• No results found

Effects of spin-orbit coupling on quantum transport Bardarson, J.H.

N/A
N/A
Protected

Academic year: 2021

Share "Effects of spin-orbit coupling on quantum transport Bardarson, J.H."

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Effects of spin-orbit coupling on quantum transport

Bardarson, J.H.

Citation

Bardarson, J. H. (2008, June 4). Effects of spin-orbit coupling on quantum transport.

Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/12930

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/12930

Note: To cite this publication please use the final published version (if applicable).

(2)

Effects of Spin-Orbit Coupling on Quantum Transport

Jens Hjörleifur Bárðarson

(3)

Cover designed by Guneeta.

(4)

Effects of Spin-Orbit Coupling on Quantum Transport

PROEFSCHRIFT

ter verkrijging van de graad

van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden,

volgens besluit van het College voor Promoties te verdedigen op woensdag 4 juni 2008

te klokke 15.00 uur

door

Jens Hjörleifur Bárðarson

geboren te Reykjavík in 1979

(5)

Promotiecommissie:

Promotor:

Referent:

Overige leden:

Prof. dr. C. W. J. Beenakker

Prof. dr. ir. G. E. W. Bauer (Technische Universiteit Delft) Prof. dr. J. van den Brink

Prof. dr. J. M. van Ruitenbeek Prof. dr. H. Schiessel

Dr. J. Tworzydło (Universiteit van Warschau)

Dr. ir. C. H. van der Wal (Rijksuniversiteit Groningen)

Casimir PhD Series, Delft-Leiden, 2008-01 ISBN: 978-90-8593-040-2

The research described in this thesis was supported by the European Com- munity’s Marie Curie Research Training Network under contract MRTN- CT-2003-504574, Fundamentals of Nanoelectronics for the first three years, and by the Leiden Institute of Physics for the fourth year.

(6)

Fyrir mömmu og pabba, Guðmund, Kristjönu, Helga og Hlyn.

Takk fyrir allt.

(7)
(8)

Contents

1 Introduction 1

1.1 Spin and Spin-Orbit Coupling . . . 3

1.1.1 Spin and the Stern-Gerlach Experiment . . . 4

1.1.2 Spin-Orbit Coupling from the Dirac Equation . . . . 6

1.1.3 Spin and Rotations . . . 8

1.1.4 Spin-Orbit Coupling in Semiconductors . . . 13

1.2 Time Reversal and Kramers Degeneracy . . . 17

1.2.1 Antiunitary Operators . . . 18

1.2.2 Quaternions . . . 19

1.2.3 Time Reversal . . . 21

1.2.4 Consequences of Time Reversal for Hamiltonians . . 24

1.2.5 Consequences of Time Reversal for Scattering Matrices 26 1.3 Model Hamiltonians . . . 29

1.3.1 The Rashba Hamiltonian . . . 30

1.3.2 Graphene - the Single Valley Dirac Hamiltonian . . . 33

1.4 This Thesis . . . 34

2 Stroboscopic Model of Transport Through a Quantum Dot with Spin-Orbit Coupling 45 2.1 Introduction . . . 45

2.2 Description of the Model . . . 46

2.2.1 Closed System . . . 46

2.2.2 Open System . . . 49

2.3 Relation to Random-Matrix Theory . . . 51

2.3.1 β = 1 → 2 Transition . . . 51

2.3.2 β = 1 → 4 Transition . . . 53

2.3.3 β = 4 → 2 Transition . . . 55

2.4 Numerical Results . . . 55

(9)

viii CONTENTS

2.5 Conclusion . . . 56

3 How Spin-Orbit Coupling can Cause Electronic Shot Noise 59 3.1 Introduction . . . 59

3.2 The Effect of Spin-Orbit Coupling on the Ehrenfest Time . 60 3.3 Numerical Simulation in a Stadium Billiard . . . 62

3.4 Conclusion . . . 66

4 Degradation of Electron-Hole Entanglement by Spin-Orbit Coupling 67 4.1 Introduction . . . 67

4.2 Calculation of the Electron-Hole State . . . 69

4.2.1 Incoming and Outgoing States . . . 69

4.2.2 Tunneling Regime . . . 70

4.2.3 Spin State of the Electron-Hole Pair . . . 71

4.3 Entanglement of the Electron-Hole Pair . . . 72

4.3.1 Numerical Simulation . . . 73

4.3.2 Isotropy Approximation . . . 74

4.4 Conclusion . . . 77

Appendix 4.A A Few Words on the Use of the Spin Kicked Rotator 78 Appendix 4.B Calculation of Spin Correlators . . . 79

5 Mesoscopic Spin Hall Effect 83 5.1 Introduction . . . 83

5.2 Scattering Approach . . . 85

5.3 Random Matrix Theory . . . 87

5.4 Numerical Simulation . . . 89

5.5 Conclusion . . . 90

6 One-Parameter Scaling at the Dirac Point in Graphene 91 6.1 Introduction . . . 91

6.2 Transfer Matrix Approach . . . 93

6.3 Numerical Results . . . 96

6.4 Conclusion . . . 99

References 101

Summary (in Dutch) 109

List of Publications 111

Curriculum Vitæ 113

Referenties

GERELATEERDE DOCUMENTEN

We have presented a numerically highly efficient model of transport through a chaotic ballistic quantum dot with spin-orbit coupling, extending the ear- lier work on the spinless

In the presence of spin-orbit coupling the quantum mechanical uncertainty in the spin of the electron is transferred to the position, causing a breakdown of the deterministic

As the pair moves through the leads, the spin and orbital degrees of freedom become entangled by the spin-orbit coupling, degrading the spin entanglement upon tracing out the

We have calculated the average and mesoscopic fluctuations of the trans- verse spin current generated by a charge current through a chaotic quan- tum dot with SO coupling. We find

1 We define the β-function in terms of the ensemble averaged conductivity σ, mea- sured in units of 4e 2 /h (with the factor of four accounting for twofold spin and valley

Whitney, in Proceedings of the Fourth interna- tional conference on "Unsolved Problems of Noise and Fluctuations in Physics, Biology and High Technology", UPON4 (2005)..

Een voor- beeld hiervan wordt gegeven in hoofdstuk vier, waar we bediscussiëren hoe spin-baan-koppeling de elektron-gat-verstrengeling veroorzaakt door een tunnel-barrière

In September 2004 I began to work at the Institute Lorentz for theoretical physics at the University of Leiden, un- der the supervision of Prof.. The fruits of that work are