• No results found

University of Groningen PbS colloidal quantum dots for near-infrared optoelectronics Bederak, Dima

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen PbS colloidal quantum dots for near-infrared optoelectronics Bederak, Dima"

Copied!
4
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

PbS colloidal quantum dots for near-infrared optoelectronics

Bederak, Dima

DOI:

10.33612/diss.172171198

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Bederak, D. (2021). PbS colloidal quantum dots for near-infrared optoelectronics. University of Groningen. https://doi.org/10.33612/diss.172171198

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

- 111 -

Curriculum Vitae

Studies

2013 BCs. in Chemistry, Taras Shevchenko National University of Kyiv, Ukraine 2015 MSc. in Nanoscience, University of Groningen, Netherlands

Conferences

2019 NanoGe Fall Meeting 19, Berlin, Germany. “Novel S-rich PbS QDs as a promising material for p-type layer in PbS QD solar cells”

2019 Physics@Veldhoven 2019, Veldhoven, Netherlands. “Light-emitting quantum dot transistors with a solid gate dielectric”

2018 Physics@Veldhoven 2018, Veldhoven, Netherlands. “Comparing halide ligands in PbS quantum dot devices”

2017 Next-Gen III: PV Materials 2017, Groningen, Netherlands. “Improving stability of organic-inorganic hybrid photocathode by protective hole blocking layer”

2014 The Dutch chemistry conference CHAINS 2014, Veldhoven, Netherlands. “Functional hybrid materials enabled by a peptide sled”

2013 VII International scientific conference in chemistry Kyiv-Toulouse, Kyiv, Ukraine: “Perspective complexes with disulfide moiety for DNA cleavage”

2013 14th International Conference for Students and PhD students "Actual tasks of chemistry”, Kyiv, Ukraine: “Binuclear copper (II) complexes with Schiff bases with flexible disulfide moieties"

(3)

- 112 -

List of publications

(1) Bederak, D.; Shulga, A. G.; Kahmann, S.; Talsma W.; Pelanskis, J,; Dirin, D. N.; Kovalenko, M. V.; Loi, M. A. Heterostructure of PbS Quantum Dots and Carbon Nanotubes for High Efficiency NIR Light-Emitting Field-Effect Transistors. submitted. 2021.

(2) Bederak, D.; Dirin, D. N.; Sukharevska, N.; Momand, J.; Kovalenko, M. V.; Loi, M. A. S-Rich PbS Quantum Dots: A Promising p-Type Material for Optoelectronic Devices. Chem. Mater. 2021, 33 (1), 320–326.

(3) Sukharevska, N.; Bederak, D.; Goossens, V. M.; Momand, J.; Duim, H.; Dirin, D. N.; Kovalenko, M. V.; Kooi, B. J.; Loi, M. A. Scalable PbS Quantum Dot Solar Cell Production by Blade Coating from Stable Inks. ACS Appl. Mater. Interfaces 2021,

13 (4), 5195–5207.

(4) Bederak, D.; Sukharevska, N.; Kahmann, S.; Abdu-Aguye, M.; Duim, H.; Dirin, D. N.; Kovalenko, M. V.; Portale, G.; Loi, M. A. On the Colloidal Stability of PbS Quantum Dots Capped with Methylammonium Lead Iodide Ligands. ACS Appl. Mater. Interfaces 2020, 12 (47), 52959–52966.

(5) Sukharevska, N.; Bederak, D.; Dirin, D.; Kovalenko, M.; Loi, M. A. Improved Reproducibility of PbS Colloidal Quantum Dots Solar Cells Using Atomic Layer– Deposited TiO2. Energy Technol. 2020, 8 (1), 1900887.

(6) Abdu-Aguye, M.; Bederak, D.; Kahmann, S.; Killilea, N.; Sytnyk, M.; Heiss, W.; Loi, M. A. Photophysical and Electronic Properties of Bismuth-Perovskite Shelled Lead Sulfide Quantum Dots. J. Chem. Phys. 2019, 151 (21), 214702.

(7) Bederak, D.; Balazs, D. M.; Sukharevska, N. V.; Shulga, A. G.; Abdu-Aguye, M.; Dirin, D. N.; Kovalenko, M. V.; Loi, M. A. Comparing Halide Ligands in PbS Colloidal Quantum Dots for Field-Effect Transistors and Solar Cells. ACS Appl.

Nano Mater. 2018, 1 (12), 6882–6889.

(8) Ardo, S.; Fernandez Rivas, D.; Modestino, M. A.; Schulze Greiving, V.; Abdi, F. F.; Alarcon Llado, E.; Artero, V.; Ayers, K.; Battaglia, C.; Becker, J.-P.; Bederak D.; et al. Pathways to Electrochemical Solar-Hydrogen Technologies. Energy Environ. Sci.

2018, 11 (10), 2768–2783.

(9) Rusanova, J. A.; Bederak, D.; Kokozay, V. N. Bis{μ-2,2′-[(3,4-Dithiahexane-1,6-Diyl)Bis(Nitrilomethanylylidene)]Bis(4-Bromophenolato)-κ4O,N,N′,O′}

(4)

- 113 -

(10) Rusanova, J. A.; Bederak, D. Crystal Structure of Bis(μ 2 -4-Bromo-2-[({2-[({2-[(5-Bromo-2-Oxidobenzylidene)Amino]Ethyl}sulfanyl)Sulfonyl]Ethyl}imino)

Methyl]Phenolato)Dicopper(II) Dimethylformamide Disolvate. Acta Crystallogr.

Referenties

GERELATEERDE DOCUMENTEN

First, ligand exchange with other iodide ligands was performed: pristine films of S-rich PbS(S) CQDs were treated with 20 mM tetrabutylammonium iodide (TBAI) solution in methanol

The FETs fabricated with fresh DFP-based inks are similar to the devices made from fresh PC inks (Figure 4.A11) showing that the solvent of a colloidal ink does not influence

Most noticeable examples of such materials are carbon nanotubes, graphene, fullerenes, semiconducting polymers and small conjugated organic molecules, metal halide perovskites,

Onze resultaten tonen aan dat beide oplosmiddelen kunnen worden gebruikt voor de fabricage van zeer stabiele inkten.. -

Special thanks to Vincent for translating my summary and proofreading and Natasha for the endless support and friendship during all these years. I also want to thank my

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright

between the channel and the gate electrode close to the drain contact is enough to overcome the threshold voltage for the opposite charge carriers, the inversion layer is

gate devices may eventually provide solutions to such fundamental problems as drain induced barrier lowering and short channel effects. Additionally, they may help improving