• No results found

University of Groningen Time & Other Dimensions Schlichting, Nadine

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Time & Other Dimensions Schlichting, Nadine"

Copied!
19
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Time & Other Dimensions

Schlichting, Nadine

DOI:

10.33612/diss.97434922

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Schlichting, N. (2019). Time & Other Dimensions. University of Groningen. https://doi.org/10.33612/diss.97434922

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

References

(3)

Acerbi, L., Wolpert, D. M., & Vijayakumar, S. (2012). Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing. PLoS

Computational Biology, 8(11), e1002771. doi:10.1371/journal.pcbi.1002771

Addyman, C., French, R. M., & Thomas, E. (2016). Computational models of in-terval timing. Current Opinion in Behavioral Sciences, 8, 140–146. doi:10.1016/J. COBEHA.2016.01.004

Aksoy, E. E., Aein, M. J., Tamosiunaite, M., & Worgotter, F. (2015). Semantic parsing of human manipulation activities using on-line learned models for robot imitation. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2875–2882). IEEE. doi:10.1109/IROS.2015.7353773 Allman, M. J., Teki, S., Griffiths, T. D., & Meck, W. H. (2014). Properties of the in-ternal clock: first- and second-order principles of subjective time. Annual Review

of Psychology, 65, 743–71. doi:10.1146/annurev-psych-010213-115117

Arnal, L. H., Doelling, K. B., & Poeppel, D. (2015). Delta-beta coupled oscilla-tions underlie temporal prediction accuracy. Cerebral Cortex, 25(9), 3077–3085. doi:10.1093/cercor/bhu103

Bates, D. M., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. ArXiv Preprint. doi:arXiv:1506.04967

Bates, D. M., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Ef-fects Models using lme4. Journal of Statistical Software, 67(1), 51. doi:10.18637/ jss.v067.i01

Bausenhart, K. M., Dyjas, O., & Ulrich, R. (2014). Temporal reproductions are influenced by an internal reference: Explaining the Vierordt effect. Acta

Psycholo-gica, 147, 60–67. doi:10.1016/j.actpsy.2013.06.011

Bausenhart, K. M., Dyjas, O., & Ulrich, R. (2015). Effects of stimulus order on discrimination sensitivity for short and long durations. Attention, Perception, &

Psychophysics, 77, 1033–1043. doi:10.3758/s13414-015-0875-8

Bender, A., & Beller, S. (2014). Mapping spatial frames of reference onto time: a re-view of theoretical accounts and empirical findings. Cognition, 132(3), 342–382. doi:10.1016/j.cognition.2014.03.016

Bendixen, A., Grimm, S., & Schröger, E. (2005). Human auditory event-related potentials predict duration judgments. Neuroscience Letters, 383(3), 284–288. doi:10.1016/j.neulet.2005.04.034

Block, Richard A., Grondin, S., & Zakay, D. (2018). Prospective and retrospec-tive timing processes: Theories, methods, and findings. In A. Vatakis, F. Bal-cı, M. Di Luca, & Á. Correa (Eds.), Timing and Time Perception: Procedu-res, MeasuProcedu-res, and Applications (pp. 32–51). Leiden, The Netherlands: Brill. doi:10.1163/9789004280205_003

Boehm, U., Van Maanen, L., Forstmann, B., & Van Rijn, H. (2014). Trial-by-trial fluctuations in CNV amplitude reflect anticipatory adjustment of response cauti-on. NeuroImage, 96, 95–105. doi:10.1016/j.neuroimage.2014.03.063

Bonato, M., Zorzi, M., & Umiltà, C. (2012). When time is space: Evidence for a mental time line. Neuroscience and Biobehavioral Reviews, 36(10), 2257–2273. doi:10.1016/j.neubiorev.2012.08.007

(4)

Boroditsky, L. (2001). Does language shape thought?: Mandarin and English speakers’ conceptions of time. Cognitive Psychology, 43(1), 1–22. doi:10.1006/ cogp.2001.0748

Boroditsky, L., Fuhrman, O., & McCormick, K. (2011). Do English and Mandarin speakers think about time differently? Cognition, 118(1), 123–129. doi:10.1016/J. COGNITION.2010.09.010

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436. Brown, S. W., Stubbs, D. A., & West, A. N. (1992). Attention, multiple timing, and

psychophysical scaling of temporal judgments. In Time, Action and Cogniti-on (pp. 129–140). Dordrecht: Springer Netherlands. doi:10.1007/978-94-017-3536-0_15

Brown, S. W. (1997). Attentional resources in timing: Interference effects in concur-rent temporal and nontemporal working memory tasks. Perception &

Psychophy-sics, 59(7), 1118–1140. doi:10.3758/BF03205526

Brown, S. W. (2006). Timing and executive function: Bidirectional interference between concurrent temporal production and randomization tasks. Memory &

Cognition, 34(7), 1464–1471. doi:10.3758/BF03195911

Brown, S. W., & West, A. N. (1990). Multiple timing and the allocation of attention.

Acta Psychologica, 75(2), 103–121. doi:10.1016/0001-6918(90)90081-P

Bueno, F. D., Morita, V. C., de Camargo, R. Y., Reyes, M. B., Caetano, M. S., & Cravo, A. M. (2017). Dynamic representation of time in brain states. Scientific

Reports, 7(1), 46053. doi:10.1038/srep46053

Bueti, D., & Macaluso, E. (2011). Physiological correlates of subjective time: Evi-dence for the temporal accumulator hypothesis. NeuroImage, 57(3), 1251–1263. doi:10.1016/j.neuroimage.2011.05.014

Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal

So-ciety of London. Series B, Biological Sciences, 364(1525), 1831–1840. doi:10.1098/

rstb.2009.0028

Buhusi, C. V, & Meck, W. H. (2005). What makes us tick? Functional and neu-ral mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755–65. doi:10.1038/nrn1764

Buneo, C. A. (2011). Analyzing neural responses with vector fields. Journal of

Neu-roscience Methods, 197(1), 109–117. doi:10.1016/J.JNEUMETH.2011.02.008

Buneo, C. A., & Andersen, R. A. (2012). Integration of target and hand position sig-nals in the posterior parietal cortex: effects of workspace and hand vision. Journal

of Neurophysiology, 108(1), 187–199. doi:10.1152/jn.00137.2011

Buonomano, D. V. (2000). Decoding temporal information: A model based on short-term synaptic plasticity. Journal of Neuroscience, 20(3), 1129–41. doi:10.1523/JN-EUROSCI.20-03-01129.2000

Buonomano, D. V. (2007). The biology of time across different scales. Nature

Chemi-cal Biology, 3(10), 594–597. doi:10.1038/nchembio1007-594

Buonomano, D. V. (2017). Your brain is a time machine: The neuroscience and phy-sics of time. New York, NY: W. W. Norton & Company.

(5)

Buonomano, D. V. (2014). Neural dynamics based timing in the subsecond to se-conds range. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829 (pp. 49–71). New York, NY: Springer. doi:10.1007/978-1-4939-1782-2_6

Buszáki, G., & Llinás, R. (2017). Space and time in the brain. Science, 358(6362), 482–485. doi:10.1126/science.aan8869

Buzsáki, G. (2019). The brain from inside out. New York, NY: Oxford University Press.

Cai, Z. G., & Connell, L. (2016). On magnitudes in memory: An internal clock account of space-time interaction. Acta Psychologica, 168, 1–11. doi:10.1016/j.ac-tpsy.2016.04.003

Cai, Z. G., & Wang, R. (2014). Numerical magnitude affects temporal memories but not time encoding. PLoS ONE, 9(1). doi:10.1371/journal.pone.0083159

Cai, Z. G., Wang, R., Shen, M., & Speekenbrink, M. (2018). Cross-dimensional magnitude interactions arise from memory interference. Cognitive Psychology,

106, 21–42. doi:10.1016/J.COGPSYCH.2018.08.001

Campbell, S. L., Hutson, R. B., Marti, G. E., Goban, A., Darkwah Oppong, N., McNally, R. L., … Ye, J. (2017). A Fermi-degenerate three-dimensional optical lattice clock. Science, 358(6359), 90–94. doi:10.1126/science.aam5538

Carrozzo, M., & Lacquaniti, F. (2013). Effects of speeding up or slowing down animate or inanimate motions on timing. Experimental Brain Research, 224(4), 581–590. doi:10.1007/s00221-012-3338-7

Carrozzo, M., Moscatelli, A., & Lacquaniti, F. (2010). Tempo rubato: Animacy speeds up time in the brain, PLoS ONE, 5(12). doi:10.1371/journal.pone.0015638 Casasanto, D., & Boroditsky, L. (2008). Time in the mind: Using space to think

about time. Cognition, 106(2), 579–593. doi:10.1016/j.cognition.2007.03.004 Chang, A. Y.-C., Tzeng, O. J. L., Hung, D. L., & Wu, D. H. (2011). Big time is

not always long: numerical magnitude automatically affects time reproduction.

Psychological Science, 22(12), 1567–1573. doi:10.1177/0956797611418837

Charles, E. P. (2005). The correction for attenuation due to measurement error: Clarifying concepts and creating confidence sets. Psychological Methods, 10(2), 206–226. doi:10.1037/1082-989X.10.2.206

Chen, Y. G., Chen, X., Kuang, C. W., & Huang, X. T. (2015). Neural oscillatory correlates of duration maintenance in working memory. Neuroscience, 290, 389– 397. doi:10.1016/j.neuroscience.2015.01.036

Church, R. (2003). A concise introduction to scalar timing theory. In W.H. Meck (Ed.), Functional and neural mechanisms of interval timing (pp. 3–22). Boca Raton, FL, US: CRC Press. doi:10.1201/9780203009574.sec1

Church, R. M., Meck, W. H., & Gibbon, J. (1994). Application of scalar timing theory to individual trials. Journal of Experimental Psychology: Animal Behavior

Processes, 20(2), 135–155. doi:10.1037/0097-7403.20.2.135

Citri, A., & Malenka, R. C. (2008). Synaptic plasticity: Multiple forms, func-tions, and mechanisms. Neuropsychopharmacology, 33(1), 18–41. doi:10.1038/ sj.npp.1301559

(6)

Conson, M., Cinque, F., Barbarulo, A. M., & Trojano, L. (2008). A common pro-cessing system for duration, order and spatial information: Evidence from a time estimation task. Experimental Brain Research, 187(2), 267–274. doi:10.1007/ s00221-008-1300-5

Coull, J. T., Charras, P., Donadieu, M., Droit-Volet, S., & Vidal, F. (2015). SMA selectively codes the active accumulation of temporal, not spatial, magnitude.

Journal of Cognitive Neuroscience, 27(11), 2281–2298. doi:10.1162/jocn_a_00854

Coull, J. T., Cheng, R.-K., & Meck, W. H. (2011). Neuroanatomical and neuroche-mical substrates of timing. Neuropsychopharmacology, 36(1), 3–25. doi:10.1038/ npp.2010.113

Coull, J. T., & Droit-Volet, S. (2018). Explicit understanding of duration de-velops implicitly through action. Trends in Cognitive Sciences, 22(10), 923–937. doi:10.1016/J.TICS.2018.07.011

Coull, J. T., Johnson, K. A., & Droit-Volet, S. (2018). A mental timeline for dura-tion from the age of 5 years old. Frontiers in Psychology, 9, 1155. doi:10.3389/ fpsyg.2018.01155

Coull, J. T., Vidal, F., & Burle, B. (2016). When to act, or not to act: That’s the SMA’s question. Current Opinion in Behavioral Sciences. doi:10.1016/j.co-beha.2016.01.003

Coull, J. T., Vidal, F., Nazarian, B., & Macar, F. (2004). Functional anatomy of the attentional modulation of time estimation. Science, 303(5663), 1506–1508. doi:10.1126/science.1091573

Crystal, J. D. (2007). The psychology of time: A tribute to the contributions of Rusell M. Church [Special Issue]. Behavioural Processes, 74(2).

Damsma, A., Van der Mijn, R., & Van Rijn, H. (2018). Neural markers of memory consolidation do not predict temporal estimates of encoded items.

Neuropsycholo-gia, 117, 36–45. doi:10.1016/J.NEUROPSYCHOLOGIA.2018.04.039

Damsma, A., Schlichting, N., Eike, R., & Van Rijn, H. (in preparation). Decoding the influence of temporal context on time perception. Program No. 169.12. 2018 Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, 2018. Online.

Darlow, H. M., Dylman, A. S., Gheorghiu, A. I., & Matthews, W. J. (2013). Do changes in the pace of events affect one-off judgments of duration? PLoS ONE,

8(3), e59847. doi:10.1371/journal.pone.0059847

Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355– 361. doi:10.1016/S0166-2236(98)01263-6

Dennett, D. C., & Kinsbourne, M. (1992). Time and the observer: The where and when of consciousness in the brain. Behavioral and Brain Sciences, 15(02), 183– 201. doi:10.1017/S0140525X00068229

Dormal, V., Dormal, G., Joassin, F., & Pesenti, M. (2012). A common right fron-to-parietal network for numerosity and duration processing: An fMRI study.

Human Brain Mapping, 33(6), 1490–1501. doi:10.1002/hbm.21300

(7)

three-dimensional Stroop-like task: Towards a gradient of processing automati-city? Psychological Research, 77(2), 116–127. doi:10.1007/s00426-012-0414-3 Dormal, V., Seron, X., & Pesenti, M. (2006). Numerosity-duration

interferen-ce: A Stroop experiment. Acta Psychologica, 121, 109–124. doi:10.1016/j.act-psy.2005.06.003

Droit-Volet, S. (2010). Stop using time reproduction tasks in a comparative per-spective without further analyses of the role of the motor response: The ex-ample of children. European Journal of Cognitive Psychology, 22(1), 130–148. doi:10.1080/09541440902738900

Droit-Volet, Sylvie, Clément, A., & Fayol, M. (2008). Time, number and length: Similarities and differences in discrimination in adults and chil-dren. The Quarterly Journal of Experimental Psychology, 61(12), 1827–1846. doi:10.1080/17470210701743643

Durstewitz, D. (2004). Neural representation of interval time. Neuroreport, 15(5), 745–9. doi:10.1097/00001756-200404090-00001

Dyjas, O., Bausenhart, K. M., & Ulrich, R. (2012). Trial-by-trial updating of an internal reference in discrimination tasks: Evidence from effects of stimu-lus order and trial sequence. Attention, Perception, & Psychophysics, 1819–1841. doi:10.3758/s13414-012-0362-4

Dyjas, O., Bausenhart, K. M., & Ulrich, R. (2014). Effects of stimulus order on duration discrimination sensitivity are under attentional control. Journal of

Expe-rimental Psychology: Human Perception and Performance, 40, 292–307. doi:10.1037/

a0033611

Eagleman, D. M. (2008). Human time perception and its illusions. Current Opinion

in Neurobiology, 18(2), 131–136. doi:10.1016/j.conb.2008.06.002

Eagleman, D. M., & Pariyadath, V. (2009). Is subjective duration a signature of co-ding efficiency? Philosophical Transactions of the Royal Society B: Biological Sciences,

364(1525), 1841–1851. doi:10.1098/rstb.2009.0026

Ebert, J. P., & Wegner, D. M. (2010). Time warp: Authorship shapes the percei-ved timing of actions and events. Consciousness and Cognition, 19(1), 481–489. doi:10.1016/j.concog.2009.10.002

Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confi-dence intervals, and other measures of statistical accuracy. Statistical Science, 1(1), 54–77.

Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping memories. Nature Reviews Neuroscience, 15(11), 732–744. doi:10.1038/ nrn3827

Engel, A. K., & Fries, P. (2010). Beta-band oscillations-signalling the status quo?

Current Opinion in Neurobiology, 20(2), 156–165. doi:10.1016/j.conb.2010.02.015

Fabbri, M., Cancellieri, J., & Natale, V. (2012). The A Theory Of Magnitude (ATOM) model in temporal perception and reproduction tasks. Acta

Psychologi-ca, 139(1), 111–123. doi:10.1016/J.ACTPSY.2011.09.006

Fabbri, M., Cellini, N., Martoni, M., Tonetti, L., & Natale, V. (2013). The me-chanisms of space-time association: Comparing motor and perceptual

(8)

contri-butions in time reproduction. Cognitive Science, 37(7), 1228–1250. doi:10.1111/ cogs.12038

Fayolle, S. L., & Droit-Volet, S. (2014). Time perception and dynamics of facial ex-pressions of emotions. PLoS ONE, 9(5). doi:10.1371/journal.pone.0097944 Friston, K. J., Price, C. J., Fletcher, P., Moore, C., Frackowiak, R. S., & Dolan,

R. J. (1996). The trouble with cognitive subtraction. NeuroImage, 4(2), 97–104. doi:10.1006/nimg.1996.0033

Fründ, I., Haenel, N. V., & Wichmann, F. A. (2011). Inference for psychometric functions in the presence of nonstationary behavior. Journal of Vision, 11(6), 1–19. doi:10.1167/11.6.16.Introduction

Fuhrman, O., & Boroditsky, L. (2010). Cross-cultural differences in mental repre-sentations of time: Evidence from an implicit nonlinguistic task. Cognitive

Scien-ce, 34(8), 1430–1451. doi:10.1111/j.1551-6709.2010.01105.x

Garsoffky, B., Huff, M., & Schwan, S. (2017). Mind the gap: Temporal discontinu-ities in observed activity streams influence perceived duration of actions.

Psycho-nomic Bulletin & Review. doi:10.3758/s13423-017-1239-2

Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Annals

of the New York Academy of Sciences, 423(1), 52–77. doi:10.1111/j.1749-6632.1984.

tb23417.x

Gibbon, J., Malapani, C., Dale, C. L., & Gallistel, C. R. (1997). Toward a neu-robiology of temporal cognition: Advances and challenges. Current Opinion in

Neurobiology, 7(2), 170–184. doi:10.1016/S0959-4388(97)80005-0

Gibson, J. J. (1975). Events are perceivable but time is not. In J.T. Fraser & N. La-wrence (Eds.), The Study of Time II (pp. 295–301). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-50121-0_22

Goel, A., & Buonomano, D. V. (2014). Timing as an intrinsic property of neural networks: Evidence from in vivo and in vitro experiments. Philosophical

Transac-tions of the Royal Society B: Biological Sciences, 369(1637), 20120460–20120460.

doi:10.1098/rstb.2012.0460

Gorea, A., & Hau, J. (2013). Time in perspective. Psychological Science, 24(8), 1477– 86. doi:10.1177/0956797612473486

Grabot, L., & Van Wassenhove, V. (2017). Time order as psychological bias.

Psycho-logical Science, 28(5), 670–678. doi:10.1177/0956797616689369

Green, S. B., Yang, Y., Alt, M., Brinkley, S., Gray, S., Hogan, T., & Cowan, N. (2016). Use of internal consistency coefficients for estimating reliability of experi-mental task scores. Psychonomic Bulletin & Review, 23(3), 750–763. doi:10.3758/ s13423-015-0968-3

Grondin, S. (1993). Duration discrimination of empty and filled intervals mar-ked by auditory and visual signals. Perception & Psychophysics, 54(3), 383–394. doi:10.3758/BF03205274

Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, &

Psycho-physics, 72(3), 561–582. doi:10.3758/APP.72.3.561

(9)

in Experimental Medicine and Biology, 829, 17–32.

doi:10.1007/978-1-4939-1782-2_2

Gu, B., Van Rijn, H., & Meck, W. H. (2015). Oscillatory multiplexing of neural population codes for interval timing and working memory. Neuroscience and

Bio-behavioral Reviews, 48, 160–185. doi:10.1016/j.neubiorev.2014.10.008

Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awa-reness. Nature Neuroscience, 5(4), 382–385. doi:10.1038/nn827

Hallez, Q., Damsma, A., Rhodes, D., Van Rijn, H., & Droit-Volet, S. (2019). The dynamic effect of context on interval timing in children and adults. Acta

Psycho-logica, 192, 87–93. doi:10.1016/J.ACTPSY.2018.10.004

Hancock, & Block. (2012). The Psychology of time: A view backward and forward.

The American Journal of Psychology, 125(3), 267. doi:10.5406/amerjpsyc.125.3.0267

Hanson, B., Klink, K., Matsuura, K., Robeson, S. M., & Willmott, C. J. (1992). Vec-tor correlation: Review, exposition, and geographic application. Annals of the

As-sociation of American Geographers, 82(1), 103–116. doi:10.1111/j.1467-8306.1992.

tb01900.x

Harvey, B. M., Dumoulin, S. O., Fracasso, A., & Paul, J. M. (2018). A network of topographic maps for visual event timing in human association cortex. Program No. 719.01. 2018 Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, 2018. Online.

Hass, J., & Durstewitz, D. (2014). Neurocomputational models of time perception. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of Interval Timing. Ad-vances in Experimental Medicine and Biology, vol 829 (pp. 49–71). New York, NY: Springer. doi:10.1007/978-1-4939-1782-2_4

Hass, J., & Durstewitz, D. (2016). Time at the center, or time at the side? Asses-sing current models of time perception. Current Opinion in Behavioral Sciences, 8, 238–244. doi:10.1016/J.COBEHA.2016.02.030

Hayashi, M. J., Kanai, R., Tanabe, H. C., Yoshida, Y., Carlson, S., Walsh, V., & Sadato, N. (2013). Interaction of numerosity and time in prefrontal and pa-rietal cortex. Journal of Neuroscience, 33(3), 883–93. doi:10.1523/JNEUROS-CI.6257-11.2013

Hayashi, M. J., Valli, A., & Carlson, S. (2013). Numerical quantity affects time esti-mation in the suprasecond range. Neuroscience Letters, 543, 7–11. doi:10.1016/J. NEULET.2013.02.054

Hayashi, M. J., van der Zwaag, W., Bueti, D., & Kanai, R. (2018). Representa-tions of time in human frontoparietal cortex. CommunicaRepresenta-tions Biology, 1(1), 233. doi:10.1038/s42003-018-0243-z

Hedge, C., Powell, G., & Sumner, P. (2017). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research

Methods, 1–21. doi:10.3758/s13428-017-0935-1

Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., Schei-be, S., & Hothorn, M. T. (2017). Package “multcomp.” See Https://Cran. r-Pro-ject. Org/Web/Packages/Multcomp/Index. Html.

(10)

with item and temporal order maintenance in working memory. Journal of

Neu-roscience, 31(30), 10803–10810. doi:10.1523/JNEUROSCI.0828-11.2011

Ishihara, M., Keller, P. E., Rossetti, Y., & Prinz, W. (2008). Horizontal spatial re-presentations of time: Evidence for the STEARC effect. Cortex, 44(4), 454–461. doi:10.1016/j.cortex.2007.08.010

Javadi, A. H., & Aichelburg, C. (2012). When time and numerosity interfere: The longer the more, and the more the longer. PLoS ONE, 7(7), 1–10. doi:10.1371/ journal.pone.0041496

Jazayeri, M., & Shadlen, M. N. (2010). Temporal context calibrates interval timing.

Nature Neuroscience, 13(8), 1020–1026. doi:10.1038/nn.2590

Jensen, A. R. (1998). The g factor: The science of mental ability. Politics and the Life Sciences (Vol. 17). Westport, Connecticut: Praeger.

Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12(4), 231–242. doi:10.1038/nrn3000

Karmarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks: Encoding time in neural network states. Neuron, 53(3), 427–438. doi:10.1016/J. NEURON.2007.01.006

Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The in-hibition-timing hypothesis. Brain Research Reviews, 53(1), 63–88. doi:10.1016/j. brainresrev.2006.06.003

Kononowicz, T. W., & Penney, T. B. (2016). The contingent negative variation (CNV): Timing isn’t everything. Current Opinion in Behavioral Sciences, 8, 231– 237. doi:10.1016/j.cobeha.2016.02.022

Kononowicz, T. W., Sander, T., & Van Rijn, H. (2015). Neuroelectromagnetic si-gnatures of the reproduction of supra-second durations. Neuropsychologia, 75, 201–213. doi:10.1016/j.neuropsychologia.2015.06.001

Kononowicz, T. W., & Van Rijn, H. (2011). Slow potentials in time estimation: The role of temporal accumulation and habituation. Frontiers in Integrative

Neuros-cience, 5(48), 1–10. doi:10.3389/fnint.2011.00048

Kononowicz, T. W., & Van Rijn, H. (2014a). Decoupling interval timing and clim-bing neural activity: A dissociation between CNV and N1P2 amplitudes. Journal

of Neuroscience, 34(8), 2931–2939. doi:10.1523/JNEUROSCI.2523-13.2014

Kononowicz, T. W., & Van Rijn, H. (2014b). Tonic and phasic dopamine fluctua-tions as reflected in beta-power predict interval timing behavior. Procedia - Social

and Behavioral Sciences, 126(2005), 47. doi:10.1016/j.sbspro.2014.02.313

Kononowicz, T. W., & Van Rijn, H. (2015). Single trial beta oscillations index time estimation. Neuropsychologia, 75, 381–389. doi:10.1016/j.neuropsycholo-gia.2015.06.014

Kononowicz, T. W., & Van Wassenhove, V. (2016). In search of oscillatory traces of the internal clock. Frontiers in Psychology, 7(244). doi:10.3389/fpsyg.2016.00224 Kulashekhar, S., Pekkola, J., Palva, J. M., & Palva, S. (2016). The role of cortical

beta oscillations in time estimation. Human Brain Mapping, 37(9), 3262–3281. doi:10.1002/hbm.23239

(11)

Lacquaniti, F., Carrozzo, M., Andrea d’Avella, Scaleia, B. La, Moscatelli, A., & Zago, M. (2014). How long did it last? You would better ask a human. Frontiers

in Neurorobotics, 8(2), 1–12. doi:10.3389/fnbot.2014.00002

Lambrechts, A., Walsh, V., & Van Wassenhove, V. (2013). Evidence accumulation in the magnitude system. PLoS ONE, 8(12). doi:10.1371/journal.pone.0082122 Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2016). From “sense of number”

to “sense of magnitude” – The role of continuous magnitudes in numerical cog-nition. Behavioral and Brain Sciences, 8, 1–62. doi:10.1017/S0140525X16000960 Lejeune, H., & Wearden, J. H. (2009). Vierordt’s the experimental study of the time

sense (1868) and its legacy. European Journal of Cognitive Psychology, 21(6), 941– 960. doi:10.1080/09541440802453006

Loeffler, J., Cañal-Bruland, R., Schroeger, A., Tolentino-Castro, J. W., & Raab, M. (2018). Interrelations between temporal and spatial cognition: The role of modality-specific processing. Frontiers in Psychology, 9, 2609. doi:10.3389/ fpsyg.2018.02609

Los, S. A. (2010). Foreperiod and sequential effects: Theory and data. In A. C. Nobre & J. T. Coull (Eds.), Attention and Time (pp. 289–302). Oxford, UK: Oxford University Press.

Maaß, S. C., Riemer, M., Wolbers, T., & Van Rijn, H. (2019). Timing deficiencies in amnestic mild cognitive impairment: Disentangling clock and memory pro-cesses. Behavioural Brain Research, 373. doi:10.1016/j.bbr.2019.112110

Macar, F., & Vidal, F. (2004). Event-related potentials as indices of time proces-sing: A review. Journal of Psychophysiology, 18(2–3), 89–104. doi:10.1027/0269-8803.18.23.89

Macar, F., & Vidal, F. (2009). Timing processes: An outline of behavioural and neu-ral indices not systematically considered in timing models. Canadian Journal of

Experimental Psychology, 63(3), 227–239. doi:10.1037/a0014457

Macar, F., Vidal, F., & Casini, L. (1999). The supplementary motor area in motor and sensory timing: Evidence from slow brain potential changes. Experimental Brain

Research, 125(3), 271–280. doi:10.1007/s002210050683

MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hip-pocampal “time cells” bridge the gap in memory for discontiguous events.

Neu-ron, 71(4), 737–49. doi:10.1016/j.neuron.2011.07.012

Magnani, B., & Musetti, A. (2017). Innate and cultural spatial time: A develop-mental perspective. Frontiers in Human Neuroscience, 11, 215. doi:10.3389/ fnhum.2017.00215

Mandery, C., Terlemez, Ö., Do, M., Vahrenkamp, N., & Asfour, T. (2015). The KIT whole-body human motion database. Proceedings of the 17th Internatio-nal Conference on Advanced Robotics, ICAR 2015, 611909(611909), 329–336. doi:10.1109/ICAR.2015.7251476

Marr, D. (1982). Vision: A computational investigation into the human representa-tion and processing of visual informarepresenta-tion. San Francisco, CA: W.H. Freeman. Martin, B., Wiener, M., & Van Wassenhove, V. (2017). A Bayesian perspective on

(12)

s41598-017-00680-0

Martínez-Loredo, V., Fernández-Hermida, J. R., Carballo, J. L., & Fernández-Ar-tamendi, S. (2017). Long-term reliability and stability of behavioral measures among adolescents: The Delay Discounting and Stroop tasks. Journal of

Adole-scence, 58, 33–39. doi:10.1016/j.adolescence.2017.05.003

Matell, M. S. (2014). Searching for the holy grail: Temporally informative firing patterns in the rat. In H. Merchant & V. Lafuente (Eds.), Neurobiology of In-terval Timing. Advances in Experimental Medicine and Biology, vol. 829 (pp. 209–34). New York, NY: Springer. doi:10.1007/978-1-4939-1782-2_12

Matell, M. S., & Meck, W. H. (2000). Neuropsychological mechanisms of interval timing behavior. BioEssays, 22(1), 94–103. doi:10.1002/(SICI)1521-1878(200001 )22:1<94::AID-BIES14>3.0.CO;2-E

Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cognitive Brain Research, 21(2), 139–170. doi:10.1016/j.cogbrainres.2004.06.012

Matell, M. S., Shea-Brown, E., Gooch, C., Wilson, G., & Rinzel, J. (2011). A he-terogeneous population code for elapsed time in rat medial agranular cortex.

Behavioral Neuroscience, 125(1), 54–73. doi:10.1037/a0021954

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, gra-phical experiment builder for the social sciences. Behavior Research Methods,

44(2), 314–24. doi:10.3758/s13428-011-0168-7

Matthews, W. J. (2011). How do changes in speed affect the perception of durati-on? Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1617–1627. doi:10.1037/a0022193

Matthews, W. J., & Meck, W. H. (2014). Time perception: The bad news and the good. Wiley Interdisciplinary Reviews: Cognitive Science, 5(4), 429–446. doi:10.1002/wcs.1298

Matthews, W. J., & Meck, W. H. (2016). Temporal cognition: Connecting sub-jective time to perception, attention, and memory. Psychological Bulletin, 142(8), 865–907. doi:10.1037/bul0000045

Mau, W., Sullivan, D. W., Kinsky, N. R., Hasselmo, M. E., Howard, M. W., & Eichenbaum, H. (2018). The same hippocampal CA1 population simultaneously codes temporal information over multiple timescales. Current Biology, 28(10), 1499-1508.e4. doi:10.1016/J.CUB.2018.03.051

McTaggart, J. E. (1908). The unreality of time. Mind, 17(68), 457–474. doi:10.2307/2248314

Meck, W. H. (1983). Selective adjustment of the speed of internal clock and memo-ry processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(2), 171–201. doi:10.1037/0097-7403.9.2.171

Meeter, M., Jehee, J., & Murre, J. (2007). Neural models that convince: Model hie-rarchies and other strategies to bridge the gap between behavior and the brain.

Philosophical Psychology, 20(6), 749–772. doi:10.1080/09515080701694128

Mello, G. B. M., Soares, S., & Paton, J. J. (2015). A scalable population code for time in the striatum. Current Biology, 25(9), 1113–1122. doi:10.1016/J.

(13)

CUB.2015.02.036

Mento, G. (2013). The passive CNV: Carving out the contribution of task-related processes to expectancy. Frontiers in Human Neuroscience, 7, 827. doi:10.3389/ fnhum.2013.00827

Michon, J. A. (1990). Implicit and explicit representations of time. In R.A. Block (Ed.), Cognitive models of psychological time (pp. 37–58). Hillsdale, NJ: La-wrence Erlbaum Associates, Inc.

Miletić, S., & Van Maanen, L. (2019). Caution in decision-making under time pres-sure is mediated by timing ability. Cognitive Psychology, 110, 16–29. doi:10.1016/J. COGPSYCH.2019.01.002

Miller, J., & Ulrich, R. (2013). Mental chronometry and individual differences: Mo-deling reliabilities and correlations of reaction time means and effect sizes.

Psy-chonomic Bulletin & Review, 20(5), 819–858. doi:10.3758/s13423-013-0404-5

Mioni, G. (2018). Methodological issues in the study of prospective timing. In A. Vatakis, F. Balcı, M. Di Luca, & Á. Correa (Eds.), Timing and Time Percepti-on: Procedures, Measures, and Applications (pp. 79–97). Leiden, The Nether-lands: Brill. doi:10.1163/9789004280205_005

Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y., & Tanji, J. (2009). Interval time coding by neurons in the presupplementary and supplementary motor areas.

Na-ture Neuroscience, 12(4), 502–507. doi:10.1038/nn.2272

Morey, R. D., Rouder, J. N., & Jamil, T. (2014). BayesFactor: Computation of Bayes Factors for common designs. R Package Version, 0.9(8).

Ng, K. K., & Penney, T. B. (2014). Probing interval timing with scalp-recorded elec-troencephalography (EEG). In Neurobiology of Interval Timing (pp. 187–207). Springer New York. doi:10.1007/978-1-4939-1782-2_11

Nobre, Anna C., & Van Ede, F. (2018). Anticipated moments: Temporal structure in attention. Nature Reviews Neuroscience, 19(1), 34–48. doi:10.1038/nrn.2017.141 Núñez, R., & Cooperrider, K. (2013). The tangle of space and time in human

cogni-tion. Trends in Cognitive Sciences, 17(5), 220–229. doi:10.1016/j.tics.2013.03.008 Oliver, J. (2019, July 5). A basic risotto recipe. Retrieved from

https://www.jamieoli-ver.com/recipes/rice-recipes/a-basic-risotto-recipe/

Oliveri, M., Vicario, C. M., Salerno, S., Koch, G., Turriziani, P., Mangano, R., … Caltagirone, C. (2008). Perceiving numbers alters time perception. Neuroscience

Letters, 438(3), 308–311. doi:10.1016/j.neulet.2008.04.051

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. (2011). FieldTrip : Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. doi:10.1155/2011/156869

Oprisan, S. A., & Buhusi, C. V. (2011). Modeling pharmacological clock and me-mory patterns of interval timing in a striatal beat-frequency model with reali-stic, noisy neurons. Frontiers in Integrative Neuroscience, 5, 52. doi:10.3389/fn-int.2011.00052

Orgs, G., Bestmann, S., Schuur, F., & Haggard, P. (2011). From body form to biolo-gical motion: The apparent velocity of human movement biases subjective time.

(14)

Paap, K. R., & Sawi, O. (2016). The role of test-retest reliability in measuring in-dividual and group differences in executive functioning. Journal of Neuroscience

Methods, 274, 81–93. doi:10.1016/J.JNEUMETH.2016.10.002

Petter, E. A., Gershman, S. J., & Meck, W. H. (2018). Integrating models of interval timing and reinforcement learning. Trends in Cognitive Sciences, 22(10), 911–922. doi:10.1016/J.TICS.2018.08.004

Petzschner, F. H., Glasauer, S., & Stephan, K. E. (2015). A Bayesian perspective on magnitude estimation. Trends in Cognitive Sciences, 19(5), 285–293. doi:10.1016/j. tics.2015.03.002

Pfeuty, M., Ragot, R., & Pouthas, V. (2005). Relationship between CNV and timing of an upcoming event. Neuroscience Letters, 382(1–2), 106–111. doi:10.1016/j.neu-let.2005.02.067

Protopapa, F., Hayashi, M. J., Kulashekhar, S., van der Zwaag, W., Battistella, G., Murray, M. M., … Bueti, D. (2019). Chronotopic maps in human supplementary motor area. PLoS Biology, 17(3), e3000026. doi:10.1371/journal.pbio.3000026 R Core Team (2016). R: A language and environment for statistical computing.

Vi-enna, Austria: R Foundation for Statistical Computing. Retrieved from https:// www.r-project.org/

R Development Core Team (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. doi:ISBN 3-900051-07-0

Rammsayer, T. H., & Verner, M. (2014). The effect of nontemporal stimulus size on perceived duration as assessed by the method of reproduction. Journal of Vision,

14(5), 1–10. doi:10.1167/14.5.17.doi

Rhodes, D. (2018). On the distinction between perceived duration and event timing: Towards a unified model of time perception. Timing & Time Perception, 6(1), 90–123. doi:10.1163/22134468-20181132

Riemer, M., Diersch, N., Bublatzky, F., & Wolbers, T. (2016). Space, time, and numbers in the right posterior parietal cortex: Differences between response code associations and congruency effects. NeuroImage, 129, 72–79. doi:10.1016/J. NEUROIMAGE.2016.01.030

Riemer, M., Trojan, J., Kleinböhl, D., & Hölzl, R. (2012). A “view from nowhen” on time perception experiments. Journal of Experimental Psychology: Human

Percep-tion and Performance, 38(5), 1118–1124. doi:10.1037/a0027073

Roberts, B. M., Hsieh, L., & Ranganath, C. (2013). Oscillatory activity during maintenance of spatial and temporal information in working memory.

Neuropsy-chologia, 51(2), 349–357. doi:10.1016/j.neuropsychologia.2012.10.009

Rohenkohl, G., & Nobre, A. C. (2011). Alpha oscillations related to anticipatory attention follow temporal expectations. Journal of Neuroscience, 31(40), 14076– 14084. doi:10.1523/JNEUROSCI.3387-11.2011

Roseboom, W., Fountas, Z., Nikiforou, K., Bhowmik, D., Shanahan, M., & Seth, A. K. (2019). Activity in perceptual classification networks as a basis for hu-man subjective time perception. Nature Communications, 10(1), 267. doi:10.1038/ s41467-018-08194-7

(15)

Rovelli, C. (2017). Reality is not what it seems: The journey to quantum gravity. London, UK: Penguin.

Rovelli, C. (2018). The order of time. London, UK: Penguin.

Saigusa, T., Tero, A., Nakagaki, T., & Kuramoto, Y. (2008). Amoebae anticipate periodic events. Physical Review Letters, 100(1), 018101. doi:10.1103/PhysRe-vLett.100.018101

Salet, J. M., Kruijne, W., Los, S. A., Van Rijn, H., & Meeter, M. (in preparation). fMTP: A unifying computational framework of temporal preparation across time scales.

Samaha, J., Bauer, P., Cimaroli, S., & Postle, B. R. (2015). Top-down control of the phase of alpha-band oscillations as a mechanism for temporal prediction.

Proceedings of the National Academy of Sciences, 112(27), 8439–8444. doi:10.1073/

pnas.1503686112

Sasaki, K., Yamamoto, K., & Miura, K. (2013). The difference in speed sequence influences perceived duration. Perception, 42(2), 198–207. doi:10.1068/p7241 Schlichting, N., de Jong, R., & Van Rijn, H. (2018). Performance-informed EEG

analysis reveals mixed evidence for EEG signatures unique to the processing of time. Psychological Research, 1–18. doi:10.1007/s00426-018-1039-y

Shankar, K. H., & Howard, M. W. (2010). Timing using temporal context. Brain

Research, 1365, 3–17. doi:10.1016/J.BRAINRES.2010.07.045

Siegrist, M. (1997). Test-retest reliability of different versions of the Stroop test.

Journal of Psychology, 131(3), 299–306. doi:10.1080/00223989709603516

Soares, S., Atallah, B. V, & Paton, J. J. (2016). Midbrain dopamine neurons control judgment of time. Science, 354(6317), 1273–1277. doi:10.1126/science.aah5234 Sohn, H., Narain, D., Meirhaeghe, N., & Jazayeri, M. (2018). Bayesian computation

through cortical latent dynamics. BioRxiv, 465419. doi:10.1101/465419

Staddon, J. E. R. (2005). Interval timing: Memory, not a clock. Trends in Cognitive

Sciences, 9(7), 312–314. doi:10.1016/J.TICS.2005.05.013

Staddon, J. E. R., & Higa, J. J. (1999). Time and memory: Towards a pacemaker-free theory of interval timing. Journal of the Experimental Analysis of Behavior, 71(2), 215–251. doi:10.1901/jeab.1999.71-215

Strauss, G. P., Allen, D. N., Jorgensen, M. L., & Cramer, S. L. (2005). Test-re-test reliability of standard and emotional Stroop tasks: An investigati-on of color-word and picture-word versiinvestigati-ons. Assessment, 12(3), 330–337. doi:10.1177/1073191105276375

Taatgen, N., & Van Rijn, H. (2011). Traces of times past: Representations of tem-poral intervals in memory. Memory & Cognition, 39(8), 1546–1560. doi:10.3758/ s13421-011-0113-0

Terlemez, Ö., Ulbrich, S., Mandery, C., Do, M., Vahrenkamp, N., & Asfour, T. (2014). Master Motor Map (MMM) - Framework and toolkit for capturing, re-presenting, and reproducing human motion on humanoid robots. In IEEE-RAS International Conference on Humanoid Robots (pp. 894–901). Madrid, Spain. doi:10.1109/HUMANOIDS.2014.7041470

(16)

subjective time. Consciousness and Cognition, 71, 114–122. doi:10.1016/J.CON-COG.2019.04.004

Tiganj, Z., Cromer, J. A., Roy, J. E., Miller, E. K., & Howard, M. W. (2018). Com-pressed timeline of recent experience in monkey lateral prefrontal cortex. Journal

of Cognitive Neuroscience, 30(7), 935–950. doi:10.1162/jocn_a_01273

Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J. J., Moser, M.-B., & Moser, E. I. (2018). Integrating time from experience in the lateral entorhinal cortex. Nature,

561(7721), 57–62. doi:10.1038/s41586-018-0459-6

Vallesi, A., Binns, M. A., & Shallice, T. (2008). An effect of spatial–temporal asso-ciation of response codes: Understanding the cognitive representations of time.

Cognition, 107(2), 501–527. doi:10.1016/J.COGNITION.2007.10.011

Van den Berg, B., Krebs, R. M., Lorist, M. M., & Woldorff, M. G. (2014). Utilizati-on of reward-prospect enhances preparatory attentiUtilizati-on and reduces stimulus cUtilizati-on- con-flict. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 561–577. doi:10.3758/ s13415-014-0281-z

Van Maanen, L., Van der Mijn, R., Van Beurden, M. H. P. H., Roijendijk, L. M. M., Kingma, B. R. M., Miletić, S., & Van Rijn, H. (2019). Core body tempera-ture speeds up temporal processing and choice behavior under deadlines.

Scien-tific Reports, 9, 10053. doi:10.1038/s41598-019-46073-3

Van Maanen, L., Van Rijn, H., & Borst, J. P. (2009). Stroop and picture—word in-terference are two sides of the same coin. Psychonomic Bulletin & Review, 16(6), 987–999. doi:10.3758/PBR.16.6.987

Van Rijn, H. (2014). It’s time to take the psychology of biological time into account: Speed of driving affects a trip’s subjective duration. Frontiers in Psychology, 5, 1028. doi:10.3389/fpsyg.2014.01028

Van Rijn, H. (2016). Accounting for memory mechanisms in interval timing: A review. Current Opinion in Behavioral Sciences, 8, 245–249. doi:10.1016/j.co-beha.2016.02.016

Van Rijn, H. (2018). Towards ecologically valid interval timing. Trends in Cognitive

Sciences, 22(10), 850–852. doi:10.1016/J.TICS.2018.07.008

Van Rijn, H., Borst, J., Taatgen, N., & Van Maanen, L. (2016). On the necessity of integrating multiple levels of abstraction in a single computational frame-work. Current Opinion in Behavioral Sciences, 11, 116–120. doi:10.1016/j.co-beha.2016.07.007

Van Rijn, H., Gu, B.-M., & Meck, W. H. (2014). Dedicated clock/timing-cir-cuit theories of time perception and timed performance. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of Interval Timing. Advances in Expe-rimental Medicine and Biology, vol 829 (pp. 75–99). New York, NY: Springer. doi:10.1007/978-1-4939-1782-2_5

Van Rijn, H., Kononowicz, T. W., Meck, W. H., Ng, K. K., & Penney, T. B. (2011). Contingent negative variation and its relation to time estimation: A theoreti-cal evaluation. Frontiers in Integrative Neuroscience, 5(91), 1–5. doi:10.3389/fn-int.2011.00091

(17)

How many clocks do we have? Acta Psychologica, 129(3), 365–375. doi:10.1016/J. ACTPSY.2008.09.002

Van Wassenhove, V. (2017). Time consciousness in a computational mind/brain.

Journal of Consciousness Studies, 24(3–4), 177–202.

Vicario, C. M., Pecoraro, P., Turriziani, P., Koch, G., Caltagirone, C., & Oliveri, M. (2008). Relativistic compression and expansion of experiential time in the left and right space. PLoS ONE, 3(3), e1716. doi:10.1371/journal.pone.0001716 Wächter, M., & Asfour, T. (2015). Hierarchical segmentation of manipulation

ac-tions based on object relaac-tions and motion characteristics. Proceedings of the 17th International Conference on Advanced Robotics, ICAR 2015, 270273, 549–556. doi:10.1109/ICAR.2015.7251510

Wagenmakers, E. (2007). A practical solution to the pervasive problems of p values.

Psychonomic Bulletin & Review, 14(5), 779–804. doi:10.3758/BF03194105

Walsh, V. (2003). A Theory of Magnitude: Common cortical metrics of time, spa-ce and quantity. Trends in Cognitive Scienspa-ces, 7(11), 483–488. doi:10.1016/j. tics.2003.09.002

Walsh, V. (2015). A Theory of Magnitude: The parts that sum to number. In R. C. Kadosh & A. Dowker (Eds.), The Oxford Handbook of Numerical Cogniti-on (pp. 553–565). Oxford, U.K.: Oxford University Press. doi:10.1093/oxford-hb/9780199642342.013.64

Wang, J., Narain, D., Hosseini, E. A., & Jazayeri, M. (2018). Flexible timing by temporal scaling of cortical responses. Nature Neuroscience, 21(1), 102–110. doi:10.1038/s41593-017-0028-6

Wearden, J. H. (2001). Internal clocks and the representation of time. In C. Hoerl & T. McCormack (Eds.), Time and memory: Issues in philosophy and psychology (pp. 37–58). Oxford, UK: Clarendon Press.

Wearden, J. H. (2016). The psychology of time perception. London: Palgrave Mac-millan UK. doi:10.1057/978-1-137-40883-9

Wearden, J. H., & Lejeune, H. (2008). Scalar properties in human timing: Con-formity and violations. The Quarterly Journal of Experimental Psychology, 61(4), 569–587. doi:10.1080/17470210701282576

Wearden, J. H., Todd, N. P. M., & Jones, L. A. (2006). When do auditory/visual differences in duration judgements occur? The Quarterly Journal of Experimental

Psychology, 59(10), 1709–1724. doi:10.1080/17470210500314729

Weger, U. W., & Pratt, J. (2008). Time flies like an arrow: Space-time compatibi-lity effects suggest the use of a mental timeline. Psychonomic Bulletin & Review,

15(2), 426–430. doi:10.3758/PBR.15.2.426

Wiener, M., & Kanai, R. (2016). Frequency tuning for temporal perception and prediction. Current Opinion in Behavioral Sciences, 8. doi:10.1016/j.co-beha.2016.01.001

Wiener, M., Turkeltaub, P., & Coslett, H. B. (2010). The image of time: A vo-xel-wise meta-analysis. NeuroImage, 49(2), 1728–1740. doi:10.1016/j.neuroi-mage.2009.09.064

(18)

longer. Journal of Vision, 7(10), 2.1-5. doi:10.1167/7.10.2.Introduction

Zäch, P., & Brugger, P. (2008). Subjective time in near and far representational spa-ce. Cognitive and Behavioral Neurology: Official Journal of the Society for Behavioral

and Cognitive Neurology, 21(1), 8–13. doi:10.1097/WNN.0b013e31815f237c

Zakay, D. (1993). Time estimation methods—Do they influence prospective durati-on estimates? Perceptidurati-on, 22(1), 91–101. doi:10.1068/p220091

Zhang, Y., Chen, Y., Bressler, S. L., & Ding, M. (2008). Response preparation and inhibition: The role of the cortical sensorimotor beta rhythm. Neuroscience,

156(1), 238–246. doi:10.1016/j.neuroscience.2008.06.061

Zorzi, M., & Testolin, A. (2017). An emergentist perspective on the origin of num-ber sense. Philosophical Transactions of the Royal Society B: Biological Sciences,

(19)

Referenties

GERELATEERDE DOCUMENTEN

This design allowed us to test the stability and reliability of the ML-estimates over time (from session 1 to session 2), over similar tasks (Dynamic and Static versions of

We found that dependent on the dimension, CNV patterns are negatively de- flecting, with a more negative CNV if the task-critical dimension was time. However, a CNV pattern is

Stimuli consisted of clouds of small blue dots which appeared and disappeared dynamically on the screen (Dynamic Raindrops, panel A) or stayed on screen for the whole interval

In the second experiment, we used a more complex task: Participants were presented a stream of di- gits and one target letters and were subsequently asked to reproduce both

Although reproduced durations are more variable then observed in laboratory studies, the data adheres to two interval timing laws: Relative timing sensitivity is constant across

So far, theories and models of interval timing can be grouped into two camps, the first holding the assumption that there is a dedicated cognitive process for interval

In lab experiments we can isolate the time dimension by designing stimuli in such a way that they only differ in duration: Participants see two circles, equal in size, color,

Het bestuur is belast met de dagelijkse leiding van zaken en beheert de eigendommen van de vereniging; het draagt zorg voor de naleving van de statuten en het huishoudelijk reglement