• No results found

Reconstructing Greater India

N/A
N/A
Protected

Academic year: 2022

Share "Reconstructing Greater India"

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Reconstructing Greater India

Paleogeographic, kinematic, and geodynamic perspectives

Douwe van Hinsbergen1, Pete Lippert2, Shihu Li3 Wentao Huang4, Eldert Advokaat1, and Wim Spakman1

1. Utrecht University, the Netherlands; 2. University of Utah, USA; 3. Chinese Academy of Sciences, Beijing; 4. University of Rochester, USA

Kinematic reconstruction following a systematic protocol

Geodynamic interpretation

1) Marine magnetic anomalies

2) Structural geological constraints (extension, strike-slip, shortening)

3) Paleomagnetic rotations

4) Paleomagnetic paleolatitudes

5) Seismic tomographic constraints on slab location and dimension

Greater Asia Greater India

No ocean floor within Asia

Gibbons et al, G-Cubed, 2012

-India restores against Antarctica, Australia,

Madagascar at ~130 Ma -Pre-130 Ma continental break-up occurred N of Wallaby Fracture zone

Wallaby fracture zone restores

~1000 km north of modern MFT

30°N

90°E 90°E

60°E 120°E

30°N

Lhasa -

Shortening

200 km

100 km Extension Strike-Slip

150 km

40 km20 120 km19

66 km24

200 km18 140 km9

260 km4

200 km3 20 km3

50 km2

25 km26 100 km30

20° Rotation

150 km5 6

50°6 60 km7

400 km8

30 km10

140 km11 150 km13

270 km16

20°17

<10°21

50°22 23

100 km25

70 km27

80 km29

250 km32 40 km31

460 km

33

530

km34

650 km35

70 km36 11 km38

100 km39 100

km40 NOT RE

CONSTRU

CTED ls

sb

10-20°37 7 km1

20 km12

65 km15

25 km28

At least some 600-1000 km of Cenozoic shortening in Tibet

van Hinsbergen et al., Tectonics 2011

Himalaya contains upper

crustal relics of a minimum 800-1000 km continental

crust that once existed

North of the modern Main Frontal Thrust.

Long et al, GSA Builletin 2011

Indochina extrusion for large

part accommodated by rotations;

increases shortening in eastern Tibet to ~1200 km

30°N

20°N

10°N

100°E 110°E

100°E 110°E

30°N

20°N

10°N 30°N

20°N

10°N

100°E 110°E

100°E 110°E

30°N

20°N

10°N Southern Indochina Block

Lanping

Southern Simao

Northern Simao

South China (fixed) Chuandian

0 Ma 50 Ma

250 k m

~600 k m

15°

35°

65°

15°

40 km 70 km

= rotation relative to South China

= observed displacement relative to South China

= inferred displacement relative to South China

ASRR

Mae P ing F

ault Dien Bien Ph

u Fault Xia nsh uihe -Xiao jiang F

ault

A B

Li et al., Earth-Science Reviews 2017

Reconstructing oroclinal

bending restores the Tibetan Himalaya to a WNW-ESE

trend at collision time m

bo mo

ko

LH

GH TH XF

C

58 Ma

Africa/

Arabia

Eurasia

Australia

30°N

0°N

Paleomagnetic Reference Frame

PPE

WA

6) Reconciling a 1000 km wide

Greater India and a 1000 km wide Greater Asia with a 58 Ma collision

requires ~3000 km extension between southern Lhasa and continental India.

Age (Ma)

Paleola titude (°)

0 20

40 60

80 100

120 -20 140

0 20 40

60 Reference point 29°N/88°E

Eurasia

Lhasa

Paleolatitudes consistent with shortening

Age (Ma)

Paleolatitude (°)

0 50

100 150

200 250

-90 300 -75 -50 -25 0 25 50

75 Reference location: 29°N/88°E

Tibetan Himayala (this paper)

India

Paleolatitudes from B

Tethyan Himalaya are consistent with position in Early

Cretaceous and

Triassic within 1000 km from MFT.

Tectonophysics, 2018

A

UU-P07 Present-day/130 km SL2013sv

B

10°N 20°N 30°N 40°N

Indus-Yarlung Suture

Altyn-Tagh Fault North Pamir Thrust

Main Fron tal Thrust

North Pamir Thrust

70°E 80°E 90°E 70°E

North ern m

argin un derthru

sted I ndian c ontinent

Figure 7: Horizontal cross sections at 130 km depth below India and Tibet through seismic tomographic models of (A) UU-P07 (Amaru, 2007) and (B) SL2013sv (Schaeffer and Lebedev, 2013). Dotted yellow line is the interpreted northern continental margin of India that horizontally underthrusted Tibet. See also Agius and Lebedev (2013).

-Up to ~1000 km of Indian continental lithosphere

horizontally underlies Tibet

-Has a sharp kink around 90°E, zone is ~400 km narrower to the west.

Hi

Su (Ca)

An

30°N

60°E 90°E

UU-P07 global moving hotspot reference frame 750 km / 35 Ma

Ca

In Si

In

30°N

60°E 90°E

UU-P07 global moving hotspot reference frame 1210 km / 80 Ma

India

GH

TH

Africa/Arabia

Eurasia

WB

AUS

A B

shyok tr ench Indus

-Yarlung tr ench

India-A rabia tr

ech W

est Burma tr

ench

MCT/trench

Makran trench

S

und

a

Tre

nch West-Burma tr

ench

Predicted trench locations in

mantle frame consistent with locations of

major slabs

?

Argoland

Australia

WFZ

Antarctica Africa

Arabia

Mad

S

India

LH GH

TH Ka

170 Ma Paleomagnetic Reference Frame

30°S

40°S 20°S 10°S

Neotethys Ocean

B

Africa/

Arabia

30 Ma

Eurasia

India

30°N

Paleomagnetic Reference Frame

m k

PPE

WA bo

mo ko

A

India

Africa

Ar abia

Eurasia

Bur ma

0 Ma

30°N

Paleomagnetic Reference Frame

m

k

m

bo mo

ko

LH

GH TH XF

Entirely subduc ted Gr

eater India

C

58 Ma

Africa/

Arabia

India

Eurasia

Australia

30°N

0°N

Paleomagnetic Reference Frame

PPE

WA

Lhasa Xigaze forearc

Neotethys Ocean Tibetan/Greater Himalayan

microcontinent Greater India Basin

India

>58 Ma A

Cretaceous oceanic crust Jurassic and older oce

anic c rust

660 km upper mantle

lower mantle Rapid transfer of slab

to lower mantle High subduction rates (>16 cm/yr)

old oceanic crust subduction (>90 Ma)

~58 Ma B

Accreted Tibetan/

Greater Himalaya

Xigaze ophiolites

Rapid transfer of slab to lower mantle High subduction rates (>16 cm/yr)

old oceanic crust sinking in upper mantle (>90 Ma)

660 km upper mantle lower mantle

~50 Ma C

Slow transfer of continental and young oceanic lithosphere to lower mantle

Sharp decrease in subduction rates (<8 cm/yr)

Young oceanic crust subduction (<40 Ma); buckling and clogging upper mantle

660 km upper mantle lower mantle

~40 Ma

660 km upper mantle

lower mantle

Tibetan plateau shortening

Slab pile tipping over northward generating flat slab subduction

Northward migration arc;

strong decrease arc volume

660 km upper mantle

lower mantle

Lesser Himalaya accretion

Overturned slab shearing off horizontally underthrusting Indian continental lithosphere

End of volcanism

~25-15 Ma

LH

TH/GH

Gangdese volcanic arc

Linzizong ignimbrite flareup

Gangdese volcanic arc slab buckling

and/or thickening

slab buckling and/or thickening

In

Hi

underthrusted Indian continental

lithosphere

Ind i an con t i n e nt

-Collision at 58 Ma had no effect on plate convergence rate

-Subduction of TH continental lithosphere occurred within 2 Myr, followed by renewed GIB (wholesale) subduction

-Arrival of TH lithosphere at 660 km cloggs upper mantle and leads to slab advance and overturning during

-Slab overturning causes flat slab subduction below Tibet, causing Andean-style orogenesis and plateau rise

-Flat slab and plateau rise enhance friction and combined with increasing slab curvature cause India-Asia slowdown

starting at 50 Ma

Referenties

GERELATEERDE DOCUMENTEN

Figure 4: Shear wave velocity variations at 390 km depth for the 3D velocity models MABPM and JSWLW used for the time to depth correction. The large fast velocity anomaly

flat subduction episodes during times of mantle-stationary subduction with upper plate advance; steep subduction and. upper plate extension during

The elevated 410 discontinuity and thicker mantle transition zone in central Alaska are describing the thermal interaction of the cold slab with the phase transition, indicating

Left column: material deformation (green: upper crust; orange: lower crust; violet: lithospheric mantle; pink: upper mantle; red: plume). Central column:

Towards absolute plate motions constrained by lower mantle slab remnants.. Torsvik 3,4,6 (Nature

In the context of this study, the electrical conductivity model derived from MT data could give a piece of evidence about the presence of aqueous fluids and partial melts, rifting,

Bij deze groep werden geen slaap-apnoes gezien, verder werd er bij 7 mensen SOREM gezien en bij 7 mensen REM slaap tij- dens dutjes overdag (helaas wordt niet vermeld hoe vaak

Hoe weet u als college dat het aanbod van deze aanbieders beter is. &gt; dan het aanbod van overige, niet