71

5.6.4 The impact of unocculted starspots . . . 74

5.7 Conclusions . . . 75

Chapter 6. An ensemble study of the day-side spectra of hot Jupiters 79 6.1 Introduction . . . 80

6.2 Data . . . 81

6.2.1 Secondary eclipse measurements . . . 81

6.2.2 System parameters . . . 87

6.2.3 Conversion to physical units . . . 87

6.3 Correlations with brightness temperature . . . 93

6.3.1 Relation with incident radiation . . . 93

6.3.2 Relation with stellar activity . . . 93

6.4 The average emission spectrum of a hot Jupiter . . . 98

6.5 Atmosphere models . . . 101

6.6 Discussion . . . 104

6.6.1 The effective temperatures of hot Jupiters . . . 104

6.6.2 Stellar activity and the presence of an inversion layer . . . 105

6.7 Conclusion . . . 107

(10)

Contents ix

Nederlandse samenvatting 111

Curriculum Vitae 119

Nawoord 121

Referenties

GERELATEERDE DOCUMENTEN

In order to have a better idea of the requirements for the database system we have to take a closer look at the LOFAR telescope and its processing locations for RFI mitigation.

Henceforth, observations at high- resolution, particularly in the optical and infrared do- main (e.g. with ESPRESSO, CARMENES, etc.), are a valuable and important resource in order

If the thermal emission rather than reflected light from the planet is measured, the eclipse depth is proportional to the planet-to-star surface brightness ratio, multiplied with

If the thermal emission rather than reflected light from the planet is measured, the eclipse depth is proportional to the planet-to-star surface brightness ratio, multiplied with

Since a dependence of the transit depth on wavelength can reveal characteristics of the planet atmosphere, we fitted the radius of TrES-3b, keeping the parameters of the host star

Using the LIRIS infrared camera on the WHT, we determine the eclipse depth of the extrasolar planet HAT-P-1b in K s -band to be 0.109±0.025% (∼4σ), with the uncertainties in the

The measured brightness temperature on the second night is consistent with the expected equilibrium temperature for a planet with a very low albedo and a rapid re-radiation of

Middle panel: The same data points as in the top-panel but now with different models overplotted showing the change in radius ratio due to different amounts for the base levels