• No results found

with nanowires organic dye TiO adsorbates Hybrid functional optical calculated and electronic structures of thinanatase Applied Surface Science

N/A
N/A
Protected

Academic year: 2022

Share "with nanowires organic dye TiO adsorbates Hybrid functional optical calculated and electronic structures of thinanatase Applied Surface Science"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Applied Surface Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Hybrid functional calculated optical and electronic structures of thin anatase TiO 2 nanowires with organic dye adsorbates

Hatice Ünal

a

, Deniz Gunceler

b

, O˘guz Gülseren

c

, S¸ inasi Ellialtıo˘glu

d

, Ersen Mete

a,∗

aDepartmentofPhysics,BalıkesirUniversity,Balıkesir10145,Turkey

bDepartmentofPhysics,CornellUniversity,Ithaca,NY14853,USA

cDepartmentofPhysics,BilkentUniversity,Ankara06800,Turkey

dBasicSciences,TEDUniversity,Ankara06420,Turkey

a r t i c l e i n f o

Articlehistory:

Received25December2014 Receivedinrevisedform10April2015 Accepted11April2015

Availableonline20April2015

a b s t r a c t

TheelectronicandopticalpropertiesofthinanataseTiO2(101)and(001)nanowireshavebeeninves- tigatedusingthescreenedCoulombhybriddensityfunctionalcalculations.Forthebarenanowireswith sub-nanometerdiameters,thecalculatedbandgapsarelargerrelativetothebulkvaluesduetosize effects.Theroleoforganiclightharvestingsensitizersontheabsorptioncharacteristicsoftheanatase nanowireshasbeenexaminedusingthehybriddensityfunctionalmethodincorporatingpartialexact exchangewithrangeseparation.Forthelowestlyingexcitations,directionalchargeredistributionof tetrahydroquinoline(C2-1)dyeshowsaremarkablydifferentprofileincomparisontoasimplemolecule whichischosenasthecoumarinskeleton.ThebindingmodesandtheadsorptionenergiesofC2-1dye andcoumarincoreontheanatasenanowireshavebeenstudiedincludingnon-linearsolvationeffetcs.

Thecalculatedopticalandelectronicpropertiesofthenanowireswiththesetwodifferenttypesofsen- sitizershavebeeninterpretedintermsoftheirelectron–holegeneration,chargecarrierinjectionand recombinationcharacteristics.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Thewide-bandgapsemiconductortitaniumdioxide(TiO2)has attractedattentionsincethediscoveryofitsremarkablephotocat- alyticactivityunderUVirradiation[1,2].TiO2canbefunctionalized foroperationundervisiblelightilluminationbyimpuritydopants orbysensitizingmolecularadsorbates.Thelatteris particularly importantindyesensitizedsolarcell(DSSC)applicationswhere nanoporousTiO2 filmisusedastheanodeelectrode[3].Titania surfacesoffergoodadsorptioncharacteristicsandcaneasilybecov- eredwithamonolayerofalightharvestingdye.Theoperational systemsitsinanorganicsolventelectrolytewitharedoxsystem likeiodide/triiodidecouple.Photoexcitationofthemoleculeleads toelectron–holegenerationandsubsequentchargeinjectiontothe conductionband(CB)oftheoxidewhichactsasacurrentcollec- tor.Then, anelectronisdonatedfromtheelectrolytetorestore thegroundstateofthedye.Ontheotherhand,thechargecarrier transferthroughputislimitedduetorecombinationrate.There- fore,thesurfaceareaoftheoxideandthechoiceofthedyebecomes importantintheoverallcellefficiency.

∗ Correspondingauthor.Tel.:+905335733595.

E-mailaddress:emete@balikesir.edu.tr(E.Mete).

Thecrystalstructuresoftitaniaoccurmainlyinanatase,rutile andbrookitephasesinnature.Underambientconditionsandin itsbulkform,rutileisthemoststablepolymorph.Theopticalgaps aremeasuredas∼3.2eVforanatase[4]andas∼3.0eVforrutile [5].The anatasephase especiallyits (001) surfaceis knownto exhibithigherphotocatalyticactivityinmanysituations[6].More- over,TiO2nanomaterialswithgrainsizessmallerthan14nmare foundtobeinanataseformratherthaninrutilestructure[7,8].

Electronically,thin anatasenanowires exhibit differentfeatures relativetoothernanoparticulatetitaniaelectrodes.Inparticular, theincreasein thecorrespondingbandgapsandphotocatalytic oxidationpowersbecomemoreapparentasthenanowirediam- eterstendtobesmallerthan2nmduetotheconfinementeffect [9–11].

Theprogressinthesynthesisofquasi-one-dimensionaloxide nanostructures opens up new possibilities to fabricate techno- logicallyattractiveapplications.Recently,titania nanowiresand nanorods become candidate building blocks of highly ordered architecturesforsolarcells[12].Theyofferlargesurface-to-volume ratioswhichalsoenhancen-typeconductivityproperties[13–15].

In addition,this is seen asan importantfactor in reducing the charge carrierrecombinationrates. Therefore,theuseof quasi- one-dimensionaltitaniaasthecurrentcollectorcomponentisa promisingwaytoimprovecellefficiencies.

http://dx.doi.org/10.1016/j.apsusc.2015.04.086 0169-4332/©2015ElsevierB.V.Allrightsreserved.

(2)

Organic photosensitizers have becomea good alternative to metaldrivencommercialdyes notonlybecausetheyarecheap, environmentallyfriendlyandeasytoisolatebutalsobecausetheir electronicandanchoringcharacteristicscanbemodifiedthrough variouslyfunctionalattachablemoieties.Recently,aclassofnovel organicsensitizersbased ontetrahydroquinoline moiety asthe electrondonorgrouphavebeenproposedtoachievephotoinduced intramolecular charge transfer [16]. For instance,-conjugated electrondonoracceptor (D--A)typeC2-1 dyehasthehighest conversionefficiencyof4.5%withinthisfamily[17].

Theoretical prediction of molecular and material properties havebeenfocusedbymanyresearcherstounderstandandimprove functionaldyesensitizersadsorbedontheoxide[18–24].Tetrahy- droquinolinebasedD--AtypedyesonTiO2(101)surfacehave beenstudiedusingstandarddensityfunctionalslabcalculations wheretwo-dimensionalperiodicitywasadopted[25,26].In this work,weexaminedthebandgapfeaturesofthinanatase(101) and(001)nanowiremodelsusingtherangeseparatedhybridden- sityfunctionaltheorycalculations.Then,weconsideredisolated C2-1(C21H20N2SO2)chargetransferdyeonthesenanowiresfor theiradsorptiongeometriesandtheirbindingenergiesinthesolu- tionusinganonlinearsolvationmodel.Wehavealsoinvestigated theelectronicpropertiesoftheresultingcombinedphysicalsystem suchasthedensitiesofstates,thechargedensitiesofthefrontier statesandtheabsorptionspectra.Inordertomakeacomparison withasimpleskeletonmolecule,wehavechosenthecoumarincore (C9H6O2)andrepeatedthesamecomputationssystematicallyfor thecoumarinonthethinanatase(001)and(101)nanowiresusing thehybridmethodbeyondthestandardDFT.Infact,coumarindyes withvariousanchoringgroupshasbeenextensivelystudiedinthe literaturebytheoreticalworks[27–39,41,40,42,43].

2. Computationaldetails

Weperformedperiodictotalenergydensityfunctionaltheory calculationsusingtheimplementationofthescreenedCoulomb hybridexchange-correlationscheme,HSE[44–46],intheVienna ab-initio simulation package (VASP) [47]. Single particle states wereexpandedintermsofplanewavesuptoakineticenergycut- offof400eVusingtheprojector-augmentedwaves(PAW)method [48,49].Brillouinzoneintegrationswerecarriedoutoverak-point samplingtogetwell-convergedvalues.

ThestandardDFTexchange-correlationfunctionalslikePBE[51]

suffersfromthelackofproperself-interactioncancellation(SIC)as intheHartree–Fockapproximationtotheinteractingmanypar- ticleproblem.Ingeneral,inthehybridapproaches,thenonlocal exactexchangeenergyispartiallyadmixedwiththesemilocalPBE exchangeenergyinordertoimprovethedescriptionofthelocal- izedstatessuchasthed-orbitalsoftheTiO2.Since,thebottomof theconductionband(CB)oftitaniaiscomposedof3d-stateshaving t2gsymmetry,hybridDFTmethodssignificantlyhealthebandgap underestimationofthestandardexchange-correlationschemes.

TherangeseparatedhybridHSEfunctionaltreatstheexchange energyascomposedoflong-range(LR)andshort-range(SR)parts,

EXHSE=aEHFX,SR(ω)+(1−a)EPBEX ,SR(ω)+EPBEX ,LR(ω)

whereaisthemixingfactor[50]andω istherangeseparation parameter[44–46].Thecorrelationenergyistakenfromstandard PBEcorrelationenergy[51].Inourcalculationsweusedamixing factorofa=0.22toreproducetheexperimentalbulkbandgapof anataseas3.20eV.

Solvation effects have been included at the hybrid HSE exchange-correlationfunctionallevel forC2-1andcoumarinon theanatase nanowiresconsidered in this work. We performed

calculationsfor chloroform andwater environment viapolariz- ablecontinuummodel(PCM)includingboththenewnon-linear anditslinearcounterpartasimplementedintheopen-sourcecode JDFTx[52–55].Thesolventenvironmentisreproducedbyadielec- tricmediumsurroundingthesolutedyemolecule.Thedielectric functionofthesoluteturnsonaroundacriticaldensityvaluewhich

Fig.1.Thechargedensitydistributionplotsofthehighestoccupied statesof coumarin+001nw(a),C2-1+001nw(c),andofthelowestunoccupiedstatesof coumarin+001nw(b),C2-1+001nw(d)calculatedusingtheHSEfunctional.Inthis ball-stickrepresentation,thered,light-blue,brown,grey,yellowandwhitecolors areusedforO,Ti,C,N,SandHatoms,respectively.(Forinterpretationoftherefer- encestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthe article.)

(3)

isusedtomodelthecavityaroundthesoluteandparametrizedto reproduceexperimentalsolvationenergies[53,54].

Theanatase001nwand 101nwmodelstructuresarecleaved fromthebulk phaseasshownin Figs.1and2.Bothnanowires withandwithoutC2-1and coumarinmoleculesareconsidered inlargeperiodictetragonalsupercells.Thenanowireshaveperi- odicityinonedimension.Avacuumseparationofatleast20 ˚Ais adoptedaroundthenanowirein ordertoavoid anyunphysical interactionwithitsperiodicimagesinthedirectionsperpendic- ulartothenanowireaxis.Wealsousedlargerperiodicityalongthe nanowireaxisinordertoconsiderthedyemoleculesasisolated onthe(001)and(101)facets.Weconstructedseveralprobable initialadsorptiongeometries.Theatomicpositionswerefullyopti- mizedusingtheconjugate-gradientsalgorithmbyminimizingthe Hellmann–Feynmanforcesoneachatomuntilathresholdvalueof 0.01eV/ ˚Aisreachedtostoptheself-consistentcycles.Therelaxed nanowiremodelskeeptheanataseformwithoutamajorstructural distortion[56].

Wecalculatedtheabsorptionspectrabyconsideringthetran- sitionsfromtheoccupiedtotheunoccupiedstateswithinthefirst Brillouinzone[57].Theimaginarypartofthefrequency depen- dentdielectricfunctionε2(ω)canbeexpandedasasumoversingle particlestatesdeterminedbytheself-consistentHSEcalculations.

Fig.2.Thechargedensitydistributionplotsofthehighestoccupied statesof coumarin+101nw(a),C2-1+101nw(c),andofthelowestunoccupiedstatesof coumarin+101nw(b),C2-1+101nw(d)calculatedusingtheHSEfunctional.

3. Resultsanddiscussion

Thin 001nw and 101nw models have been considered in periodicsupercellswithlargevacuumseparations.Theiratomic positionshavebeenrelaxedusingtheHSEexchange-correlation functional. We didnot fix anyof the ionic cores to theirbulk positionsinanyofthegeometryoptimizationcalculationsinthis work.AlthoughtheHSE-optimizedatomicstructuresofthebare nanowires are notshown, theydidnot have any majorrecon- structionfromtheirinitialgeometriessimilartothoseobtained previously[56].ThesurfaceTi Obond lengthsbecomeslightly largerthanthe bulkvalueof 1.95 ˚A.Thisdifferencegets much smallertowardthecenterofthenanowires.Therefore,both001nw and101nwmodelsmaintaintheanatasestructure.

We haveconsideredanumber ofprobableinitialadsorption configurationsforC2-1moleculeonbothofthenanowiremodels.

ThetailoxygenandtheOHgrouparefoundtobeactivelyinvolved intheadsorptionofthedyeontheoxidesurface(seeFigs.1and2).

C2-1moleculecanachieverelativelyhighadsorptionenergiesinits bidentatemodeaspresentedinTable1.Inthiscase,theOHgroup losesitshydrogentooneofthenearbysurfaceoxygensandthe remainingtwotailoxygensformtwoTi Obondswiththeanatase surface.Inthemonodentatebinding,however,C2-1formsonlyone Ti Obondthroughitstailoxygen.Thebidentatedye-surfacebond lengthsare∼2.0 ˚Awhichisclosetothebulkvalue.C2-1molecule slightlydistortsthenanowirestructureonlylocally.

Asareferenceminimalskeleton,weconsideredthecoumarin coreonthenanowiresurfaces.Inthis case,coumarinprefersto formasinglebondwitha5-foldcoordinatedsurfaceTiatomby aligningperpendiculartobothofthenanowiresasanenergetically favorablebindingconfiguration.TheTi Obondsbetweenthedye andthesurfacebecome2.18 ˚Aand2.21 ˚Aon101nwand001nw, respectively.Thedistortionofcoumarinonthenanowirestructure isevensmallerrelativetotheC2-1case.

TheC2-1complexisknowntohavephotoinducedintramolec- ularcharge transfer in thegas phase. On theother hand,both theHOMOand theLUMOcharge densitiesremain localizedon theentirecoumarincore.Therefore,theirchargeredistributions are remarkably different if they are considered tobe isolated.

Theirchargedensityrelocationcharacteristicsuponanexcitation becomesimportantwhenthesemoleculesareattachedtoanoxide surface.Inordertointerpretthechargeinjectionfeaturesofthese twodifferentdyeswecalculatedthechargedensitiesofhighest occupiedandlowestunoccupiedstatesofdye+nwcombinedsys- tems. Our HSE resultsare depictedin Fig. 1 for 001nwand in Fig.2for101nwcases.Thedonor-to-acceptorcharacterofC2-1dye, whichcanbeexplainedastheintramolecularchargetransferfrom thetetrahydroquinolinemoietytothe-conjugatedacidicpart,is significantlymodifiedwhenthemoleculeisadsorbedonthetita- niasurfaces.Thechargedensityofthehighestoccupiedstateof thecombinedsystemisdistributedovertheentiremoleculesim- ilartothecaseofcoumarinonthenanowires.Similarbehavioris seenonboth001nwand101w.However,thechargedensitydistri- butionsofthelowestlyingunoccupiedstatesofC2-1+001nwand coumarin+001nwareremarkablydifferent.Thiscanbeclearlyseen bycomparingthecorrespondingchargedensityplotsinFig.1band d.In thecase of101nw,both dyesexhibitsimilarchargeredis- tributionfeaturesbetweenthehighestoccupiedand thelowest unoccupiedstates.

ThebindingenergiesofC2-1andcoumarinonthe001nwand 101nwformonodentateandbidentateadsorptionmodesarecal- culated at the HSE level by the standard formulation used in similarsystemspreviously[18,19].Moreover,weincludedsolva- tioneffectsforthechloroformandwaterenvironmentsusingHSE functionaland anewnonlinearPCM.OurHSE+PCMresultsare presentedinTable1.MonodentatebondingofcoumarinandC2-1

(4)

Table1

Calculatedadsorptionenergiesofdyemoleculesonthinanatase(001)and(101)nanowirestructuresinvacuumandinsolutionusingHSEmethodandnonlinearPCM.

EnergyvaluesaregivenineV.

Dye @001nw @101nw

HSE HSE+PCM(CHCl3) HSE+PCM(H2O) HSE HSE+PCM(CHCl3) HSE+PCM(H2O)

Coumarin −0.63 −0.33 −0.07 −0.70 −0.58 −0.44

C2-1(monodentate) −0.73 −0.65 −0.11 −0.62 −0.43 −0.30

C2-1(bidentate) −1.25 −1.18 −0.52 −0.83 −0.70 −0.51

onboth(001and(101)surfacesshowsimilarlymoderateadsorp- tionenergiesinvacuumandalsointhesolution.Singlebondsare foundtobedrasticallyweakenedbythedielectricenvironmentof thestrongsolutionslikewater.Therefore,thesetypeofmonoden- tatebindingmodesarenotexpectedtobedurableandstablein theelectrolyteenvironment.Ontheotherhand,bidentatemodeof C2-1ontheoxidesurfacesgivesreasonablystrongbindingener- gies.Therefore,C2-1dyeformingtwoO-Tibondswiththesurface canevenbestableinanionicsolventlikewater.TheseHSE+PCM resultsshowthesignificanceofanchoringofthelightharvesting sensitizersforareliableDSSCoperation.

TheinclusionofthenonlinearPCMchangesthebindingenergies inthepositivedirection.Themainreasonisthatthedyemolecule andtheadsorptionsitesontheTiO2surfaceinteractwiththesol- ventverystrongly.Becausesuchaninteractionisnotpresentin vacuumcalculations,resultsgivemorenegativebindingenergies.

Sincewaterisamorepolarsolventthanchloroform,ithasahigher dielectricconstant.Hence,waterinteractsmorestronglywiththe adsorptionsites.ThereforecalculatedbindingenergiesinH2Oare morepositivethanthoseinCHCl3.

The geometry optimization by minimizing the Hellmann–

Feynman forces causes surface ionic cores to relax into their minimumenergypositions.Hence,possiblesurfacestatesarepas- sivatedyieldingacleanbandgap(Fig.3).TheHSEmethodgavethe bandgapsofbarenanowiresas4.06eVfor001nwand4.01eVfor 001nw.ThesearesignificantlylargerthanbothHSE-calculatedand experimentallymeasuredbulkvalueof3.20eV.Forthenanowire diametersaround1nm,HSEcalculationsindicateastrongquantum confinementeffect[56].Thiswideningofthegap,uponadsorption ofdyes,resultsinsomemolecularstatestofallintotheenergy gap,wheremostofthedeeperlyingoccupiedmolecularorbitals stay in the valence band as resonant states. Consequently, the

Fermienergyshiftsuptohigherenergiesleadingtoanenergy-gap narrowingwhichisanimportantfactorforphotovoltaicproper- ties.On theotherhand,thelowestlyingunoccupiedmolecular levelsofthedyesdelocalizeontheTi3dstatesinsidetheconduc- tionband(CB)ofthenanowires,aschannelsofexcitedelectron injectiontothenanowires.Thedensityofstates(DOS)ofthecom- bineddye+nanowiresystemshavealsobeenpresentedinFig.3 forcoumarin,andC2-1intwomodes,namelymono-andbidentate forms.Forbothofthenanowires,themolecularstatesofcoumarin appeararoundtheVBedgewhileoneofthemisisolatedfromthe rest.ForC2-1monodentatemode,essentiallythreefilledisolated statesfallintothebandgapofbothnanowiretypes.Ongoingfrom monodentateto bidentatebonding, anadditional isolatedstate appearsabovetheVB.Significantbandgapreductionisobtained inthecaseofC2-1bridgingin bidentateformonbothtypesof nanowires,whichmakesC2-1dyewithsuchbondingmoreimpor- tantforlightharvesting.

Aswediscussedwiththeelectronicstructure,appearanceof severalnewdyerelatedstateswithinthebandgapofnanowires might cause a redshift of the optical absorption of these dye- nanowirecompositesystemsifthetransitionsfromthesestates aresymmetryallowed,sotheymightbecomeactiveinthevisi- blepartofthespectrumwhichisverybeneficiaryforphotovoltaic applications.In order to investigate theoptical absorption, we havecalculatedthedipolematrixelementsbetweenoccupiedand emptystatesforeachcase,whichisessentiallytheimaginarypart ofthedielectricfunction,2(ω).Thecalculatedabsorptionspectra forcleananatasenanowirealongwiththoseforthecorrespond- ingdye-nanowirecompositesystemsaredepictedinFig.4(a)and (b)for(001)and(101)nanowires,respectively.Firstofall,when wecomparethecorrespondingopticalabsorptionspectraofthe differentnanowireandnw+dyesystems,generalfeaturesarevery

Fig.3.TheHSE-calculatedpartialandtotaldensitiesofstates(DOS)of(C2-1,coumarin)+nanowirecombinedsystemsforlowenergybindingmodes.Theresultsareshown for001nwontheleftandfor101nwontherightpanes.Themolecularcontributionsareindicatedasdark(red)shades.ThedottedlinesdenotetheFermienergiesandset atslightlyabovethehighestoccupiedstates.TheDOSstructuresarealignedwithrespecttothevalencebandmaximumofthebarecasesforeachtypeofnanowires.(For interpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

(5)

ε2(ω) (arb. units)

001nw

(a)

coumarin C2-1 mono.

C2-1 bi.

0 2 4 6 8 10

ε2(ω) (arb. units)

Energy (eV)

(b)

101nw coumarin C2-1 mono.

C2-1 bi.

Fig.4.Absorptionspectraofbareanddyeadsorbed001nw(a)and101nw(b)cases calculatedusingtheHSEhybridDFTmethod.

similarforboth(001)and(101)nanowires.Forbarenanowires, theabsorptionstartsafter4eV,whichcoincideswithenergyband gapof thenanowire,therefore we can saythat theabsorption edgeisfromthevalencebandedgetotheconductionbandedge.

However,whencoumarinisattachedtothenanowire,twonew states,oneveryclosethevalancebandedgeandtheotherisalmost 0.8eV above theedge, associated withthe dye appearswithin thebandgapofthenanowire.Thesearethereason ofthetwo peaksobservedneartheadsorptionedgeabsorptionspectrumof coumarin+nanowiresystem,otherwise thespectrumlooks very similartothebarenanowireone.InthecaseofC2-1dye,there areseveraldyeoriginatesstateswithinthebandgapforbothof theadsorptionmodes,monodentateandbidantate.Theabsorption spectraof bothofthemodesaresimilar.Comparedtothebare nanowirespectrum,therearetwonewpeaks,onearound2eVat themiddleofthebandgapandtheotheraround3eValmost1eV belowtheabsorptionedge(orequivalentlyconductionbandedge).

Formonodentatemode,thepeakat2eVissharpwhilethereare twopeaksaround3eV.However,forbidentate,wehavetwosplit peaksaround2eV,andoneverybroadpeakaround3eVinstead oftwopeaksof monodentatecase.Comparingthesepeakposi- tionswithDOSreportedinFig.3,wecanconcludethatthepeak around2eVisduetoatransitionfromdyeassociatedstateatthe Fermileveltotheconductionbandedge.Forbothdyetypesthe LUMOlevelsstronglyresonatewiththeCBwhentheyareattached tothesurfaceoftheoxidenanowire.Meanwhile,theHOMO-like levelsappearinthebandgapof TiO2 nanowires asisolatedand well-localizedstatesonthedye.Theassociatedchargedensitydis- tributionscanalsobeseeninFig.1.Briefly,thelowerlyingpeaks intheabsorptionspectraforthedye+nwcombinedsystems,are essentiallyduetothetransitionsfromthedye-relatedHOMO-like leveltothestatesatthebottomoftheconductionband.

4. Conclusions

We have investigated the band gap related properties and resultingabsorptionspectraofbarethinanatasenanowireswith diameters less than1nm.We used therange separatedhybrid HSEfunctionalwithinDFT.Forthesenanowires,theHSEapproach

estimatesreasonablylargerbandgapsinagreementwiththequan- tumconfinementeffect.Thesameleveloftheorywasappliedto examinetheadsorptionconfigurations,electronicstructuresand opticalprofilesofD--AtypeorganicC2-1photosensitizeronthe (001)and(101)facetsoftheoxidenanowires.Theintramolecu- larchargetransfercharacterofC2-1appearstobemodifiedonce theC2-1formsabidentatebondingwiththesurfaceoxygenson theanatasenanowires.TheC2-1+nwsystemshowssimilarspa- tialchargedensityfeatureswiththatofthecoumarin+nwforthe highest occupiedstatewhich is activelyinvolvedin thelowest lyingphotoexcitation.TheHSE+PCMincludingnonlineardielectric effectsshowsthatthebindingenergyofC2-1dyeremainsmod- erateinsolutionenvironment. Thismightbeseenasoneofthe explanationsofwhytheanchoringofsensitizermoleculesonthe oxidesurfaceisimportant.Thenumberofdyerelatedstatesabove theVBofthetitaniananowiresisassociatedwiththecomplex- ityofthemolecularstructure.Therefore,functionalmoeitiesare desirabletoabsorbalargerportionofthevisiblespectrum.Conse- quently,theuseofrangeseparatedhybriddensityfunctionalsisa promisingwaytodescribebandgaprelatedelectronicstructures fordyeandTiO2nanowiresystems.

Acknowledgments.

This work is supported by TÜB˙ITAK, The Scientific and TechnologicalResearchCouncilofTurkey(Grant#110T394).Com- putationalresourceswereprovidedbyULAKB˙IM,TurkishAcademic Network&InformationCenter.

References

[1]A.Fujishima,K.Honda,Nature(London)238(1972)37.

[2]A.Fujishima,X.T.Zhang,D.A.Tryk,Surf.Sci.Rep.63(2008)515.

[3]B.O’Regan,M.Grätzel,Nature353(1991)737.

[4]L.Kavan,M.Grätzel,S.E.Gilbert,C.Klemenz,H.J.Scheel,J.Am.Chem.Soc.118 (1996)6716.

[5]J.Pascaul,J.Camassel,H.Mathieu,Phys.Rev.Lett.39(1977)1490.

[6]U.Diebold,Surf.Sci.Rep.48(2003)53.

[7]G.Li,L.Li,J.Boerio-Goates,B.F.Woodfield,J.Am.Chem.Soc.127(2005)8659.

[8]A.S.Barnard,L.A.Curtiss,NanoLett.5(2005)1261.

[9]M.Jankulovska,T.Berger,T.Lana-Villarreal,R.Gómez,Electrochim.Acta62 (2012)172.

[10]L.Yuan,S.Meng,Y.Zhou,Z.Yue,J.Mater.Chem.A1(2013)2552.

[11]T.Berger,T.Lana-Villarreal,D.Monllor-Satoca,R.Gómez,J.Phys.Chem.C112 (2008)15920.

[12]D.akır,O.Gülseren,Phys.Rev.B80(2009)125424.

[13]P.K.Naicker,P.T.Cummings,H.Zhang,J.F.Banfield,J.Phys.Chem.B109(2005) 15243–15249.

[14]A.Iacomino,G. Cantele,F. Trani,D. Ninno, J. Phys.Chem.C114 (2010) 12389–12400.

[15]V.C.Fuertes,C.F.A.Negre,M.B.Oviedo,F.P.Bonafé,F.Y.Oliva,C.G.Sánchez,J.

Phys.Condens.Matter25(2013)115304.

[16]R.Chen,X.Yang,H.Tian,X.Wang,A.Hagfeldt,L.Sun,Chem.Mater.19(2007) 4007–4015.

[17]R.Chen,X.Yang,H.Tian,L.Sun,J.Photochem.Photobiol.A:Chem.189(2007) 295–300.

[18]D.akır,O.Gülseren,E.Mete,Ellialtıo˘glu,Phys.Rev.B80(2009)035431.

[19]D.akır,O.Gülseren, E.Mete,Ellialtıo˘glu,J.Phys.Chem.C115(2011) 9220–9226.

[20]W.Stier,O.V.Prezhdo,J.Phys.Chem.B106(2002)8047–8054.

[21]K.Hara,T.Sato,R.Katoh,A.Furube,Y.Ohga,A.Shinpo,S.Suga,K.Sayama, H.Sugihara,H.Arakawa,J.Phys.Chem.B107(2003)597–606.

[22]J.BanuelosPrieto,F.LopezArbeloa,V.MartinezMartinez,I.LopezArbeloa, Chem.Phys.296(2004)13–22.

[23]L.Campbell,S.Mukamel,J.Chem.Phys.121(2004)12323.

[24]P.Persson,M.J.Lundqvist,R.Ernstorfer,W.A.GoddardIII,F.Willig,J.Chem.

TheoryComput.2(2006)441–451.

[25]C.-R.Zhang,L.Liu,J.-W.Zhe,N.-Z.Jin,Y.Ma,L.-H.Yuan,M.-L.Zhang,Y.-Z.Wu, Z.-J.Liu,H.-S.Chen,Int.J.Mol.Sci.14(2013)5461–5481.

[26]C.O’Rourke,D.R.Bowler,J.Phys.Chem.C114(2010)20240–20248.

[27]Z.-S.Wang,F.-Y.Li,C.-H.Huang,L.Wang,M.Wei,L.-P.Jin,N.-Q.Li,J.Phys.Chem.

B104(2000)9676.

[28]A.Ehret,L.Stuhl,M.T.Spitler,J.Phys.Chem.B105(2001)9960.

[29]Z.-S.Wang,F.-Y.Li,C.-H.Huang,J.Phys.Chem.B105(2001)9210.

[30]P.Wang,S.M.Zakeeruddin,R.Humphry-Baker,J.E.Moser,M.Grätzel,Adv.

Mater.15(2003)2101.

(6)

[31]P.Wang,S.M.Zakeeruddin,P.Comte,R.Charvet,R.Humphry-Baker,M.Grätzel, J.Phys.Chem.B107(2003)14336.

[32]T.Horiuchi,H.Miura,K.Sumioka,S.Uchida,J.Am.Chem.Soc.126(2004)12218.

[33]T.Kitamura, M.Ikeda, K.Shigaki,T.Inoue,N.A.Anderson,X.Ai,T. Lian, S.Yangagida,Chem.Mater.16(2004)1806.

[34]Z.-S.Wang,K.Sayama,H.Sugihara,J.Phys.Chem.B109(2005)22449.

[35]D.P.Hagberg,T.Edvinsson,T.Marinado,G.Boschloo,A.Hagfeldt,L.Sun,Chem.

Commun.2245(2006).

[36]S.-L.Li,K.-J.Jiang,K.-F.Shao,L.-M.Yang,Chem.Commun.2792(2006).

[37]Y.Chiba,A.Islam,Y.Watanabe,R.Komiya,N.Koide,L.Han,Jpn.J.Appl.Phys.

45(2006)L638.

[38]Z.-S.Wang,Y.Cui,K.Hara,Y.Dan-oh,C.Kasada,A.Shinpo,Adv.Mater.19(2007) 1138–1141.

[39]Y.Kurashige,T.Nakajima,S.Kurashige,K.Hirao,J.Phys.Chem.A111(2007) 5544–5548.

[40]J. Preat, P.-F. Loos,X. Assfeld, D. Jacquemin,E.A.Perpëte, J. Mol. Struct.

Theochem.808(2007)85–91.

[41]X.Zhang,J.-J.Zhang,Y.-Y.Xia,J.Photochem.Photobiol.A:Chem.194(2008) 167–172.

[42]R.Sanchez-de-Armas,M.A.SanMiguel,J.Oviedo,J.F.Sanz,Phys.Chem.Chem.

Phys.14(2012)225–233.

[43]C.I.Oprea,P.Panait,F.Cimpoesu,M.Ferbinteanu,M.A.Girtu,Materials6(2013) 2372–2392.

[44]J.Heyd,G.E.Scuseria,M.Ernzerhof,J.Chem.Phys.118(2003)8207.

[45]J.Heyd,G.E.Scuseria,M.Ernzerhof,J.Chem.Phys.124(2006)219906.

[46]J.Paier,M.Marsman,K.Hummer,G.Kress,I.C.Gerber,J.G.Angyan,J.Chem.

Phys.125(2006)249901.

[47]G.Kresse,J.Hafner,Phys.Rev.B47(1993)558.

[48]P.E.Blöchl,Phys.Rev.B50(1994)17953.

[49]G.Kresse,J.Joubert,Phys.Rev.B59(1999)1758.

[50]J.P.Perdew,M.Ernzerhof,K.Burke,J.Chem.Phys.105(1996)9982.

[51]J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.77(1996)3865.

[52]K.Letchworth-Weaver,T.A.Arias,Phys.Rev.B86(2012)075140.

[53]D.Gunceler,K.Letchworth-Weaver,R.Sundararaman,K.A.Schwarz,T.A.Arias, Model.Simul.Mater.Sci.Eng.21(2013)074005.

[54]D.Gunceler,T.A.Arias,preprintavailableatarXiv:1403.6465.

[55]R.Sundararaman,D.Gunceler,K.Letchworth-Weaver,T.A.Arias,JDFTx,2012 http://jdftx.sourceforge.net

[56]H. Ünal, O. Gülseren, S¸ Ellialtıo˘glu, E. Mete, Phys. Rev. B 89 (2014) 205127.

[57]M.Gajdoˇs,K.Hummer,G.Kresse,J.Furthmüller,F.Bechstedt,Phys.Rev.B73 (2006)045112.

Referenties

GERELATEERDE DOCUMENTEN

In het onderzoek naar het verkeerd gebruik van kinderzitjes hebben wij vaak geconstateerd dat bepaalde typen kinderzitjes niet goed in de auto waren te

Stedelijk beheer moet dan ook inspelen op incidentele, (nog) niet gein- tegreerde beheershandelingen die plaats vinden vanwege de bewoners, de gemeentelijke

One month after retuning to Earth, the nonlinear dynamics of heart rate control were mainly restored, acting again as in normal conditions, though not completely as there

Here it is important to note that the development of the phase diagrams with increasing relaxation closely resembles the changes found in the bulk when go- ing from x = 0.5

We have performed Monte-Carlo simulations of electron-hole recombination in a homo- geneous and isotropic disordered organic semiconductor, including all aspects that are relevant

(a) Calculated relative efficiency (sum of integrated emission from all 4 edges di- vided by calculated total energy absorbed by the fluorescent dye molecules from 350-750 nm) and

Three different approaches of field- categorization are currently (mainly) used for normalizing impact without a clear preference for one alternative: (1) journal sets,

Melbourne men would spend an average of $79 on a first date, but according to a study by the dating auction website, WhatsYourPrice.com, when it comes to a date with their