• No results found

University of Groningen The nature and nurture of female receptivity Gorter, Jenneke Anne

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen The nature and nurture of female receptivity Gorter, Jenneke Anne"

Copied!
31
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The nature and nurture of female receptivity

Gorter, Jenneke Anne

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Gorter, J. A. (2018). The nature and nurture of female receptivity: A study in Drosophila melanogaster. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)
(3)

A

Abuin, L., Bargeton, B., Ulbrich, M. H., Isacoff, E. Y., Kellenberger, S., and Benton, R. (2011). Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69, 44–60. doi:10.1016/j.neuron.2010.11.042.

Aigaki, T., Fleischmann, I., Chen, P.-S., and Kubli, E. (1991). Ectopic expression of Sex peptide reproductive behaviour of female D. melanogaster. Neuron 7, 557–563. Akhund-Zade, J., Bergland, A. O., Crowe, S. O., and Unckless, R. L. (2017). The genetic

basis of natural variation in Drosophila (Diptera: Drosophilidae) virgin egg retention. J

Insect Sci 17, 5–9. doi:10.1093/jisesa/iew094.

Aranha, M. M., Herrmann, D., Cachitas, H., Neto-Silva, R. M., Dias, S., and Vasconcelos, M. L. (2017). Apterous brain neurons control receptivity to male courtship in Drosophila

melanogaster females. Sci Rep, 1–12. doi:10.1038/srep46242.

Archetti, M. (2013). Evolution of polygamous marriage by maximization of inclusive fitness.

J Theor Biol 319, 134–143. doi:10.1016/j.jtbi.2012.11.017.

Arnqvist, G., and Nilsson, T. (2000). The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60, 145–164. doi:10.1006/anbe.2000.1446.

Arya, G. H., Magwire, M. M., Huang, W., Serrano-Negron, Y. L., Mackay, T. F. C., and Anholt, R. R. H. (2015). The genetic basis for variation in olfactory behaviour in

Drosophila melanogaster. Chem Senses 40, 233–243. doi:10.1093/chemse/bjv001.

Aso, Y., Grübel, K., Busch, S., Friedrich, A. B., Siwanowicz, I., and Tanimoto, H. (2009). The mushroom body of adult Drosophila characterized by GAL4 drivers. J Neurogenet 23, 156–172. doi:10.1080/01677060802471718.

Avila, F. W., Cohen, A. B., Ameerudeen, F. S., Duneau, D., Suresh, S., Mattei, A. L., et al. (2015). Retention of ejaculate by Drosophila melanogaster females requires the male-derived mating plug protein PEBme. Genetics 200, 1171–1179.

doi:10.1534/genetics.115.176669.

Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D., and Wolfner, M. F. (2011). Insect seminal fluid proteins: identification and function. Annu Rev Entomol 56, 21–40. doi:10.1146/annurev-ento-120709-144823.

B

(4)

properties in Drosophila neurons developing without synaptic transmission. J Neurosci 21, 1523–1531.

Bartelt, R. J., Schaner, A. M., and Jackson, L. L. (1985). cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J Chem Ecol 11, 1747–1757. Bastock, M. (1956). A gene mutation which changes a behaviour pattern. Evolution 10, 421–

439.

Bastock, M., and Manning, A. (1955). The courtship of Drosophila melanogaster. Behaviour, 85–110.

Bateman, A. J. (1948). Intra-sexual selection in Drosophila. Heredity 2, 349–368.

Bath, E., Bowden, S., Peters, C., Reddy, A., Tobias, J. A., Easton-Calabria, E., et al. (2017). Sperm and sex peptide stimulate aggression in female Drosophila. Nat Ecol Evol 1, 1–6. doi:10.1038/s41559-017-0154.

Becher, P. G., Bengtsson, M., Hansson, B. S., and Witzgall, P. (2010). Flying the fly: long-range flight behaviour of Drosophila melanogaster to attractive odours. J Chem Ecol 36, 599–607. doi:10.1007/s10886-010-9794-2.

Becher, P. G., Flick, G., Rozpędowska, E., Schmidt, A., Hagman, A., Lebreton, S., et al. (2012). Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26, 822–828. doi:10.1111/j.1365-2435.2012.02006.x.

Bellen, H. J., and Kiger, J. A., Jr (1987). Sexual hyperactivity and reduced longevity of dunce females of Drosophila melanogaster. Genetics 115, 153–160.

Benton, R., Sachse, S., Michnick, S. W., and Vosshall, L. B. (2006). Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4, e20–19. doi:10.1371/journal.pbio.0040020.

Benton, R., Vannice, K. S., Gomez-Diaz, C., and Vosshall, L. B. (2009). Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136, 149–162. doi:10.1016/j.cell.2008.12.001.

Bhalerao, S., Sen, A., Stocker, R., and Rodrigues, V. (2003). Olfactory neurons expressing identified receptor genes project to subsets of glomeruli within the antennal lobe of

Drosophila melanogaster. J. Neurobiol. 54, 577–592. doi:10.1002/neu.10175.

Bialecki, M., Shilton, A., Fichtenberg, C., Segraves, W. A., and Thummel, C. S. (2002). Loss of the ecdysteroid-inducible E75A orphan nuclear receptor uncouples molting from metamorphosis in Drosophila. Dev Cell 3, 209–220.

(5)

Billeter, J. C., Jagadeesh, S., Stepek, N., Azanchi, R., and Levine, J. D. (2012). Drosophila

melanogaster females change mating behaviour and offspring production based on

social context. P Roy Soc B-Biol Sci 279, 2417–2425. doi:10.1098/rspb.2011.2676. Billeter, J.-C., and Levine, J. D. (2013). Who is he and what is he to you? Recognition in

Drosophila melanogaster. Curr Opin Neurobiol 23, 17–23.

doi:10.1016/j.conb.2012.08.009.

Billeter, J.-C., Atallah, J., Krupp, J. J., Millar, J. G., and Levine, J. D. (2009). Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461, 987–991. doi:10.1038/nature08495.

Bleu, J., Bessa-Gomes, C., and Laloi, D. (2012). Evolution of female choosiness and mating frequency: effects of mating cost, density and sex ratio. Anim Behav 83, 131–136. doi:10.1016/j.anbehav.2011.10.017.

Bownes, M., Scott, A., and Shirras, A. (1988). Dietary components modulate yolk protein gene transcription in Drosophila melanogaster. Development 103, 119–128.

Brand, A. H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.

Bretman, A., Fricke, C., and Chapman, T. (2009). Plastic responses of male Drosophila

melanogaster to the level of sperm competition increase male reproductive fitness. P Roy Soc B-Biol Sci 276, 1705–1711. doi:10.1098/rspb.2008.1878.

Bretman, A., Lawniczak, M. K. N., Boone, J., and Chapman, T. (2010). A mating plug protein reduces early female remating in Drosophila melanogaster. J Insect Physiol 56, 107–113. doi:10.1016/j.jinsphys.2009.09.010.

Bretman, A., Westmancoat, J. D., Gage, M. J. G., and Chapman, T. (2011). Males Use Multiple, Redundant Cues to Detect Mating Rivals. Curr Biol 21, 617–622. doi:10.1016/j.cub.2011.03.008.

Bronson, F. H. (1985). Mammalian reproduction: an ecological perspective. Biol Reprod, 1– 26.

Brown, E. B., Layne, J. E., Zhu, C., Jegga, A. G., and Rollmann, S. M. (2013). Genome-wide association mapping of natural variation in odour-guided behaviour in Drosophila.

Genes Brain Behav 12, 503–515. doi:10.1111/gbb.12048.

Burke, A. R., McCormick, C. M., Pellis, S. M., and Lukkes, J. L. (2017). Impact of adolescent social experiences on behaviour and neural circuits implicated in mental illnesses. Neurosci Biobehav R 76, 280–300. doi:10.1016/j.neubiorev.2017.01.018. Burke, C. J., and Waddell, S. (2011). Remembering nutrient quality of sugar in Drosophila.

(6)

Bussell, J. J., Yapici, N., Zhang, S. X., Dickson, B. J., and Vosshall, L. B. (2014).

Abdominal-B neurons control Drosophila virgin female receptivity. Curr Biol 24, 1584– 1595. doi:10.1016/j.cub.2014.06.011.

Buszczak, M., Freeman, M. R., Carlson, J. R., Bender, M., Cooley, L., and Segraves, W. A. (1999). Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development 126, 4581–4589.

C

Cacioppo, J. T., Hawkley, L. C., and Thisted, R. A. (2010). Perceived social isolation makes me sad: 5-year cross-lagged analyses of loneliness and depressive symptomatology in the Chicago Health, Aging, and Social Relations Study. Psychol Aging 25, 453–463. doi:10.1037/a0017216.

Chapman, T., and Partridge, L. (1996). Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. P Roy Soc

B-Biol Sci, 755–759.

Chapman, T., Bangham, J., Vinti, G., Seifried, B., Lung, O., Wolfner, M. F., et al. (2003). The sex peptide of Drosophila melanogaster: Female post-mating responses analysed by using RNA interference. Proc Natl Acad Sci USA 100, 9923–9928.

Chapman, T., Liddle, L. F., Kalb, J. M., Wolfner, M. F., and Partridge, L. (1995). Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 373, 241–244. doi:10.1038/373241a0.

Chen, P. S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., and Böhlen, P. (1988). A male accessory gland peptide that regulates reproductive behaviour of female D. melanogaster. Cell 54, 291–298. doi:10.1016/0092-8674(88)90192-4.

Chintapalli, V. R., Wang, J., and Dow, J. A. T. (2007). Using FlyAtlas to identify better

Drosophila melanogaster models of human disease. Nat Genet 39, 715–720.

doi:10.1038/ng2049.

Chow, C. Y., Wolfner, M. F., and Clark, A. G. (2013). Large neurological component to genetic differences underlying biased sperm use in Drosophila. Genetics 193, 177–185. doi:10.1534/genetics.112.146357/-/DC1.

Clark, A. G., Aguade, M., Prout, T., Harshman, L. G., and Langley, C. H. (1995). Variation in sperm displacement and tis association with accessory gland protein loci in

Drosophila melanogaster. Genetics 139, 189–201.

(7)

Associative learning disrupted by impaired Gs signalling in Drosophila mushroom bodies. Science 274, 2104–2107.

Couto, A., Alenius, M., and Dickson, B. J. (2005). Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 15, 1535–1547. doi:10.1016/j.cub.2005.07.034.

Côté, I. M., and Poulin, R. (1995). Parasitism and group size in social animals: a meta-analysis. Behav Ecol 6, 159–165.

Crickmore, M. A., and Vosshall, L. B. (2013). Opposing dopaminergic and GABAergic neurons control the duration and persistence of copulation in Drosophila. Cell 155, 881– 893. doi:10.1016/j.cell.2013.09.055.

D

Davis, R. L. (1993). Mushroom bodies and Drosophila learning. Neuron 11, 1–14. Day, J. P., Dow, J. A. T., Houslay, M. D., and Davies, S.-A. (2005). Cyclic nucleotide

phosphodiesterases in Drosophila melanogaster. Biochem. J. 388, 333–342. doi:10.1042/BJ20050057.

de Jong, G. (1995). Phenotypic plasticity as a product of selection in a variable environment.

Am Nat 145, 493–512. doi:10.1086/285752.

de Miera, C. S., Monecke, S., Bartzen-Sprauer, J., Laran-Chich, M.-P., Pévet, P., Hazlerigg, D. G., et al. (2014). A circannual clock drives expression of genes central for seasonal reproduction. Curr Biol 24, 1500–1506. doi:10.1016/j.cub.2014.05.024.

Dembeck, L. M., Böröczky, K., Huang, W., Schal, C., Anholt, R. R. H., and Mackay, T. F. C. (2015). Genetic architecture of natural variation in cuticular hydrocarbon composition in

Drosophila melanogaster. eLife, 1–27. doi:10.7554/eLife.09861.001.

Denis, B., Claisse, G., Le Rouzic, A., Wicker-Thomas, C., Lepennetier, G., and Joly, D. (2017). Male accessory gland proteins affect differentially female sexual receptivity and remating in closely related Drosophila species. J Insect Physiol 99, 67–77.

doi:10.1016/j.jinsphys.2017.03.008.

Dickson, B. J. (2008). Wired for sex: The neurobiology of Drosophila mating decisions.

Schience 322, 904–909. doi:10.1126/science.1159276.

Dietzl, G., Chen, D., Schnorrer, F., Su, K.-C., Barinova, Y., Fellner, M., et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila.

(8)

Dukas, R., and Jongsma, K. (2012). Costs to females and benefits to males from forced copulations in fruit flies. Anim Behav 84, 1177–1182.

doi:10.1016/j.anbehav.2012.08.021.

Dukas, R., and Scott, A. (2015). Fruit fly courtship: The female perspective. Curr Zool 61, 1008–1014. doi:10.1093/czoolo/61.6.1008.

Duménil, C., Woud, D., Pinto, F., Alkema, J. T., Jansen, I., Van Der Geest, A. M., et al. (2016). Pheromonal cues deposited by mated females convey social information about egg-Laying sites in Drosophila Melanogaster. J Chem Ecol 42, 259–269.

doi:10.1007/s10886-016-0681-3.

Dweck, H. K. M., Ebrahim, S. A. M., Farhan, A., Hansson, B. S., and Stensmyr, M. C. (2015a). Olfactory proxy detection of dietary antioxidants in Drosophila. Curr Biol 25, 455–466. doi:10.1016/j.cub.2014.11.062.

Dweck, H. K. M., Ebrahim, S. A. M., Thoma, M., Mohamed, A. A. M., Keesey, I. W., Trona, F., et al. (2015b). Pheromones mediating copulation and attraction in Drosophila. Proc

Natl Acad Sci USA, 201504527–7. doi:10.1073/pnas.1504527112.

E

Ejima, A., and Griffith, L. C. (2011). Assay for courtship suppression in Drosophila. Cold

Spring Harb Prot 2011, pdb.prot5575–pdb.prot5575. doi:10.1101/pdb.prot5575.

Ellis, L. B., and Kessler, S. (1975). Differential posteclosion housing experiences and reproduction in Drosophila. Anim Behav 23, 949–952.

Etienne, R., Wertheim, B., Hemerik, L., Schneider, P., and Powell, J. (2002). The interaction between dispersal, the Allee effect and scramble competition affects population dynamics. Ecol Model 148, 153–168. doi:10.1016/S0304-3800(01)00417-3. Everaerts, C., Farine, J.-P., Cobb, M., and Ferveur, J.-F. (2010). Drosophila cuticular

hydrocarbons revisited: mating status alters cuticular profiles. PLoS ONE 5, e9607–12. doi:10.1371/journal.pone.0009607.

F

Fabre, C. C. G., Hedwig, B., Conduit, G., Lawrence, P. A., Goodwin, S. F., and Casal, J. (2012). Substrate-borne vibratory communication during courtship in Drosophila

(9)

Farine, J.-P., Ferveur, J.-F., and Everaerts, C. (2012). Volatile Drosophila cuticular

pheromones are affected by social but not sexual experience. PLoS ONE 7, e40396–11. doi:10.1371/journal.pone.0040396.

Fedorka, K. M., Linder, J. E., Winterhalter, W., and Promislow, D. (2007). Post-mating disparity between potential and realized immune response in Drosophila melanogaster.

P Roy Soc B-Biol Sci 274, 1211–1217. doi:10.1098/rspb.2006.0394.

Feng, K., Palfreyman, M. T., Häsemeyer, M., Talsma, A., and Dickson, B. J. (2014). Ascending SAG neurons control sexual receptivity of Drosophila females. Neuron 83, 135–148. doi:10.1016/j.neuron.2014.05.017.

Fernández, M. de L. P., Chan, Y.-B., Yew, J. Y., Billeter, J.-C., Dreisewerd, K., Levine, J. D., et al. (2010). Pheromonal and behavioural cues trigger male-to-female aggression in

Drosophila. PLoS Biol 8, e1000541–11. doi:10.1371/journal.pbio.1000541.

Fernández, M. P., and Kravitz, E. A. (2013). Aggression and courtship in Drosophila: pheromonal communication and sex recognition. J Comp Physiol A Neuroethol Sens

Neural Behav Physiol 199, 1065–1076. doi:10.1007/s00359-013-0851-5.

Ferveur, J.-F. (1997). The pheromonal role of cuticular hydrocarbons in Drosophila

melanogaster. BioEssays 19, 353–358.

Ferveur, J.-F., Störtkuhl, K. F., Stocker, R., and Greenspan, R. J. (1995). Genetic feminization of brain structures and changes sexual orientation in male Drosophila. Science 267, 902–905.

Fishilevich, E., and Vosshall, L. B. (2005). Genetic and functional subdivision of the

Drosophila antennal lobe. Curr Biol 15, 1548–1553. doi:10.1016/j.cub.2005.07.066.

Fleischmann, I., Cotton, B., Choffat, Y., Spengler, M., and Kubli, E. (2001). Mushroom bodies and post-mating behaviours of Drosophila melanogaster females. J Neurogenet 15, 117–144. doi:10.3109/01677060109066198.

Frank, S. A. (2007). All of life is social. Curr Biol 17, R648–R650. doi:10.1016/j.cub.2007.06.005.

Franssen, S. U., Nolte, V., Tobler, R., and Schlötterer, C. (2015). Patterns of linkage disequilibrium and long range hitchhiking in evolving experimental Drosophila

melanogaster populations. Mol Biol Evol 32, 495–509. doi:10.1093/molbev/msu320.

Fricke, C., Bretman, A., and Chapman, T. (2010). Female nutritional status determines the magnitude and sign of responses to a male ejaculate signal in Drosophila melanogaster.

J Evolution Biol 23, 157–165. doi:10.1111/j.1420-9101.2009.01882.x.

Fricke, C., Green, D., Mills, W. E., and Chapman, T. (2013). Age-dependent female

(10)

Soc B-Biol Sci 280, 20130428–20130428. doi:10.1098/rspb.2013.0428.

Fujita, M., and Tanimura, T. (2011). Drosophila evaluates and learns the nutritional value of sugars. Curr Biol 21, 751–755. doi:10.1016/j.cub.2011.03.058.

Fukui, H. H., and Gromko, M. H. (1991a). Genetic basis for remating in Drosophila

melanogaster. IV. A chromosome substitution analysis. Behav Genet 21, 169–182.

Fukui, H. H., and Gromko, M. H. (1991b). Genetic basis for remating in Drosophila

melanogaster. V. Biometrical and planned comparisons analyses. Behav Genet 21, 183–

197.

Fukui, H. H., and Gromko, M. H. (1991c). Genetic basis for remating in Drosophila

melanogaster. VI. Recombination analysis. Behav Genet 21, 199–209.

G

Gaertner, B. E., Ruedi, E. A., McCoy, L. J., Moore, J. M., Wolfner, M. F., and Mackay, T. F. C. (2015). Heritable variation in courtship patterns in Drosophila melanogaster.

G3-Genes Genom Genet 5, 531–539. doi:10.1534/g3.114.014811/-/DC1.

Ganguly, A., and Lee, D. (2013). Suppression of inhibitory GABAergic transmission by cAMP signalling pathway: alterations in learning and memory mutants. Eur J Neurosci 37, 1383–1393. doi:10.1111/ejn.12144.

Garbaczewska, M., Billeter, J.-C., and Levine, J. D. (2013). Drosophila melanogaster males increase the number of sperm in their ejaculate when perceiving rival males. J Insect

Physiol 59, 306–310. doi:10.1016/j.jinsphys.2012.08.016.

Garlapow, M. E., Huang, W., Yarboro, M. T., Peterson, K. R., and Mackay, T. F. C. (2015). Quantitative genetics of food intake in Drosophila melanogaster. PLoS ONE 10, e0138129–25. doi:10.1371/journal.pone.0138129.

Giardina, T. J., Beavis, A., Clark, A. G., and Fiumera, A. C. (2011). Female influence on pre- and post-copulatory sexual selection and its genetic basis in Drosophila melanogaster.

Mol Ecol 20, 4098–4108. doi:10.1111/j.1365-294X.2011.05253.x.

Giardina, T. J., Clark, A. G., and Fiumera, A. C. (2017). Estimating mating rates in wild

Drosophila melanogaster females by decay rates of male reproductive proteins in their

reproductive tracts. Mol Ecol Resour 38, 42–49. doi:10.1111/ijlh.12426.

Golovin, R. M., and Broadie, K. (2016). Developmental experience-dependent plasticity in the first synapse of the Drosophila olfactory circuit. J Neurophysiol 116, 2730–2738. doi:10.1152/jn.00616.2016.

(11)

Goncharova, A. A., Bragina, Y. V., Fedotov, S. A., and Kamyshev, N. G. (2016). Influence of group rearing on sexual behaviour of Drosophila melanogaster males. J Evol

Biochem Phys 52, 454–462. doi:10.1134/S1234567816060045.

Good, T. P., and Tatar, M. (2001). Age-specific mortality and reproduction respond to adult dietary restriction in Drosophila melanogaster. J Insect Physiol 47, 1467–1473. doi:10.1016/S0022-1910(01)00138-X.

Gordesky-Gold, B., Rivers, N., Ahmed, O. M., and Breslin, P. A. S. (2008). Drosophila

melanogaster prefers compounds perceived sweet by humans. Chem Senses 33, 301–

309. doi:10.1093/chemse/bjm088.

Gorter, J. A., and Billeter, J.-C. (2017). A method to test the effect of environmental cues on mating behaviour in Drosophila melanogaster. J Vis Exp, 1–9. doi:10.3791/55690. Gorter, J. A., Jagadeesh, S., Gahr, C., Boonekamp, J. J., Levine, J. D., and Billeter, J.-C.

(2016). The nutritional and hedonic value of food modulate sexual receptivity in

Drosophila melanogaster females. Sci Rep, 1–10. doi:10.1038/srep19441.

Gowaty, P. A., Kim, Y. K., Rawlings, J., and Anderson, W. W. (2010). Polyandry increases offspring viability and mother productivity but does not decrease mother survival in

Drosophila pseudoobscura. Proc Natl Acad Sci USA 107, 13771–13776.

doi:10.1073/pnas.1006174107.

Göpfert, M. C., and Robert, D. (2001). Turning the key on Drosophila audition. Nature 411, 908.

Göpfert, M. C., and Robert, D. (2002). Auditory mechanics of Drosophila melanogaster. J

Exp Biol, 1199–1208.

Grillet, M., Dartevelle, L., and Ferveur, J.-F. (2006). A Drosophila male pheromone affects female sexual receptivity. P Roy Soc B-Biol Sci 273, 315–323.

doi:10.1098/rspb.2005.3332.

Gromko, M. H., and Newport, M. E. A. (1988a). Genetic basis for remating in Drosophila

melanogaster. II. Response to selection based on the behaviour of one sex. Behav Genet

18, 621–632.

Gromko, M. H., and Newport, M. E. A. (1988b). Genetic basis for remating in Drosophila

melanogaster. III. Correlated responses to selection for female remating speed. Behav Genet 18, 633–643.

Grosjean, Y., Rytz, R., Farine, J.-P., Abuin, L., Cortot, J., Jefferis, G. S. X. E., et al. (2011). An olfactory receptor for food-derived odours promotes male courtship in Drosophila.

Nature 478, 236–240. doi:10.1038/nature10428.

(12)

biosynthesis of the male pheromone cis-vaccenyl acetate in Drosophila melanogaster.

Integr Zool 2, 89–99. doi:10.1111/j.1749-4877.2007.00047.x.

H

Hall, J. C. (1994). The mating of a fly. Science 264, 1702–1714.

Harshman, L. G., Hoffman, A. A., and Prout, T. (1988). Environmental effects on remating in

Drosophila melanogaster. Evolution 42, 312–321.

Haussmann, I. U., Hemani, Y., Wijesekera, T., Dauwalder, B., and Soller, M. (2013). Multiple pathways mediate the sex-peptide-regulated switch in female Drosophila reproductive behaviours. Proc. Biol. Sci. 280, 20131938–20131938.

doi:10.1098/rspb.2013.1938.

Hawkley, L. C., and Capitanio, J. P. (2015). Perceived social isolation, evolutionary fitness and health outcomes: a lifespan approach. Phil Trans R Soc B 370, 20140114– 20140114. doi:10.1098/rstb.2014.0114.

Häsemeyer, M., Yapici, N., Heberlein, U., and Dickson, B. J. (2009). Sensory neurons in the

Drosophila genital tract regulate female reproductive behaviour. Neuron 61, 511–518.

doi:10.1016/j.neuron.2009.01.009.

Heifetz, Y., Vandenberg, L. N., Cohn, H. I., and Wolfner, M. F. (2005). Two cleavage products of the Drosophila accessory gland protein ovulin can independently induce ovulation. Proc Natl Acad Sci USA 102, 743–748. doi:10.1073/pnas.0407692102. Heimbeck, G., Bugnon, V., Gendre, N., Keller, A., and Stocker, R. F. (2001). A central neural

circuit for experience-independent olfactory and courtship behaviour in Drosophila melanogaster. Proc Natl Acad Sci USA 98, 15336–15341. doi:10.1073/pnas.011314898. Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nat Rev Neurosci 4,

266–275. doi:10.1038/nrn1074.

Herndon, L. A., and Wolfner, M. F. (1995). A Drosophila seminal fluid protein, Acp26Aa, stimulates egg laying in females for 1 day after mating. Proc Natl Acad Sci USA 92, 10114–10118. doi:10.1073/pnas.92.22.10114.

Hileman, S. M., Pierroz, D. D., and Flier, J. S. (2000). Leptin, nutrition, and reproduction: timing is everything. J Clin Endocr Metab 85, 804–807.

Hoffman, A. A. (1990). The influences of age and experience with conspecifics on territorial behaviour in Drosophila melanogaster. J Insect Behav 3, 1–12.

(13)

Holman, L., and Kokko, H. (2013). The consequences of polyandry for population viability, extinction risk and conservation. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 368, 20120053–20120053. doi:10.1098/rstb.2012.0053.

Huang, W., Massouras, A., Inoue, Y., Peiffer, J., Ramia, M., Tarone, A. M., et al. (2014). Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res 24, 1193–1208. doi:10.1101/gr.171546.113. Hussain, A., Üçpunar, H. K., Zhang, M., Loschek, L. F., and Grunwald Kadow, I. C. (2016).

Neuropeptides modulate female chemosensory processing upon mating in Drosophila.

PLoS Biol 14, e1002455–28. doi:10.1371/journal.pbio.1002455.

I

Ihara, K., Masuda, T., Yamamoto, T., Iwata, I., Takahashi, A., Awata, H., et al. (2016). Shifting transcriptional machinery is required for long-term memory maintenance and modification in Drosophila mushroom bodies. Nat Commun 7, 1–14.

doi:10.1038/ncomms13471.

Imhof, M., Harr, B., Brem, G., and Schlötterer, C. (1998). Multiple mating in wild

Drosophila melanogaster revisited by microsatellite analysis. Mol Ecol, 915–917.

Ivanov, D. K., Escott-Price, V., Ziehm, M., Magwire, M. M., Mackay, T. F. C., Partridge, L., et al. (2015). Longevity GWAS Using the Drosophila Genetic Reference Panel.

GERONA 70, 1470–1478. doi:10.1093/gerona/glv047.

J

Jallon, J.-M. (1984). A few chemical words exchanged by Drosophila during courtship and mating. Behav Genet 14, 441–478. doi:10.1007/BF01065444.

Jefferis, G. S. X. E., Potter, C. J., Chan, A. M., Marin, E. C., Rohlfing, T., Maurer, C. R., Jr, et al. (2007). Comprehensive maps of Drosophila higher olfactory centers: Spatially segregated fruit and pheromone representation. Cell 128, 1187–1203.

doi:10.1016/j.cell.2007.01.040.

Jenett, A., Rubin, G. M., Ngo, T.-T. B., Shepherd, D., Murphy, C., Dionne, H., et al. (2012). A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2, 991–1001. doi:10.1016/j.celrep.2012.09.011.

(14)

genetic benefits. Biol Rev 75, 21–64.

Jiao, Y., Moon, S. J., and Montell, C. (2007). A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc Natl

Acad Sci USA 104, 14110–14115. doi:10.1073/pnas.0702421104.

Johnston, D. M., Sedkov, Y., Petruk, S., Riley, K. M., Fujioka, M., Jaynes, J. B., et al. (2011). Ecdysone- and NO-mediated gene regulation by competing EcR/Usp and E75A nuclear receptors during Drosophila development. Mol Cell 44, 51–61.

doi:10.1016/j.molcel.2011.07.033.

Jory, A., Estella, C., Giorgianni, M. W., Slattery, M., Laverty, T. R., Rubin, G. M., et al. (2012). A Survey of 6,300 genomic fragments for cis-regulatory activity in the imaginal discs of Drosophila melanogaster. Cell Rep 2, 1014–1024.

doi:10.1016/j.celrep.2012.09.010.

Joseph, R. M., Devineni, A. V., King, I. F. G., and Heberlein, U. (2009). Oviposition preference for and positional avoidance of acetic acid provide a model for competing behavioural drives in Drosophila. Proc Natl Acad Sci USA 106, 11352–11357. doi:10.1073/pnas.0901419106.

K

Kalb, J. M., DiBenedetto, A. J., and Wolfner, M. F. (1993). Probing the function of

Drosophila melanogaster accessory glands by directed cell ablation. Proc Natl Acad Sci USA 90, 8093–8097.

Kamimura, Y. (2007). Twin intromittent organs of Drosophila for traumatic insemination.

Biol Lett 3, 401–404. doi:10.1098/rsbl.2007.0192.

Kawahara, A. Y., Orr, A. G., and Carvalho, A. P. S. (2017). A review of the occurrence and diversity of the sphragis in butterflies (Lepidoptera, Papilionoidea). ZooKeys 694, 41– 70. doi:10.3897/zookeys.694.13097.

Keesey, I. W., Koerte, S., Retzke, T., Haverkamp, A., Hansson, B. S., and Knaden, M. (2016). Adult frass provides a pheromone signature for Drosophila feeding and aggregation. J Chem Ecol, 1–9. doi:10.1007/s10886-016-0737-4.

Kim, S. E., Coste, B., Chadha, A., Cook, B., and Patapoutian, A. (2012a). The role of

Drosophila Piezo in mechanical nociception. Nature 483, 209–2012.

doi:10.1038/nature10801.

Kim, W. J., Jan, L. Y., and Jan, Y.-N. (2012b). Contribution of visual and circadian neural circuits to memory for prolonged mating induced by rivals. Nat Neurosci, 1–9.

(15)

doi:10.1038/nn.3104.

Kim, Y.-K., and Ehrman, L. (1998). Developmental isolation and subsequent adult behaviour of Drosophila paulistorum. IV. Courtship. Behav Genet 28, 57–65.

Kim, Y.-K., Ehrman, L., and Koepfer, H. R. (1992). Developmental isolation and subsequent adult behaviour of Drosophila paulistorum. I. Survey of the six semispecies. Behav

Genet 22, 545–556.

Kim, Y.-K., Phillips, D. R., Chao, T., and Ehrman, L. (2004). Developmental isolation and subsequent adult behaviour of Drosophila paulistorum. VI. Quantitative variation in cuticular hydrocarbons. Behav Genet 34, 385–394.

Kokko, H., and Mappes, J. (2005). Sexual selection when fertilization is not guaranteed.

Evolution 59, 1876–1885.

Kokko, H., and Mappes, J. (2012). Multiple mating by females is a natural outcome of a null model of mate encounters. Entomol Exp Appl 146, 26–37.

doi:10.1111/j.1570-7458.2012.01296.x.

Kondoh, Y., Kaneshiro, K. Y., Kimura, K., and Yamamoto, D. (2003). Evolution of sexual dimorphism in the olfactory brain of Hawaiian Drosophila. P Roy Soc B-Biol Sci 270, 1005–1013. doi:10.1098/rspb.2003.2331.

Krupp, J. J., Billeter, J.-C., Wong, A., Choi, C., Nitabach, M. N., and Levine, J. D. (2013). Pigment-dispersing factor modulates pheromone production in clock cells that influence mating in Drosophila. Neuron 79, 54–68. doi:10.1016/j.neuron.2013.05.019.

Krupp, J. J., Kent, C., Billeter, J.-C., Azanchi, R., So, A. K. C., Schonfeld, J. A., et al. (2008). Social experience modifies pheromone expression and mating behaviour in male

Drosophila melanogaster. Curr Biol 18, 1373–1383. doi:10.1016/j.cub.2008.07.089.

Kubli, E., and Bopp, D. (2012). Sexual behaviour: how Sex peptide flips the postmating switch of female flies. Curr Biol 22, R520–R522. doi:10.1016/j.cub.2012.04.058. Kuijper, B., and Morrow, E. H. (2009). Direct observation of female mating frequency using

time-lapse photography. Fly 3, 118–120. doi:10.4161/fly.8053.

Kuijper, B., Stewart, A. D., and Rice, W. R. (2006). The cost of mating rises nonlinearly with copulation frequency in a laboratory population of Drosophila melanogaster. J

Evolution Biol 19, 1795–1802. doi:10.1111/j.1420-9101.2006.01186.x.

Kurtovic, A., Widmer, A., and Dickson, B. J. (2007). A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446, 542–546. doi:10.1038/nature05672.

(16)

L

Larsson, M. C., Domingos, A. I., Jones, W. D., Chiappe, M. E., Amrein, H., and Vosshall, L. B. (2004). Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714. doi:10.1016/j.neuron.2004.08.019.

Lasbleiz, C., Ferveur, J.-F., and Everaerts, C. (2006). Courtship behaviour of Drosophila melanogaster revisited. Anim Behav 72, 1001–1012. doi:10.1016/j.anbehav.2006.01.027. Laturney, M., and Billeter, J.-C. (2014). Neurogenetics of female reproductive behaviours in

Drosophila melanogaster. Adv Genet 85, 1–108.

doi:10.1016/B978-0-12-800271-1.00001-9.

Laturney, M., and Billeter, J.-C. (2016). Drosophila melanogaster females restore their attractiveness after mating by removing male anti-aphrodisiac pheromones. Nat

Commun 7, 1–11. doi:10.1038/ncomms12322.

Lawniczak, M. K., and Begun, D. J. (2004). A genome-wide analysis of courting and mating responses in Drosophila melanogaster females. Genome 47, 900–910. doi:10.1139/g04-050.

Lebreton, S. B., Becher, P. G., Hansson, B. S., and Witzgall, P. (2012). Attraction of

Drosophila melanogaster males to food-related and fly odours. J Insect Physiol 58, 125–

129. doi:10.1016/j.jinsphys.2011.10.009.

Lebreton, S., Borrero-Echeverry, F., Gonzalez, F., Solum, M., Wallin, E. A., Hedenström, E., et al. (2017a). A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BCM Biol, 1– 14. doi:10.1186/s12915-017-0427-x.

Lebreton, S., Carlsson, M. A., and Witzgall, P. (2017b). Insulin signalling in the peripheral and central nervous system regulates female sexual receptivity during starvation in

Drosophila. Front Physiol 8, 2397–10. doi:10.3389/fphys.2017.00685.

Lebreton, S., Grabe, V., Omondi, A. B., Ignell, R., Becher, P. G., Hansson, B. S., et al. (2014). Love makes smell blind: mating suppresses pheromone attraction in Drosophila females via Or65a olfactory neurons. Sci Rep 4, 7119–6. doi:10.1038/srep07119. Lee, K. P., Simpson, S. J., Clissold, F. J., Brooks, R., Ballard, J., Taylor, P. W., et al. (2008).

Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc

Natl Acad Sci USA 105, 2498–2503.

Lee, K.-M., Daubnerová, I., Isaac, R. E., Zhang, C., Choi, S., Chung, J., et al. (2015). A neuronal pathway that controls sperm ejection and storage in female Drosophila. Curr

(17)

Lefevre, G. J., and Jonsson, U. B. (1962). Sperm transfer, storage, displacement, and utilization in Drosophila melanogaster. Genetics, 1719–1736.

Letsinger, J. T., and Gromko, M. H. (1985). The role of sperm numbers in sperm competition and female remating in Drosophila melanogaster. Genetica 66, 195–202.

Li, H.-H., Kroll, J. R., Lennox, S. M., Ogundeyi, O., Jeter, J., Depasquale, G., et al. (2014). A GAL4 driver resource for developmental and behavioural studies on the larval CNS of

Drosophila. Cell Rep 8, 897–908. doi:10.1016/j.celrep.2014.06.065.

Lin, C.-C., Prokop-Prigge, K. A., Preti, G., and Potter, C. J. (2015). Food odours trigger

Drosophila males to deposit a pheromone that guides aggregation and female

oviposition decisions. eLife, 1–26. doi:10.7554/eLife.08688.001.

Lin, H.-H., Cao, D.-S., Sethi, S., Zeng, Z., Chin, J. S. R., Chakraborty, T. S., et al. (2016). Hormonal modulation of pheromone detection enhances male courtship success.

Neuron, 1–16. doi:10.1016/j.neuron.2016.05.004.

Linder, J. E., and Rice, W. R. (2005). Natural selection and genetic variation for female resistance to harm from males. J Evolution Biol 18, 568–575. doi:10.1111/j.1420-9101.2004.00872.x.

Liu, H., and Kubli, E. (2003). Sex-peptide is the molecular basis of the sperm effect in

Drosophila melanogaster. Proc Natl Acad Sci USA 100, 9929–9933.

Liu, W., Liang, X., Gong, J., Yang, Z., Zhang, Y.-H., Zhang, J.-X., et al. (2011). Social regulation of aggression by pheromonal activation of Or65a olfactory neurons in

Drosophila. Nat Neurosci 14, 896–902. doi:10.1038/nn.2836.

Liu, Y.-C., Pearce, M. W., Honda, T., Johnson, T. K., Charlu, S., Sharma, K. R., et al. (2014). The Drosophila melanogaster phospholipid flippase dATP8B as required for odorant receptor function. PLoS genet 10, e1004209–9. doi:10.1371/journal.pgen.1004209. Liu, Z., Steward, R., and Luo, L. (2000). Drosophila Lis1 is required for neuroblast

proliferation, dendritic elaboration and axonal transport. Nat Cell Biol 2, 776–783. Lof, M. E., de Gee, M., and Hemerik, L. (2009). Odour-mediated aggregation enhances the

colonization ability of Drosophila melanogaster. J Theor Biol 258, 363–370. doi:10.1016/j.jtbi.2008.08.019.

Lone, S. R., Venkataraman, A., Srivastava, M., Potdar, S., and Sharma, V. K. (2015). Or47b-neurons promote male-mating success in Drosophila. Biol Lett 11, 20150292–5. doi:10.1098/rsbl.2015.0292.

Long, T. A. F., Pischedda, A., and Rice, W. R. (2010). Remating in Drosophila

melanogaster: are indirect benefits condition dependent? Evolution 64, 2767–2774.

(18)

Lung, O., and Wolfner, M. F. (2001). Identification and characterization of the major

Drosophila melanogaster mating plug protein. Insect Biochem Molec 31, 543–551.

doi:10.1016/S0965-1748(00)00154-5.

Lüpold, S. (2013). Ejaculate quality and constraints in relation to sperm competition levels among eutherian mammals. Evolution 67, n/a–n/a. doi:10.1111/evo.12132.

M

Mack, P. D., Kapelnikov, A., Heifetz, Y., and Bender, M. (2006). Mating-responsive genes in reproductive tissues of female Drosophila melanogaster. Proc Natl Acad Sci USA 103, 10358–10363.

Mackay, T. F. C., and Huang, W. (2017). Charting the genotype-phenotype map: lessons from the Drosophila melanogaster Genetic Reference Panel. WIREs Dev Biol 52, e289– 18. doi:10.1002/wdev.289.

Mackay, T. F. C., Richards, S., Stone, E. A., Barbadilla, A., Ayroles, J. F., Zhu, D., et al. (2012). The Drosophila melanogaster Genetic Reference Panel. Nature 482, 173–178. doi:10.1038/nature10811.

Manier, M. K., Belote, J. M., Berben, K. S., Novikov, D., Stuart, W. T., and Pitnick, S. (2010). Resolving mechanisms of competitve fertilization success in Drosophila

melanogaster. Science 328, 354–357.

Manning, A. (1967). The control of sexual receptivity in female Drosophila. Anim Behav 15, 239–250.

Manning, L., Heckscher, E. S., Purice, M. D., Roberts, J., Bennett, A. L., Kroll, J. R., et al. (2012). A resource for manipulating gene expression and analyzing cis-regulatory modules in the Drosophila CNS. Cell Rep 2, 1002–1013.

doi:10.1016/j.celrep.2012.09.009.

Markow, T. A. (1987). Behavioural and sensory basis of courtship success in Drosophila

melanogaster. Proc Natl Acad Sci USA 64, 6200–6204.

Markow, T. A. (2011). “Cost” of virginity in wild Drosophila melanogaster females. Ecol

Evol 1, 596–600. doi:10.1002/ece3.54.

Markow, T. A., and Hanson, S. J. (1981). Multivariate analysis of Drosophila courtship. Proc

Natl Acad Sci USA 78, 430–434.

Marks, R. W., Seager, R. D., and Barr, L. G. (1988). Local ecology and multiple mating in a natural population of Drosophila melanogaster. Am Nat 131, 918–923.

(19)

doi:10.1086/284832.

Martin, J.-R., Ernst, R., and Heisenberg, M. (1998). Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn Memory, 179–191.

McGraw, L. A., Gibson, G., Clark, A. G., and Wolfner, M. F. (2004). Genes regulated by mating, sperm, or seminal proteins in mated female Drosophila melanogaster. Curr Biol 14, 1509–1514. doi:10.1016/j.cub.2004.08.028.

Meunier, J. (2015). Social immunity and the evolution of group living in insects. Phil Trans R

Soc B 370, 20140102–20140102. doi:10.1098/rstb.2014.0102.

Miyamoto, T., Slone, J., Song, X., and Amrein, H. (2012). A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151, 1113–1125.

doi:10.1016/j.cell.2012.10.024.

Montell, C. (2012). Drosophila visual transduction. Trend Neurosci 35, 356–363. doi:10.1016/j.tins.2012.03.004.

Morley, E. L., Steinmann, T., Casas, J., and Robert, D. (2012). Directional cues in Drosophila melanogaster audition: structure of acoustic flow and inter-antennal velocity differences.

J Exp Biol 215, 2405–2413. doi:10.1242/jeb.068940.

Mueller, J. L., Page, J. L., and Wolfner, M. F. (2007). An ectopic expression screen reveals the protective and toxic effects of Drosophila seminal fluid proteins. Genetics 175, 777– 783. doi:10.1534/genetics.106.065318.

N

Nakagawa, S., and Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82, 591–605. doi:10.1111/j.1469-185X.2007.00027.x.

Neckameyer, W. S. (1998). Dopamine and mushroom bodies in Drosophila: Experience-dependent and -inExperience-dependent aspects of sexual Behaviour. Learn Memory, 157–165. Neckameyer, W. S., and Matsuo, H. (2008). Distinct neural circuits reflect sex, sexual

maturity, and reproductive status in response to stress in Drosophila melanogaster.

Neuroscience 156, 841–856. doi:10.1016/j.neuroscience.2008.08.020.

Newport, M. E. A., and Gromko, M. H. (1984). The effect of experimental design on female receptivity to remating and its impact on reproductive succes in Drosophila

(20)

Nino, M., Ignatow, G., and Cai, T. (2016). Social Isolation, Strain, and Youth Violence.

Youth Violence Juv J, 1–15. doi:10.1177/1541204016636435.

O

O'Dell, K., and Burnet, B. (1988). The effects on locomotor activity and reactivity of the

hypoactive and inactive mutations of Drosophila melanogaster. Heredity 61, 199–207.

Ochando, M. D., Reyes, A., and Ayala, F. J. (1996). Multiple paternity in two natural populations (orchard and vineyard) of Drosophila. Proc Natl Acad Sci USA 93, 11769– 11773.

OTousa, J. E., Baehr, W., Martin, R. L., Hirsh, J., Pak, W. L., and Applebury, M. L. (1985). The Drosophila ninaE gene encodes an opsin. Cell 40, 839–850.

Owald, D., and Waddell, S. (2015). Olfactory learning skews mushroom body output pathways to steer behavioural choice in Drosophila. Curr Opin Neurobiol 35, 178–184. doi:10.1016/j.conb.2015.10.002.

Owald, D., Felsenberg, J., Talbot, C. B., Das, G., Perisse, E., Huetteroth, W., et al. (2015). Activity of defined mushroom body output neurons underlies learned olfactory behaviour in Drosophila. Neuron 86, 417–427. doi:10.1016/j.neuron.2015.03.025.

P

Page, D. T. (2003). A function for Egf receptor signalling in expanding the developing vrain in Drosophila. Curr Biol 13, 474–482. doi:10.1016/S0960-9822(03)00094-0.

Parker, G. A., and Birkhead, T. R. (2013). Polyandry: the history of a revolution. Phil Trans

R Soc B 368, 20120335–20120335. doi:10.1098/rstb.2012.0335.

Parker, G. A., and Pizzari, T. (2010). Sperm competition and ejaculate economics. Biol Rev, 897–897. doi:10.1111/j.1469-185x.2010.00140.x.

Partridge, L., and Harvey, P. H. (1988). The ecological context of life history evolution.

Science 241, 1449–1455. doi:10.1126/science.241.4872.1449.

Patterson, J. E. H., and Ruckstuhl, K. E. (2013). Parasite infection and host group size: a meta-analytical review. Parasitology 140, 803–813. doi:10.1017/S0031182012002259. Peng, J., Chen, S., Büsser, S., Liu, H., Honegger, T., and Kubli, E. (2005). Gradual release of

(21)

sperm bound sex-peptide controls female postmating behaviour in Drosophila. Curr

Biol 15, 207–213. doi:10.1016/j.cub.2005.01.034.

Pfeiffer, B. D., Jenett, A., Hammonds, A. S., Ngo, T. T. B., Misra, S., Murphy, C., et al. (2008). Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci

USA 105, 9715–9720. doi:10.1073/pnas.0803697105.

Piper, M. D. W., Blanc, E., Leitão-Gonçalves, R., Yang, M., He, X., Linford, N. J., et al. (2013). A holidic medium for Drosophila melanogaster. Nat Meth 11, 100–105. doi:10.1038/nmeth.2731.

Pitts, S., Pelser, E., Meeks, J., and Smith, D. (2016). Odorant responses and courtship behaviours influenced by at4 neurons in Drosophila. PLoS ONE 11, e0162761–15. doi:10.1371/journal.pone.0162761.

Priest, N. K., Roach, D. A., and Galloway, L. F. (2008). Cross-generational fitness benefits of mating and male seminal fluid. Biol Lett 4, 6–8. doi:10.1098/rsbl.2007.0473.

Pyle, D. W., and Gromko, M. H. (1981). Genetic basis for repeated mating in Drosophila

melanogaster. Am Nat 117, 133–146.

Q

Qiu, Y., and Davis, R. L. (1993). Genetic dissection of the learning/memory gene dunce of

Drosophila melanogaster. Genes Dev 7, 1447–1458.

R

Rahn, T., Leippe, M., Roeder, T., and Fedders, H. (2013). EGFR signalling in the brain is necessary for olfactory learning in Drosophila larvae. Learn Mem 20, 194–200. doi:10.1101/lm.029934.112.

Ram, K. R., and Wolfner, M. F. (2007). Sustained post-mating response in Drosophila

melanogaster requires multiple seminal fluid proteins. PLoS genet 3, e238–11.

doi:10.1371/journal.pgen.0030238.

Ram, K. R., and Wolfner, M. F. (2009). A network of interactions among seminal proteins underlies the long-term postmating response in Drosophila. Proc Natl Acad Sci USA 106, 15384–15389. doi:10.1073/pnas.0902923106.

(22)

mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis. Development 130, 1203–1213. doi:10.1242/dev.00319.

Rexhepaj, A., Liu, H., Peng, J., Choffat, Y., and Kubli, E. (2003). The sex-peptide DUP99B is expressed in the male ejaculatory duct and in the cardia of both sexes. Eur J Biochem 270, 4306–4314. doi:10.1046/j.1432-1033.2003.03823.x.

Rezával, C., Pavlou, H. J., Dornan, A. J., Chan, Y.-B., Kravitz, E. A., and Goodwin, S. F. (2012). Neural circuitry underlying Drosophila female postmating behavioural responses. Curr Biol, 1–11. doi:10.1016/j.cub.2012.04.062.

Ribeiro, C. (2013). The dilemmas of the gourmet fly: the molecular and neuronal mechanisms of feeding and nutrient decision making in Drosophila. Front Neurosci 7, 1–13.

doi:10.3389/fnins.2013.00012/abstract.

Ribeiro, C., and Dickson, B. J. (2010). Sex Peptide Receptor and neuronal TOR/S6K signalling modulate nutrient balancing in Drosophila. Curr Biol 20, 1000–1005. doi:10.1016/j.cub.2010.03.061.

Rice, W. R., Stewart, A. D., Morrow, E. H., Linder, J. E., Orteiza, N., and Byrne, P. G. (2006). Assessing sexual conflict in the Drosophila melanogaster laboratory model system. Phil Trans R Soc B 361, 287–299. doi:10.1098/rstb.2005.1787.

Ringo, J., Werczberger, R., Altaratz, M., and Segal, D. (1991). Female sexual receptivity is defective in juvenile hormone-deficient mutants of the apterous gene of Drosophila

melanogaster. Behav Genet 21, 453–469.

Rohde, P. D., Gaertner, B., Ward, K., Sørensen, P., and Mackay, T. F. C. (2017). Genomic analysis of genotype-by-social environment Interaction for Drosophila melanogaster aggressive behaviour. Genetics 206, 1969–1984. doi:10.1534/genetics.117.200642. Root, C. M., Masuyama, K., Green, D. S., Enell, L. E., Nässel, D. R., Lee, C.-H., et al.

(2008). A presynaptic gain control mechanism fine-tunes olfactory behaviour. Neuron 59, 311–321. doi:10.1016/j.neuron.2008.07.003.

Rowe, L. (1992). Convenience polyandry in a water strider: foraging conflicts and female control of copulation frequency and guarding duration. Anim Behav 44, 189–202. doi:10.1016/0003-3472(92)90025-5.

Rybak, F., Sureau, G., and Aubin, T. (2002). Functional coupling of acoustic and chemical signals in the courtship behaviour of the male Drosophila melanogaster. P Roy Soc

B-Biol Sci 269, 695–701. doi:10.1098/rspb.2001.1919.

S

(23)

painless, regulates sexual receptivity in virgin females. Genes Brain Behav 8, 546–557.

doi:10.1111/j.1601-183X.2009.00503.x.

Sakai, T., Watanabe, K., Ohashi, H., Sato, S., Inami, S., Shimada, N., et al. (2014). Insulin-producing cells regulate the sexual receptivity through the painless TRP channel in

Drosophila virgin females. PLoS ONE 9, e88175–13.

doi:10.1371/journal.pone.0088175.

Sakurai, A., Koganezawa, M., Yasunaga, K.-I., Emoto, K., and Yamamoto, D. (2013). Select interneuron clusters determine female sexual receptivity in Drosophila. Nat Commun 4, 1–9. doi:10.1038/ncomms2837.

Sambandan, D., Yamamoto, A., Fanara, J.-J., Mackay, T. F. C., and Anholt, R. R. H. (2006). Dynamic genetic interactions determine odour-guided behaviour in Drosophila

melanogaster. Genetics 174, 1349–1363. doi:10.1534/genetics.106.060574.

Santa-Maria, I., Alaniz, M. E., Renwick, N., Cela, C., Fulga, T. A., Van Vactor, D., et al. (2015). Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J Clin Invest 125, 681–686. doi:10.1172/JCI78421. Saudan, P., Hauck, K., Soller, M., Choffat, Y., Ottiger, M., Spörri, M., et al. (2002). Ductus

ejaculatorius peptide 99B (DUP99B), a novel Drosophila melanogaster sex-peptide pheromone. Eur J Biochem 269, 989–997. doi:10.1046/j.0014-2956.2001.02733.x. Schultzhaus, J. N., and Carney, G. E. (2017). Dietary protein content alters both male and

female contributions to Drosophila melanogaster female post-mating response traits. J

Insect Physiol 99, 101–106. doi:10.1016/j.jinsphys.2017.04.004.

Schultzhaus, J. N., Saleem, S., Iftikhar, H., and Carney, G. E. (2017). The role of the

Drosophila lateral horn in olfactory information processing and behavioural response. J Insect Physiol 98, 29–37. doi:10.1016/j.jinsphys.2016.11.007.

Schwenke, R. A., and Lazzaro, B. P. (2017). Juvenile hormone suppresses resistance to infection in mated female Drosophila melanogaster. Curr Biol 27, 596–601. doi:10.1016/j.cub.2017.01.004.

Seeley, C., and Dukas, R. (2011). Teneral matings in fruit flies: male coercion and female response. Anim Behav 81, 595–601. doi:10.1016/j.anbehav.2010.12.003.

Sepp, K. J., and Auld, V. J. (2003). Reciprocal interactions between neurons and glia are required for Drosophila peripheral nervous system developments. J Neurosci 23, 8221– 8230.

Shohat-Ophir, G., Kaun, K. R., Azanchi, R., Mohammed, H., and Heberlein, U. (2012). Sexual deprivation increases ethanol intake in Drosophila. Science 335, 1351–1355. doi:10.1126/science.1215932.

(24)

Short, S. M., Wolfner, M. F., and Lazzaro, B. P. (2012). Female Drosophila melanogaster suffer reduced defense against infection due to seminal fluid components. J Insect

Physiol 58, 1192–1201. doi:10.1016/j.jinsphys.2012.06.002.

Shorter, J., Couch, C., Huang, W., Carbone, M. A., Peiffer, J., Anholt, R. R. H., et al. (2015). Genetic architecture of natural variation in Drosophila melanogaster aggressive behaviour. Proc Natl Acad Sci USA 112, E3555–63. doi:10.1073/pnas.1510104112. Silbering, A. F., Rytz, R., Grosjean, Y., Abuin, L., Ramdya, P., Jefferis, G. S. X. E., et al. (2011). Complementary function and integrated wiring of the evolutionarily distinct

Drosophila olfactory subsystems. J Neurosci 31, 13357–13375.

doi:10.1523/JNEUROSCI.2360-11.2011.

Sirot, L. K., LaFlamme, B. A., Sitnik, J. L., Rubinstein, C. D., Avila, F. W., Chow, C. Y., et al. (2009). Molecular social interactions: Drosophila melanogaster seminal fluid proteins as a case study. Adv Genet 68, 23–56. doi:10.1016/S0065-2660(09)68002-0. Sirot, L. K., Wolfner, M. F., and Wigby, S. (2011). Protein-specific manipulation of ejaculate

composition in response to female mating status in Drosophila melanogaster. Proc Natl

Acad Sci USA 108, 9922–9926. doi:10.1073/pnas.1100905108.

Sirot, L. K., Wong, A., Chapman, T., and Wolfner, M. F. (2015). Sexual conflict and seminal fluid proteins: A dynamic landscape of sexual interactions. Cold Spring Harb Perspect

Biol 7, 1–24.

Sitnik, J. L., Gligorov, D., Maeda, R. K., Karch, F., and Wolfner, M. F. (2016). The female post-mating response requires genes expressed in the secondary cells of the male accessory gland in Drosophila melanogaster. Genetics 202, 1029–1041. doi:10.1534/genetics.115.181644/-/DC1.

Smith, D. T., Clarke, N. V. E., Boone, J. M., Fricke, C., and Chapman, T. (2017). Sexual conflict over remating interval is modulated by the sex peptide pathway. P Roy Soc

B-Biol Sci 284, 20162394–9. doi:10.1098/rspb.2016.2394.

Sokolowski, M. B. (2001). Drosophila: genetics meets behaviour. Nat Rev Genet 2, 879–890. Spieth, H. T. (1974). Courtship behaviour in Drosophila. Annu Rev Entomol 9, 385–405. Stafford, J. W., Lynd, K. M., Jung, A. Y., and Gordon, M. D. (2012). Integration of taste and

calorie sensing in Drosophila. J Neurosci 32, 14767–14774. doi:10.1523/JNEUROSCI.1887-12.2012.

Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirián, L., and Dickson, B. J. (2005). Neural circuitry that governs Drosophila male courtship behaviour. Cell 121, 795–807. doi:10.1016/j.cell.2005.04.026.

(25)

pollination system targeting Drosophilids through olfactory mimicry of yeast. Curr Biol 20, 1846–1852. doi:10.1016/j.cub.2010.09.033.

Su, C.-Y., Menuz, K., Reisert, J., and Carlson, J. R. (2012). Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature 492, 66–71. doi:10.1038/nature11712. Svetec, N., and Ferveur, J.-F. (2005). Social experience and pheromonal perception can

change male-male interactions in Drosophila melanogaster. J Exp Biol 208, 891–898. doi:10.1242/jeb.01454.

Swarup, S., Harbison, S. T., Hahn, L. E., Morozova, T. V., Yamamoto, A., Mackay, T. F. C., et al. (2012). Extensive epistasis for olfactory behaviour, sleep and waking activity in

Drosophila melanogaster. Genet Res 94, 9–20. doi:10.1017/S001667231200002X.

T

Taylor, M. L., Price, T. A. R., and Wedell, N. (2014). Polyandry in nature: a global analysis.

Trends Ecol Evol 29, 376–383. doi:10.1016/j.tree.2014.04.005.

Team, R. C. (2015). R: A language and environment for statistical computing.

Terashima, J. (2004). Translating available food into the number of eggs laid by Drosophila

melanogaster. Genetics 167, 1711–1719. doi:10.1534/genetics.103.024323.

Thompson, J. D. (1991). Phenotypic plasticity as a component of evolutionary change.

Trends Ecol Evol 6, 246–249. doi:10.1016/0169-5347(91)90070-E.

Tompkins, L., Gross, A. C., Hall, J. C., Gailey, D. A., and Siegel, R. W. (1982). The role of female movement in the sexual behaviour of Drosophila melanogaster. Behav Genet 12, 295–307. doi:10.1007/BF01067849.

Toshima, N., and Tanimura, T. (2012). Taste preference for amino acids is dependent on internal nutritional state in Drosophila melanogaster. J Exp Biol 215, 2827–2832. doi:10.1242/jeb.069146.

Toshima, N., Hara, C., Scholz, C.-J., and Tanimura, T. (2014). Genetic variation in food choice behaviour of amino acid-deprived Drosophila. J Insect Physiol 69, 89–94. doi:10.1016/j.jinsphys.2014.06.019.

(26)

U

Ueda, A., and Kidokoro, Y. (2002). Aggressive behaviours of female Drosophila

melanogaster are influenced by their social experience and food resources. Physiol Entomol 27, 21–28. doi:10.1046/j.1365-3032.2002.00262.x.

V

van der Goes van Naters, W. (2013). Inhibition among olfactory receptor neurons. Front Hum

Neurosci 7, 1–5. doi:10.3389/fnhum.2013.00690/abstract.

van der Goes van Naters, W., and Carlson, J. R. (2007). Receptors and neurons for fly odours in Drosophila. Curr Biol 17, 606–612. doi:10.1016/j.cub.2007.02.043.

van Vianen, A., and Bijlsma, R. (1993). The adult component of selection in Drosophila

melanogster: some aspects of early-remating activity of females. Heredity 71, 269–276.

Vargas, M. A., Luo, N., Yamaguchi, A., and Kapahi, P. (2010). A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr

Biol 20, 1006–1011. doi:10.1016/j.cub.2010.04.009.

Venken, K. J. T., Simpson, J. H., and Bellen, H. J. (2011). Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72, 202–230.

doi:10.1016/j.neuron.2011.09.021.

Vosshall, L. B., and Stocker, R. F. (2007). Molecular architecture of smell and taste in

Drosophila. Annu. Rev. Neurosci. 30, 505–533.

doi:10.1146/annurev.neuro.30.051606.094306.

W

Wade, G. N., Schneider, J. E., and Li, H.-Y. (1996). Control of fertility by metabolic cues.

Am J Physiol 270, E1–19.

Walker, S. J., Corrales-Carvajal, V. M., and Ribeiro, C. (2015). Postmating circuitry

modulates salt taste processing to increase reproductive output in Drosophila. Curr Biol 25, 2621–2630. doi:10.1016/j.cub.2015.08.043.

(27)

Wang, L., Dankert, H., Perona, P., and Anderson, D. J. (2008). A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc Natl Acad

Sci USA 105, 5657–5663. doi:10.1073/pnas.0801327105.

Wang, L., Han, X., Mehren, J., Hiroi, M., Billeter, J.-C., Miyamoto, T., et al. (2011). Hierarchical chemosensory regulation of male-male social interactions in Drosophila.

Nat Neurosci 14, 757–762. doi:10.1038/nn.2800.

Watanabe, K., and Sakai, T. (2015). Knockout mutations of insulin-like peptide genes enhance sexual receptivity in Drosophila virgin females. Genes Genet. Syst. 90, 237– 241. doi:10.1266/ggs.15-00025.

Wertheim, B., Dicke, M., and Vet, L. E. (2002a). Behavioural plasticity in support of a benefit for aggregation pheromone use in Drosophila melanogaster. Entomol Exp Appl 103, 61–71.

Wertheim, B., Marchais, J., Vet, L. E. M., and Dicke, M. (2002b). Allee effect in larval resource exploitation in Drosophila: an interaction among density of adults, larvae, and micro-organisms. Ecol Entomol 27, 608–617. doi:10.1046/j.1365-2311.2002.00449.x. Wigby, S., and Chapman, T. (2004). Female resistance to male harm evolves in response to

manipulation of sexual conflict. Evolution 58, 1028–1037.

Wigby, S., Sirot, L. K., Linklater, J. R., Buehner, N., Calboli, F. C. F., Bretman, A., et al. (2009). Seminal fluid protein allocation and male reproductive success. Curr Biol 19, 751–757. doi:10.1016/j.cub.2009.03.036.

Wigby, S., Slack, C., Gronke, S., Martinez, P., Calboli, F. C. F., Chapman, T., et al. (2011). Insulin signalling regulates remating in female Drosophila. P Roy Soc B-Biol Sci 278, 424–431. doi:10.1098/rspb.2010.1390.

Winbush, A., Reed, D., Chang, P. L., Nuzhdin, S. V., Lyons, L. C., and Arbeitman, M. N. (2012). Identification of gene expression changes associated with long-term memory of courtship rejection in Drosophila males. G3-Genes Genom Genet 2, 1437–1445. doi:10.1534/g3.112.004119.

X

Xue, L., and Noll, M. (2000). Drosophila female sexual behaviour induced by sterile males showing copulation complementation. Proc Natl Acad Sci USA 97, 3272–3275. doi:10.1073/pnas.97.7.3272.

(28)

Y

Yamamoto, D., and Kohatsu, S. (2017). What does the fruitless gene tell us about nature versus nurture in the sex life of Drosophila? Fly 11, 139–147.

Yamamoto, D., Sato, K., and Koganezawa, M. (2014). Neuroethology of male courtship in

Drosophila: from the gene to behaviour. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200, 251–264. doi:10.1007/s00359-014-0891-5.

Yang, C. H., Belawat, P., Hafen, E., Jan, L. Y., and Jan, Y. N. (2008). Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319, 1679–1683. doi:10.1126/science.1151842.

Yang, C.-H., Rumpf, S., Xiang, Y., Gordon, M. D., Song, W., Jan, L. Y., et al. (2009). Control of the postmating behavioural switch in Drosophila females by internal sensory neurons. Neuron 61, 519–526. doi:10.1016/j.neuron.2008.12.021.

Yapici, N., Kim, Y.-J., Ribeiro, C., and Dickson, B. J. (2008). A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451, 33–37. doi:10.1038/nature06483.

Yew, J. Y., Dreisewerd, K., Luftmann, H., MUthing, J., Pohlentz, G., and Kravitz, E. A. (2009). A new male sex pheromone and novel cuticular cues for chemical

communication in Drosophila. Curr Biol 19, 1245–1254. doi:10.1016/j.cub.2009.06.037.

Yin, J. C. P., Del Vecchio, M., Zhou, H., and Tully, T. (1995). CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115. doi:10.1016/0092-8674(95)90375-5. Yorozu, S., Wong, A., Fischer, B. J., Dankert, H., Kernan, M. J., Kamikouchi, A., et al.

(2009). Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature 457, 201–205. doi:10.1038/nature07843.

Z

Zawistowski, S., and Rollin, R. C. (1986). Inhibition of courtship and mating of Drosophila

melanogaster by the male-produced lipid, cis-vaccenyl acetate. J Insect Physiol 32, 189–

192.

Zhou, C., Pan, Y., Robinett, C. C., Meissner, G. W., and Baker, B. S. (2014). Central brain neurons expressing doublesex regulate female receptivity in Drosophila. Neuron 83, 149–163. doi:10.1016/j.neuron.2014.05.038.

(29)

Zhou, L., Schnitzler, A., Agapite, J., Schwartz, L. M., Steller, H., and Nambu, J. R. (1997). Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. Proc Natl

Acad Sci USA 94, 5131–5136.

Zhu, J., Park, K.-C., and Baker, T. C. (2003). Identification of odours from overripe mango that attract vinegar flies, Drosophila melanogaster. J Chem Ecol 29, 899–909. Zhuang, L., Sun, Y., Hu, M., Wu, C., La, X., Chen, X., et al. (2016). Or47b plays a role in

Drosophila males' preference for younger mates. Open Biol 6, 160086–8.

doi:10.1098/rsob.160086.

Zwarts, L., Broeck, L. V., Cappuyns, E., Ayroles, J. F., Magwire, M. M., Vulsteke, V., et al. (2015). The genetic basis of natural variation in mushroom body size in Drosophila

(30)
(31)

Referenties

GERELATEERDE DOCUMENTEN

This research has been carried out in the Evolutionary Genetics, Behaviour and Development (EGDB) group at the Groningen Institute for Evolutionary Life Sciences (GELIFES)

Most of the known mechanisms of mated female receptivity are involved in sensing or dealing with male compounds transferred during mating (Chapman et al., 2003; Letsinger

To further determine the specifics through which yeast influences mating, we test a major volatile compound of yeast, namely acetic acid (Becher et al., 2012),

compared to ethyl acetate or control air, supplementary table 1) that only acetic acid significantly increases number of copulations when Yaa is present in the

virgin mating latency in minutes (A), latency to first remating in hours (B) and number of copulations in 24h (C) for three wild-type females CS, ORR and w 1118 raised in

Female sexual receptivity, virgin mating latency, remating latency, Mating rate, Olfaction, Odorant receptor neurons, Or47b, Or88a... Ch ap te r 5

To characterize the genetic variation underlying line variation in both virgin and post-mating receptivity, we used the DGRP2 internet tool (Huang et al., 2014; Mackay et

Here, I describe how food (chapter 3), immediate social context and early social experience (chapter 4) can influence female post-mating receptivity.. Virgin receptivity is