• No results found

Epidemiological explorations on Clostridium difficile Infection Goorhuis, A.

N/A
N/A
Protected

Academic year: 2021

Share "Epidemiological explorations on Clostridium difficile Infection Goorhuis, A."

Copied!
25
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Epidemiological explorations on Clostridium difficile Infection

Goorhuis, A.

Citation

Goorhuis, A. (2011, October 12). Epidemiological explorations on Clostridium difficile Infection. Retrieved from https://hdl.handle.net/1887/17925

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/17925

Note: To cite this publication please use the final published version (if applicable).

(2)

Chapter  8

General  Discussion

(3)

 

154

(4)

Outset  of  the  research

 

The  research  that  has  resulted  in  this  thesis  started  in  the  second  half  of  2006.  At  this   time,  the  Mirst  large  CDI  outbreaks  with  the  hyper  virulent  type  027/NAP1/BI  (type  027)   strain  had  just  been  described  in  Canada  and  the  The  United  States  1,2.  In  addition,  a  then  very   recent  outbreak  with  this  strain  in  the  Stoke  Mandeville  hospital  in  The  United  Kingdom  had   demonstrated  that  outbreaks  seemed  to  evolve  to  a  global  emergence  of  this  type  3.  In  Canada,   an  increased  incidence  was  noted  since  1991,  especially  among  elderly  patients  (Migure  1).

Current Concepts

n engl j med 359;18 www.nejm.org october 30, 2008 1933

isolates from five facilities, and 82% of stool sam- ples from the Quebec outbreak were positive for the same strain.

4,7

This epidemic strain was ini- tially identified in the 1980s by restriction endo- nuclease analysis and named BI, but is currently referred to as North American Pulsed Field type 1 (NAP1) and PCR ribotype 027 (i.e., BI/NAP1/027, or NAP-1/027).

7

Three bacterial factors have been implicated in outbreaks of C. difficile infection caused by the virulent NAP-1/027 strain: increased production of toxins A and B, fluoroquinolone resistance, and production of binary toxin. Toxins A and B are the major virulence determinants of C. difficile;

indeed, toxin-negative strains are nonpathogenic.

Toxins A and B are transcribed from a pathoge- nicity locus that comprises five genes: two toxin genes, tcdA (toxin A) and tcdB (toxin B), and three regulatory genes, one of which (tcdC) encodes a putative negative regulator of toxin transcription (Fig. 2A and 2B).

8,9

TcdC protein appears to in- hibit toxin transcription during the early, expo- nential-growth phase of the bacterial life cycle.

NAP-1/027 isolates that were obtained from pa- tients during recent outbreaks of C. difficile infec- tion carry deletion mutations in the tcdC inhibitory gene that have been associated with an increase by more than a factor of 10 in the production of toxins that mediate colonic tissue injury and inflammation in C. difficile infection (Fig. 2C).

7,9,10

These toxins bind to the surface of intestinal epithelial cells, where they are internalized and catalyze the glucosylation of cytoplasmic rho pro- teins, leading to cell death (Fig. 2D).

11

All NAP-1/027 isolates from the 1980s and 1990s, like those from recent outbreaks, carry tcdC mutations.

4,7

In contrast, high-level resistance to gatifloxacin and moxifloxacin is evident in recent isolates but not in historic NAP-1 strains. Resis- tant strains may have a competitive advantage in a hospital environment where fluoroquinolone use is widespread.

12

This theory is supported by the finding in the Quebec outbreak that the odds ratio for fluoroquinolone use in patients with C. difficile infection, as compared with con- trol subjects, was 3.9 (95% confidence interval [CI], 2.3 to 6.6), which was virtually the same as the odds ratio (3.8) for the use of cephalosporin (95% CI, 2.2 to 6.6), a longtime leading antibi- otic class predisposing to C. difficile infection.

4

This observation suggests that limiting fluoroquino - lone use may help to contain outbreaks caused by NAP-1/027, as was reported earlier for the re-

striction of clindamycin in an outbreak caused by a clindamycin-resistant strain.

13

Another potential virulence determinant of NAP-1/027 strains is the production of a third toxin, binary toxin, that is unrelated to the patho- genicity locus that encodes toxins A and B.

14

Previously, about 6% of C. difficile clinical isolates produced binary toxin, homologous to the iota toxin of C. perfringens and comprised of a 48-kD enzymatic component and a 99-kD binding com- ponent. Binary toxin has enterotoxic activity in vitro, but its role, if any, in the pathogenesis of C. difficile infection is not clear.

14-16

C. difficile strains that produce binary toxin in the absence of toxins A and B do not appear to be pathogenic. Nonethe- less, the finding that NAP-1/027 epidemic strains produce binary toxin has raised renewed specu- lation that this toxin may act synergistically with toxins A and B in causing severe colitis.

4,5,7,14-16

E xpanding Epidemiology

C. difficile infection predominantly affects elderly and frail hospital and nursing home patients (Fig. 1).

2,3

However, a recent advisory from the Centers for Disease Control and Prevention warns of a risk of the infection in populations not previ- ously considered at risk.

17

These include young

22p3 880

Annual Incidence per 100,000

860

200

140 160 180

100 120

80 60 40 20 0

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

<17 yr 18–64 yr

≥65 yr Total

AUTHOR:

FIGURE:

JOB:

4-C H/T

RETAKE

SIZE ICM

CASE

EMail Line

H/TCombo

Revised

AUTHOR, PLEASE NOTE:

Figure has been redrawn and type has been reset.

Please check carefully.

REG F

Enon

1st 2nd 3rd Kelly

1 of 4

10-30-08 ARTIST: ts

35918 ISSUE:

Age

Figure 1. Annual Incidence (per 100,000 Population) of C. difficile Infection in Sherbrooke, Quebec, 1991–2003.

The overall incidence of C. difficile infection was relatively stable during the period from 1991 through 2002, although there was a gradual increase in the rate of infection among elderly patients (≥65 years). In 2003, the popu- lation incidence increased by a factor of 4, as compared with 2002. This in- crease was especially evident in the elderly. Data are from Pépin et al.3

The New England Journal of Medicine

Downloaded from nejm.org at LEIDS UNIVERSITY MEDISCH CENTRUM on January 12, 2011. For personal use only. No other uses without permission.

Figure  1.  Annual  Incidence  (per  100,000  Population)  of  C.  dif-icile  Infection  in  Sherbrooke,  Quebec  (Canada),  1991–2003  4.

  In  The  Netherlands,  the  Mirst  outbreak  occurred  in  2005,  in  a  hospital  in  Harderwijk,  as   was  described  by  Kuijper  and  by  Debast  5,6.  At  that  time,  an  important  question  was  if  the  type   027  strain  truly  was  a  hyper  virulent  strain,  or  that  the  severity  of  disease  that  was  associated   with  this  strain  was  mainly  caused  by  increased  age  and  co-­‐morbidities  of  hospitalized  

patients  in  the  modern  era.

155

(5)

  The  problem  with  the  earliest  outbreak  reports  from  Canada,  The  United  States  and  the   United  Kingdom,  was  the  fact  that  the  morbidity  and  mortality  that  was  observed  and  that  was   associated  with  the  type  027  strain  was  measured  against  historical  controls,  instead  of  

against  patients  who  were  infected  with  another  strain  type  of  C.  dif-icile  at  the  same  time.

  It  was  speculated  that  the  use  of  Mluoroquinolones  played  a  part  in  the  global  emergence   of  the  type  027  strain,  because  it  was  found  to  be  resistant  to  this  class  of  antibiotics.  It  was   however  not  known  whether  other  strain  types  had  a  similar  resistance  to  this  antibiotic  class.  

In  fact,  because  all  the  characteristics  and  risk  factors  that  were  reported  for  the  type  027   strain  had  been  observational,  without  the  availability  of  an  adequate  control  group  (i.e.  

simultaneously  infected  patients  with  other  strain  types  than  the  type  027  strain),  there  was  a   need  for  studies  that  included  such  a  control  group,  in  order  to  identify  true  risk  factors,   associated  with  this  new  disease  entity.  At  the  start  of  this  research,  several  studies  had   concluded  that  exposure  to  Mluoroquinolones  was  a  major  risk  factor  for  the  development  of   CDI  due  to  ribotype  027  strains  7-­‐9.  However,  these  studies  only  included  matched  control   patients  who  did  not  have  CDI.

  Another  question  was  if  there  were  differences  between  epidemic  (outbreak)  settings   and  settings  with  a  low  prevalence  of  CDI  and  whether  there  would  be  separate  risk  factors   for  CDI  in  these  settings

  Furthermore,  there  was  a  need  for  robust  typing  methods,  capable  of  discriminating   within  outbreak  strains,  in  order  to  investigate  the  spread  and  magnitude  of  these  outbreaks.

Hyper  virulent  Clostridium  dif-icile  in  The  Netherlands.

  As  was  described  in  chapter  2,  the  Mirst  type  027  strains  that  were  found  to  be  circulating   in  The  Netherlands  date  from  2002.  It  was  not  until  2005  that  an  increase  in  the  number  of   infections  by  this  type  was  noticed.  In  fact,  in  that  year,  the  type  027  strain  heralded  its  

presence  with  a  bang,  by  causing  the  Mirst  recognized  outbreak  with  this  strain  in  a  hospital  in  

156

(6)

Harderwijk.  In  the  study  period  thereafter,  an  increasing  number  of  affected  hospitals  was   reported,  with  an  increasing  number  of  outbreaks.  The  same  held  for  other  European   countries.  By  2008,  outbreaks  had  been  observed  in  16  different  countries  (Migure)  10.  

CDI during a 10-year period. Analysis of historic BI/

NAP1/027 isolates has shown them to be virtually iden- tical to the recent outbreak strains, with the exception that the older isolates were not resistant to the newer fluoroquinolone antibiotics, gatifloxacin, and moxifloxa- cin (current epidemic strains are resistant to these anti- biotics).

Epidemiology in the Hospital, Community, and Animals

Most CDI that has been attributed to the BI/

NAP1/027 strain has been found in hospitals and is commonly associated with outbreaks or epidemics. This certainly was the case in Pittsburgh, Quebec, Stoke Mandeville, and numerous other North American hospi- tals.

3,5– 8

In the hospital setting, CDI occurs most fre- quently in elderly patients; it has been shown that risk and mortality of CDI from the BI/NAP1/027 strain in- creases with patient age (Table 1).

2,7

The BI/NAP1/027 strain was not observed to cause disease in the commu-

Figure 1. Extent of BI/NAP1/027 distribution. (A) States in the United States that have had !1 hospital that has reported CDI caused by the BI/NAP1/027 epidemic strain as of October 2008 (red).116(B) Percent- age of C difficile isolates in Canadian provinces (no data are available for territories) with the BI/NAP1/027 strain in the 2005 Canadian Nosoco- mial Infection Surveillance Program (CNISP) survey.97 (C) Hospitals in Europe reporting outbreaks (stars) and sporadic cases (circles) of CDI caused by the BI/NAP1/027 strain.89

Figure 2. Frequency and mortality of CDI. (A) National estimates of US short-stay hospital discharges with C difficile infection as any listed diagnosis or the primary hospitalization diagnosis, based on the na- tional inpatient sample117and unpublished data, 2008). (B) C difficile–

related mortality based on listings on US death certificates from 1999 to 2004, with age-adjusted mortality rates per million people for the same years (shown in box).118

1914 O’CONNOR ET AL GASTROENTEROLOGY Vol. 136, No. 6

Figure  2.  Distribution  of  Clostridium  dif-icile  type  027  by  country  in  Europe*  until  June  2008  10.

  During  the  years  2005  and  2006,  an  increased  awareness  among  physicians  and   infection  preventionists  across  the  Netherlands  led  to  the  implementation  of  rapid  testing   algorithms  and  infection  control  protocols  5.  To  date,  possibly  due  to  the  successful  

implementation  of  these  measures,  the  rate  of  CDI  caused  by  type  027  has  decreased,  as  is   illustrated  in  Migure  3  11.  By  contrast,  the  ‘common’  types  001  and  014  remain  prominently   present  in  Dutch  hospitals.  Type  078  is  currently  the  third  most  common  PCR  ribotype  in  the   Netherlands  and  other  European  countries,  whereas  its  occurrence  before  2005  was  very  rare,   as  was  discussed  in  chapter  5.

 

(7)

www.eurosurveillance.org 1

R a p i d c o m m u n i c a ti o n s

D E C R E A S E O F H Y P E R V I R U L E N T C L O S T R I D I U M D I F F I C I L E P C R

R I B O T Y P E 0 2 7 I N T H E N E T H E R L A N D S

M P Hensgens1, A Goorhuis1, D W Notermans2, B H van Benthem2, E J Kuijper (e.j.kuijper@lumc.nl)1

1. National Reference Laboratory for Clostridium difficile, Leiden University Medical Center, Leiden, the Netherlands 2. Rijksinstituut voor Volksgezondheid en Milieu (National Institute for Public Health and the Environment; RIVM), Centrum

Infectieziektebestrijding (Centre for Infectious Disease Control; Cib), Bilthoven, the Netherlands

This article was published on 12 November 2009.

Citation style for this article: Hensgens MP, Goorhuis A, Notermans DW, van Benthem BH, Kuijper EJ. Decrease of hypervirulent Clostridium difficile PCR ribotype 027 in the Netherlands. Euro Surveill. 2009;14(45):pii=19402. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19402

!FTERTHElRSTOUTBREAKSOF#LOSTRIDIUMDIFlCILE0#2RIBOTYPE

.ORTH !MERICAN PULSED lELD TYPE   RESTRICTION ENDONUCLEASE

ANALYSIS GROUP ")  IN THE .ETHERLANDS IN   A NATIONAL

SURVEILLANCEPROGRAMMEFOR#DIFlCILEINFECTION#$) WASSTARTED

&URTHERMORE  NATIONAL GUIDELINES WERE DEVELOPED TO RAPIDLY

RECOGNISETYPEINFECTIONSANDPREVENTFURTHERSPREAD4HE

MEANINCIDENCEOF#$)MEASUREDINHOSPITALSREMAINEDSTABLE

THROUGHOUTTHEYEARSANINCIDENCEOFPER ADMISSIONS

WASSEENINAND"ETWEEN!PRILAND*UNE

ATOTALOF SAMPLESWEREAVAILABLEFOR0#2RIBOTYPING!

DECREASEWASSEENINTHENUMBERANDINCIDENCEOFTYPEAFTER

THESECONDHALFOF)NTHElRSTHALFOF THEPERCENTAGE

OFTYPEISOLATESAMONGALL#$)DECREASEDTO WHEREAS

TYPEINCREASEDTO4YPEWASPRESENTINOF

THEISOLATESAND#DIFlCILETYPESLIGHTLYINCREASEDTO

7ECONCLUDETHATCURRENTLYTHEREISASIGNIlCANTDECREASEINTYPE

 ASSOCIATED#$)INTHE.ETHERLANDS

3INCE THE NEW HYPERVIRULENT STRAIN OF #LOSTRIDIUM DIFlCILE  0#2RIBOTYPE .ORTH!MERICANPULSED lELDTYPE.!0  RESTRICTIONENDONUCLEASEANALYSIS2%! GROUP") WASFOUNDINTHE

5NITED3TATESAND#ANADAIN ALARGENUMBEROFCOUNTRIES

WORLDWIDEREPORTED#DIFlCILEINFECTIONS#$) DUETOTHISTYPE; =

3EVERALREPORTSINDICATEDTHAT#$)DUETOTYPEISASSOCIATED

WITHAHIGHERMORBIDITYANDMORTALITYANDALSOHASTHETENDENCYTO

RELAPSEMOREFREQUENTLY; =!NOVERVIEWPUBLISHEDIN*ULY

REVEALEDTHATTYPEWASDETECTEDIN%UROPEANCOUNTRIES

ANDWASASSOCIATEDWITHOUTBREAKSIN"ELGIUM &INLAND &RANCE  'ERMANY )RELAND ,UXEMBOURG THE.ETHERLANDS 3WITZERLANDAND

THE5NITED+INGDOM;=!SOF*ULY OUTBREAKSHAVEALSOBEEN

REPORTEDIN!USTRIA;=AND$ENMARK;=

3OONAFTERTHElRSTOUTBREAKSINTHE.ETHERLANDSIN A

NATIONALSURVEILLANCEPROGRAMMEFOR#DIFlCILEWASINITIATEDBY

THE,EIDEN5NIVERSITY-EDICAL#ENTRE,5-# ANDTHE#ENTREFOR

)NFECTIOUS $ISEASE #ONTROL OF THE .ATIONAL )NSTITUTE FOR 0UBLIC

(EALTHANDTHE%NVIRONMENT!LLMEDICALMICROBIOLOGISTSINTHE

.ETHERLANDSWEREREQUESTEDTOSEND#DIFlCILEISOLATESTOTHE

$UTCHNATIONALREFERENCELABORATORYATTHE,5-#FORRAPID0#2

RIBOTYPINGANDCHARACTERISATIONINCASEOFANOUTBREAKMORETHAN

TWO#$)CASESWITHINONEWEEKINONEDEPARTMENT ORWHENAPATIENT

SUFFEREDFROMSEVERE#$))NADDITION APROSPECTIVE THREEYEAR LONG

SURVEILLANCESTUDYOFTHEINCIDENCEOF#$)ANDTHEDISTRIBUTIONOF

!"#$#DIFlCILE0#2RIBOTYPESWASSTARTEDIN$UTCHHOSPITALS

IN*UNE

)NTHEPERIODBETWEEN!PRILAND*UNE ATOTALOF

 SAMPLESWERESUBMITTEDTOTHEREFERENCELABORATORY OFWHICH

N  WEREAVAILABLEFOR0#2RIBOTYPING/FTHOSE 

SAMPLES HADBEENSUBMITTEDBYMEDICALMICROBIOLOGISTS

BECAUSEOFEITHERSEVEREDISEASEORA#$)OUTBREAK WHEREASTHE

REMAININGWEREPARTOFTHENATIONALSURVEILLANCESTUDY3INCE

NO DIFFERENCE IN THE DISTRIBUTION OF VARIOUS 0#2 RIBOTYPES WAS

FOUNDBETWEENTHETWOSURVEILLANCESYSTEMS WEREPRESENTTHE

DATACOMBINED4HEREASONFORTHISEQUALDISTRIBUTIONISTHATMOST

HOSPITALSTHATENCOUNTEREDANOUTBREAKORACASEOFSEVERE#$)  CONTINUEDTOSUBMITSAMPLESONAREGULARBASISTHEREAFTER

4HE&IGUREDEPICTSTHEDISTRIBUTIONOFTHElVEMOSTCOMMON0#2

RIBOTYPESINTHE.ETHERLANDSBETWEEN!PRILAND*UNE

!LTHOUGHTHETOTALNUMBEROFSUBMITTEDSAMPLESINCREASEDFROM

INTHESECONDQUARTEROFTOASTEADYNUMBERBETWEEN

ANDAFTERTHElRSTQUARTEROF ADECREASEINTHENUMBEROF

TYPEISOLATESHASBEENOBSERVEDSINCETHESECONDHALFOF

)NTHEHOSPITALSPARTICIPATINGINTHECONTINUOUSSURVEILLANCE A

0 50 100 150 200 250 300

2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd

2005 2006 2007 2008 2009

Quarter of year

Number of isolates

Other types (n=1,236) Type 002 (n=125) Type 014 (n=358)

Type 001 (n=351) Type 078 (n=301) Type 027 (n=417)

F i g u r e

C. difficile PCR ribotypes in the Netherlands, April 2005 – June 2009 (n=2,788)

Figure  3.

 

  Patients  infected  with  CDI  caused  by  type  027  were  signiMicantly  older  and  used  more   Mluoroquinolones,  compared  to  patients  infected  with  non-­‐027  ribotypes.  At  the  same  time,  on   a  national  level,  the  pre-­‐epidemic  use  of  Mluoroquinolones  increased  by  almost  50%  (the  mean   number  of  deMined  daily  doses  per  10.000  patient-­‐days  in  four  hospitals  increased  from  4357   to  6471).    The  study  described  in  chapter  2  was  the  Mirst  published  report  that  conMirmed  that   use  of  Mluoroquinolones  was  a  risk  factor  for  type  027-­‐CDI,  also  in  direct  comparison  to   patients  who  had  CDI  caused  by  other  types.

  The  investigation  of  the  dual  outbreak  with  types  017  and  027  in  Amersfoort,  described   in  chapter  6,  again  conMirmed  that  use  of  Mluoroquinolones  is  a  strong  risk  factor  speciMically   for  type  027,  but  not  for  other  types.  Several  explanations  were  discussed  in  chapter  2,  such  as     a  higher  level  of  Mluoroquinolone  resistance  among  type  027  strains  12,  probably  associated   with  a  single  transition  mutation  in  gyrA  13,  that  was  not  found  among  2  pre-­‐epidemic  Dutch   type  027  strains,  dating  from  2002.  However,  apart  from  a  selection  advantage  of  the  type  027   strain  due  to  its  resistance  to  Mluoroquinolones,  Mluoroquinolones  may  in  itself  contribute  to  

158

(8)

CDI  by  inducing  increased  spore  an  cytotoxin  production  14.  A  recent  report  by  Kallen  et  al.  

demonstrated  a  signiMicant  decline  in  C.  dif-icile  cases  when  a  complete  restriction  of   Mluoroquinolones  was  initiated  in  a  hospital,  after  a  failure  of  other  interventions  to  reduce   CDI  cases  15.  This  was  also  the  case  during  the  type  027  outbreak  in  Harderwijk  in  The  

Netherlands,  where  the  ban  on  use  of  Mluoroquinolones  was  a  major  component  in  controlling   the  outbreak,  as  illustrated  in  Migure  4  6.  

Results

Description of the outbreak

The background incidence of CDI in St Jansdal Hospital was 3.8 patients per 10 000 admissions in 2004. In 2005, a more than ten-fold increase in the incidence of CDI was observed (Fig. 1). In this study, we included the first 45 patients diag- nosed with CDI in 2005. In total, 50 patients with CDI were diagnosed during the outbreak. Faeces were cultured, and C. difficile isolates were identified as toxinotype III and PCR ribotype 027. In addition, the strain had the binary toxin genes and contained an 18-bp deletion in the toxin regulator gene tcdC. The isolates were resistant to erythromycin (MIC >256 mg/L) and ciprofloxacin (MIC >32 mg/L), and susceptible to clindamycin (MIC 2 ml/L) and metronidazole (MIC 0.19 mg/L).

A multidisciplinary hospital outbreak management team (OMT) was formed to coordinate measures to control the epidemic. Special folders informed medical personnel in the hospital. In addition, all clinicians were informed personally.

The medical microbiologist and infection control practitioner organized special meetings on the involved wards with the nursing staff. The cleaning team received special instructions for intensified cleaning procedures from the infection control practitioner. All measures were described in a CDI hospital guideline by the OMT.

Measures taken by the OMT to control the epidemic (from 1 May 2005 onwards) included isolation of all patients with diarrhoea (until two tests, 24 h apart, gave negative results for C. difficile toxin), hand washing with water and soap, use of chlorine-containing disinfectant (0.1% sodium hypochlorite), and cohorting of all C. difficile-infected patients on a separate ward. In addition, from 7 July 2005 until 14 September 2005, a complete ban on all fluoroquinolones was established, and the use of cephalosporins and clindamycin was limited.

The course of the epidemic, including the time-scheme of all infection control measures taken and the use of antibiot- ics in the hospital, are depicted in Fig. 1. The outbreak came to an end in September 2005. After the re-introduction of fluoroquinolones, however, a temporary increase in CDI was noticed.

Description of C. difficile-associated disease cases

From 1 April 2005 until the end of August 2005, a total of 45 patients met the case definition of CDI. Clinical charac- teristics of the CDI cases are given in Table 1. Thirty-five patients developed diarrhoea during their stay in the hospital (mean duration of hospital stay prior to development of symptoms was 13 days). Of the ten patients admitted with diarrhoea, nine patients had healthcare-associated CDI, as they had been hospitalized in the same hospital within the preceding 3 months. The only patient who had not been

Start infection control measures

Ban on all

Reintroduction of fluoroquinolones

2nd ban on

8 9

10 150

fluoroquinolones fluoroquinolones

5 6 7

75

2 3 4

0 1

Jan Feb March April May June July Aug Sept Oct Nov Dec Jan* Feb Months

0

2005 2006

DDD/100 bed-days per month

Cefuroxim IV Ciprofloxacin PO + IV Incidence CDI

CDI incidence per 10 000 admissions per month

FIG. 1.Course of the epidemic and dynamics of antibiotic use in St Jansdal Hospital. DDD, defined daily dose; PO, oral administration; IV, intra- venous administration.

4 Clinical Microbiology and Infection CMI

ª2009 The Authors

Journal Compilationª2009 European Society of Clinical Microbiology and Infectious Diseases, CMI

Figure  4.  Course  of  the  epidemic  and  dynamics  of  antibiotic  use  in  St  Jansdal  Hospital.  DDD,  deMined  daily  dose;  PO,  oral   administration;  IV,  intravenous  administration.

  Use  of  Mluoroquinolones  cannot  be  the  only  explanation  for  the  rapid  spread  of  the  type   027  throughout  hospitals.  As  was  described  in  chapter  6,  almost  70%  of  the  patients  with  CDI   caused  by  type  027  had  not  used  Mluoroquinolones.  Other  studies  point  to  increased  spore   production  of  the  type  027  strain  which,  because  it  increases  environmental  contamination,   probably  facilitates  the  spread  of  the  strain  throughout  hospitals.  The  role  of  the  environment   in  C.  dif-icile  transmission  has  been  noted  in  investigations  of  CDI  in  both  Western  Europe  and  

(9)

the  United  States  16.  A  very  recent  study  by  Merrigan  et  al.,  showed  that  the  strains  in  the   hyper  virulent  (type  027)  clade  of  C.  dif-icile  not  only  sporulated  earlier  and  with  greater   efMiciency  than  other  strains,  but  also  produced  robust  amounts  of  toxin  17.  Another  recent   study  by  Dumford  et  al..  demonstrated  how  broadly  C.  dif-icile  spores  are  disseminated.  During   an  outbreak  of  the  type  027  strain  in  their  hospital,  C.  dif-icile  spores  were  detected  on  

computer  keyboards,  nursing  stations  and  31%  of  physician  work  areas  18.

  Mortality  associated  with  the  type  027  strain  is  high.  In  chapter  6,  it  was  observed  that   all  cause  mortality  in  an  outbreak  setting  with  type  027  was  26%  after  30  days,  while  

mortality  due  to  non-­‐outbreak  strains  was  3%  after  30  days.  Although  this  large  difference   will  undoubtedly  be  largely  associated  with  the  severity  of  other  co-­‐morbidities,  the  difference   was  still  signiMicant  after  adjustment  for  age,  ward  and  Charlson  co-­‐morbidity  score,  which   measures  chronic  disease  severity  at  baseline.  The  attributable  mortality  rate  of  7%  among   patients  with  CDI  caused  by  type  027  is  comparable  to  the  rates  that  have  been  reported  in  the   literature  (table  1)  1.  In  one  of  the  Mirst  studies  that  described  a  large  outbreak  with  type  027   in  Canada,  it  was  also  clear  that  the  attributable  mortality  rate  increased  with  age,  along  with   the  incidence  (table  1)  1  .

nity until recently. In a typing study of isolates from hospital-onset and health care facility–associated CDI, 54% of these isolates and 50% of community-associated C difficile isolates were NAP1 (the predominant type).

9

In a Foodborne Diseases Active Surveillance Network surveil- lance study, 22% of 60 community-associated–C difficile isolates from 5 states were NAP1, suggesting that this epidemic strain can be isolated from patients in the community as well as in the hospital.

10

Nonetheless, in the community, CDI caused by any strain is relatively rare compared with the rate in hospitals.

Potential community sources of CDI include soil; salt, fresh, and tap water; pet animals and food animals; and meats and vegetables.

11

The BI/NAP1/027 strain was identified in meat in Canada and in Arizona.

12,13

How- ever, the most common C difficile strains found in animals and meat are toxinotype V, PCR ribotype 078, and REA type BK.

12–14

These strains share with type BI/NAP1/027 the presence of binary toxin and tcdC gene deletions. To date there has been no conclusive evidence that consum- ing food contaminated with C difficile has led to clinical CDI in human beings. The means by which the current epidemic BI/NAP1/027 strain has become so widely dis- tributed in multiple countries so quickly has not been determined, but a common vehicle such as food remains an enticing avenue for further research.

Patient Risk Factors

The greatest risk factors for CDI caused by the BI/NAP1/027 strain are advanced patient age, hospital- ization, and exposure to specific antimicrobials, espe- cially fluoroquinolones and cephalosporins.

2,6,15,16

The specific fluoroquinolones that have been identified as risk factors include levofloxacin, moxifloxacin, gatifloxacin, and ciprofloxacin, presumably as a result of the fluoro- quinolone-resistance present in the epidemic strain.

Cephalosporin antibiotics, to which virtually all C difficile strains are resistant, have also been implicated as a risk in hospitals in which the epidemic strain is present, includ- ing use for surgical prophylaxis.

2,17

Exposures to stomach acid–reducing agents such as histamine type 2 blockers and proton pump inhibitors have been identified incon- sistently as risk factors for CDI in hospitals in which the

epidemic strain is present.

2,16,18

Other than the new flu- oroquinolone resistance, the organism-specific factors that have enabled the BI/NAP1/027 strains to be so successful recently in their dissemination and ability to cause severe CDI remain largely speculative but are the subject of intensive research efforts.

Organism Virulence Factors Regulation of Toxin A and Toxin B Production

All virulent C difficile strains carry a 19.6-kb patho- genicity locus (PaLoc), which contains 5 genes (Figure 3):

tcdR, tcdB, tcdE, tcdA, and tcdC The tcdA and tcdB genes encode toxins A and B, respectively; these toxins are monoglucosyltransferases that modify rho proteins in host cells leading to collapse of the actin cytoskeleton and cell death.

19

The tcdE gene encodes a holin-like pro- tein that is proposed to facilitate release of toxins A and B from the bacterial cell, because these toxins do not possess signal peptides.

20

The regulation of toxin production in C difficile is not completely characterized, but current data show that toxin expression is controlled by the positive regulator, TcdR, its antagonist, TcdC, and the global regulator, CodY (Figure 3).

21–24

During logarithmic-phase growth, tcdR, tcdB, tcdE, and tcdA are expressed (at a low level) from a single transcript that originates from a putative promoter upstream of tcdR, at a rate proportional to cell density, whereas the expression of tcdC is maximal (Figure 3A).

25

In stationary phase, the expression of tcdC de- creases, whereas tcdR, tcdA, and tcdB expression increases.

During this time, tcdR, tcdA, and tcdB are transcribed from individual promoters in a TcdR-dependent manner (Fig- ure 3B).

22,23,25,26

TcdR is a 22-kDa protein that is part of group 5 of the sigma 70 factor family, which has similarities to extracy- toplasmic function–like sigma factors.

27,28

This protein binds to the RNA polymerase holoenzyme

22

to facilitate expression of tcdR, tcdA, tcdB, and probably tcdE. TcdC, a 26-kDa protein, is likely to be an antisigma factor that acts as a negative regulator of toxin production.

24,29

The tcdC structural gene is located downstream of the other 4 PaLoc genes and is encoded on the opposite strand (Fig- ure 3).

25

TcdC is a membrane-associated protein that most likely interacts with and sequesters TcdR to inhibit transcription of the toxin genes.

24,30

Previous analysis of tcdC polymorphisms among C dif- ficile clinical isolates found that most strains that carried nonsense mutations or deletions in tcdC also had variant tcdA and tcdB genes.

31

The investigators observed that these strains were persistent in the hospital population during a 2-year period, were responsible for outbreaks of CDI, and conferred higher levels of in vitro cytotoxicity than some other clinical isolates. Thus, it was proposed that the variant tcdC genes in these toxin-variant strains may have been responsible for their higher levels of cy-

Table 1. CDI Rates and Mortality Increase With Patient Age

Age

CDI rate per 1000 admissions

Attributable 30-day mortality rate, %

!40 y 3.5 2.6

41–50 y 11.2 1.2

51–60 y 20.0 3.2

61–70 y 24.4 5.1

71–80 y 38.3 6.2

81–90 y 54.5 10.2

"90 y 74.4 14.0

Adapted from Loo et al.2

May 2009 CDI CAUSED BY EPIDEMIC BI/NAP1/027 STRAIN 1915

Table 1. CDI rates and mortality increase with age 1

 

160

(10)

  To  date,  the  signiMicance  of  this  new  epidemic  strain  is  not  completely  deMined.  The  type   027  strain  also  seems  to  be  associated  with  infection  in  individuals  not  previously  considered   at  risk,  including  young  and  previously  healthy  persons  who  were  not  exposed  to  a  healthcare   environment  or  antimicrobial  therapy  19,20.  Furthermore,  a  study  in  Canada  showed  an  

increase  in  mortality  among  patients  infected  with  type  027-­‐CDI,  particularly  patients  

between  the  ages  of  60  and  90  years  21.  In  addition,  a  recent  case  control  study  by  Sundram  et   al.  reported  that  early  mortality  from  CDI  was  four  times  higher  with  ribotype  027  strain  than   with  the  next  most  common  strain  (ribotype  106)  in  their  hospital.  Ribotype  027  strains   constituted  45%  of  the  C.  dif-icile  isolates  in  their  hospital  22.  Contrary  to  these  observations   are  two  studies  that  have  shown  that,  in  a  non-­‐epidemic  setting,  the  type  027  strain  is  not   associated  with  more  severe  disease  23,24.  To  elucidate  these  issues,  there  is  a  need  for  studies   that  investigate  the  incidence  and  the  exact  cause  of  death  at  longer  term  follow-­‐up,  among   patients  infected  with  these  strains.

Epidemic  CDI

  In  chapter  6,  general  risk  factors  for  CDI  were  investigated,  in  comparison  to  patients   who  had  no  CDI  and  in  comparison  to  patients  who  had  diarrhea  that  was  not  caused  by  CDI.  

Risk  factors  for  CDI  included  increased  co-­‐morbidity,  hematological  malignancy,  nasogastric   intubation  and  use  of  antibiotics,  especially  high  exposure  to  cephalosporins  and  clindamycin.  

These  factors  have  previously  been  recognized,  although  studies  lacked  appropriate  control   groups  of  non-­‐CDI  diarrheal  patients  25-­‐28.  Risk  factors  for  diarrhea  in  general  were  prior   abdominal  surgery,  co-­‐existing  diseases  of  the  digestive  system  and  low  exposure  to  1st   generation  cephalosporins  (i.e  prophylactic  use).  An  interesting  observation  in  the  study   described  in  chapter  6  was  the  fact  that  use  of  cephalosporins  was  a  risk  factor  for  CDI,   regardless  which  PCR-­‐ribotype  was  involved.  By  contrast,  use  of  clindamycin  was  a  very   strong  risk  factor  for  CDI  caused  by  type  017,  but  not  for  other  types  and  use  of  

(11)

Mluoroquinolones  was  a  very  strong  risk  factor  only  for  CDI  caused  by  type  027.  This  Minding   underscores  the  importance  of  culturing  strains  of  Clostridium  dif-icile  in  the  case  of  an   increased  incidence  of  CDI,  in  order  to  perform  antibiotic  susceptibility  testing  (and  possibly   PCR-­‐ribotyping,  to  recognize  outbreaks).    This  information  will  help  in  choosing  a  sensible   antibiotic  restriction  policy,  if  needed  (for  example:  a  restriction  in  the  use  of  clindamycin  in   the  case  of  an  outbreak  with  type  017,  versus  a  restriction  in  the  use  of  Mluoroquinolones  in   the  case  of  an  outbreak  with  type  027).

  A  worrying  development  is  the  occurrence  of  CDI  due  to  clindamcyin-­‐resistant  type  027   strains  that  has  been  observed  in  outbreaks  in  Ireland,  as  described  in  chapter  3.  Resistance  to   this  antimicrobial  agent  increases  the  risk  for  CDI  in  patients.  Another  problem  is  that  

clindamycin  is  an  important  alternative  when  cephalosporins  can  not  be  prescribed  to   patients,  for  example  because  of  a  ban  on  these  antibiotics  during  an  outbreak  of  CDI.  If  

physicians  would  then  prescribe  clindamycin,  without  further  knowledge  about  the  resistance   proMile  of  the  Clostridium  dif-icile  strain  that  is  involved,  an  outbreak  could  further  be  

facilitated.  Its  use  would  then  be  an  important  factor  contributing  to  the  persistence  and   spread  of  the  outbreak.  These  clindamcyin-­‐resistant  type  027  strains  probably  reMlect  the   emergence  of  a  new  clone,  because  MLVA  clearly  differentiated  between  clindamycin-­‐

susceptible  and  -­‐resistant  isolates.

  Chapter  6  shows  that  when  mortality  is  measured,  without  taking  the  involved  PCR-­‐

ribotype  into  account,  mortality  of  outbreak  strains  will  be  under-­‐estimated  and  mortality   caused  by  non-­‐outbreak  strains  will  be  over-­‐estimated.  A  remarkable  Minding  of  the  study   described  in  chapter  6  was,  that  when  the  PCR-­‐ribotype  that  caused  CDI  was  not  taken  into   account,  the  mortality  rate  for  these  patients  was  high  (17%  after  30  days).  However,  when   only  the  subgroup  of  the  outbreak  types  was  regarded,  mortality  was  much  higher.  Among   patients  with  CDI  caused  by  type  027,  all-­‐cause  mortality  was  26%  after  30  days  and  among   patients  with  CDI  caused  by  type  017,  it  was  23%  after  30  days.  The  high  disease  burden  of  

162

(12)

nosocomial  CDI  at  longer  term  follow-­‐up  has  been  mentioned  earlier  in  an  observational   study  29.  In  that  study  however,  no  control  group  was  included.    In  a  very  recent  article  by   Oake  et  al.,  the  independent  impact  of  hospital  acquired  CDI  on  in-­‐hospital  mortality  was   investigated,  after  adjusting  for  the  time-­‐varying  nature  of  CDI  and  baseline  mortality  risk  at   hospital  30.  On  average,  patients  with  CDI  had  a  3-­‐fold  increase  in  the  hazard  of  death.  In  this   study,  the  strain-­‐type  that  caused  CDI  was  not  taken  into  account.  However  the  results  of  this   study  match  those  that  we  found  for  the  outbreak  strains,  types  017  and  027,  which  suggests   that  our  Mindings  are  probably  not  unique  for  this  hospital.

  In  the  outbreak  setting  described  in  chapter  6,  C.  dif-icile  type  017  was  associated  with   similar  clinical  presentation  and  outcomes  as  type  027.  This  was  surprising,  because  type  017   lacks  the  toxin  A  gene  and  contains  none  of  the  proposed  virulence  markers  typical  for  type   027.    To  date,  outbreaks  with  type  017  have  been  associated  with  mortality  rates  between  4%  

and  7%  after  30  days,  which  is  considerably  lower  than  the  rate  that  we  found  in  our  study  

31-­‐34.  We  hypothesize  that  yet  unknown  virulence  markers  might  be  involved,  such  as  variants   of  TcdB,  or  non–toxin-­‐related  virulence  factors  17,35-­‐37.  In  a  very  recent  study  applying  

comparative  genome  analysis  of  14  sequences  strains,  SNPs  that  were  found  in  2  candidate   genes  with  yet-­‐unknown  functions  were  associated  with  severe  CDI  38.  Interestingly,  these   SNPs  were  found  to  be  present  among  type  027  strains,  but  also  among  type  017  strains  that   lacked  toxin  A.

Endemic  CDI

  An  interesting  observation  in  the  study  described  in  chapter  6  was  that,  among  patients   with  non-­‐outbreak  strains,  the  all-­‐cause  mortality  was  much  lower  (3%  after  30  days)  and   comparable  to  the  mortality  that  was  found  among  control  patients.  The  implication  of  this   observation  is  that  a  high  mortality  is  mainly  related  to  outbreak  strains  and/or  outbreak   settings,  but  not  to  endemic  settings,  as  was  observed  in  the  study  described  in  chapter  7.  In  

(13)

this  endemic  setting,  without  outbreaks  or  circulating  strains  that  have  earlier  been  

associated  with  increased  mortality,  the  mortality  among  CDI  patients  after  one  month  was   8%,  which  is  much  lower  that  the  rates  that  have  been  described  in  outbreak  situations  

1,4,12,39,40. CDI  patients  described  in  this  study  were  however  more  severely  ill  than  non-­‐CDI   diarrheal  patients,  as  illustrated  by  a  higher  leukocyte  count  and  a  higher  30-­‐day  mortality.

  The  analysis  of  risk  factors  in  this  endemic  setting  shed  more  light  on  some  observations   that  were  also  made  in  chapter  6.  Again,  it  was  found  that  use  of  (second  generation)  

cephalosporins  was  a  strong  risk  factor  for  CDI  1,41,42.  On  the  other  hand,  since  there  were  no   circulating  outbreak  strains,  use  of  Mluoroquinolones  or  clindamycin  did  not  increase  the  risk   for  patients  to  contract  CDI,  nor  did  the  use  of  proton  pump  inhibitors.  Earlier  studies  that   investigated  the  use  of  PPIs  in  association  with  CDI  produced  conMlicting  conclusions  43,44.  In   our  study,  half  of  the  non-­‐CDI  and  control  patients  also  used  PPIs.  It  could  be  possible  that  use   PPIs  is  only  a  weak  risk  factor  with  regard  to  CDI,  only  to  be  considered  important  in  outbreak   settings.

  Regarding  endemic  versus  outbreak  settings,  the  problem  exists  that  there  are  no  clear   deMinitions  for  what  they  imply.  The  endemic  incidence  of  CDI  in  The  Netherlands  is  around  18   per  10.000  admissions  11.  However,  the  endemic  incidence  that  has  been  reported  in  the   United  States  was  106  per  10,000  hospital  admissions,  which  is  a  factor  5  higher  41.  It  is  very   well  possible  that  these  two  “endemic  settings”  hold  different  risks  with  regard  to  the  

development  of  CDI.

Measuring  dissemination  of  Clostridium  dif-icile

  MLVA  had  been  described  as  a  very  reliable  tool  to  type  and  subtype  Clostridium  dif-icile  

45-­‐48.  In  a  study  by  Killgore  et  al.,  the  discriminatory  power  was  investigated  of  seven  DNA   Mingerprinting  techniques,  when  applied  to  42  C.  dif-icile  strains  collected  in  four  countries.  

164

(14)

Only  REA  and  MLVA  had  sufMicient  power  to  distinguish  strains  from  different  outbreaks,  and   to  discriminate  between  North  American  and  European  type  027  isolates  47.

  In  chapter  3,  clonal  spread  of  CDI  caused  by  type  017  in  a  hospital  in  Argentina  was   investigated  by  MLVA.  This  clonal  expansion  took  place  over  period  of  5  years,  during  which   an  increase  in  incidence  of  CDI  was  noticed.  Outbreaks  with  this  type  have  been  described  in   other  parts  of  the  world,  the  most  recent  being  the  outbreak  described  in  chapter  6  31,33,50.     Application  of  MLVA  resulted  in  interesting  information.  First,    MLVA  was  capable  of   discriminating  57  unique  MLVA  types  among  71  type  017  isolates.  Of  these  71  isolates,  56   were  from  the  hospital  in  Argentina  en  15  originated  from  other  parts  of  the  world.  It  was   found  that  75%  of  the  Argentinean  type  017  isolates  were  genetically  related  and  that  they   were  quite  distinct  from  type  017  isolated  that  originated  from  other  parts  of  the  world.  In   addition,  all  clonal  complexes  were  country-­‐speciMic  (with  the  exception  of  one  Canadian   isolate).  

  Second,  among  the  Argentinean  isolates,  clonal  complexes  did  not  show  a  correlation   over  time,  but  were  found  to  be  restricted  to  speciMic  wards.  This  observation  suggested  the   continuous  presence  of  clones  on  these  wards,  providing  a  source  for  new  infections  at  

various  time  intervals.  This  was  a  good  example  of  the  practical  use  of  MLVA  in  understanding   patterns  of  clonal  dissemination.  

  The  same  was  found  in  chapter  6,  where  with  MLVA,  it  was  possible  to  discern  a  pattern   of  clonal  dissemination  of  types  027  and  017,  indicating  transmission  of  spores  from  the   environment  or  asymptomatic  patients.  Transmission  occurred  despite  appropriate  infection   control  measures,  with  prolonged  presence  of  clones  on  certain  wards  and  throughout  the   hospital,  up  to  time  periods  of  more  than  a  year.

  In  chapters  4  and  5,  MLVA  was  applied  among  strains  with  identical  PCR-­‐ribotypes  from   various  hospitals.  Chapter  4  described  the  emergence  of  clindamycin-­‐resistant  type  027   strains.  An  interesting  observation  was  that  10  out  of  16  clindamycin-­‐resistant  strains  were  

(15)

found  within  a  clonal  complex,  while  these  strains  originated  from  5  different  hospitals.  Van   den  Berg  et  al.  demonstrated  that  MLVA  is  a  very  discriminatory  typing  technique  for  type  027   strains  and  that  there  was  much  variability  among  these  strains  50.  The  fact  that  the  

clindamycin  resistant  strains  formed  a  large  clonal  complex,  suggested  that  transmission  of   strains  between  different  hospitals  is  common.

  In  chapter  5,  the  emergence  of  CDI  caused  by  type  078  was  described.  It  was  speculated   that  regarding  this  strain,  humans  and  animals  share  a  common  source.  Reason  for  this   speculation  was  the  fact  that  type  078  strains  from  humans  an  animals  were  very  similar,  to   the  point  of  clonality.  The  high  degree  of  genetic  relatedness  among  type  078  isolates  was   surprising,  because  previous  studies  had  revealed  a  high  variation  among  type  017  and  027   strains  50-­‐52.  An  important  question  was  whether  this  could  be  extrapolated  to  other  PCR-­‐

ribotypes,  for  example  type  078.    Recently,  Bakker  et  al  answered  this  question  by  re-­‐iterating   all  the  steps  regarding  the  use  of  MLVA  to  (sub)type  type  078  strains  53.  They  found  MLVA  to   be  a  reliable  method  for  typing  of  078  strains  and  corroborated  by  MLVA  the  high  genetic   relatedness  of  102  human  and  56  porcine  type  078  strains  from  4  European  countries.  This   can  indicate  that  type  078  has  not  been  part  of  the  spectrum  of  human  CDI  for  a  long  enough   time  to  develop  a  more-­‐remote  relatedness  to  porcine  strains  (or  vice  versa)  or  that  it  is  very   stable  with  regard  to  mutations.  The  latter  is  not  likely,  because  Stabler  et  al.  54  observed  that   C.  dif-icile  readily  undergoes  genetic  exchange.  Using  whole  genome  analysis,  they  also  

hypothesized  that  human  strains  arose  from  those  found  in  pigs  on  the  basis  of  identiMication   of  a  toxinogenic  clade  containing  porcine,  bovine,  and  human  isolates.

The  notion  of  a  common  source  was  also  supported  by  the  fact  that  a  signiMicant  number  of   both  human  and  porcine  strains  were  resistant  to  tetracycline,  and  that  these  strains  

contained  the  mobile  element  Tn916-­‐like  transposon.  Interestingly,  this  element  has  also  been   described  for  tetracycline-­‐resistant  enterococci  from  human  and  porcine  origins  55.  

166

(16)

Interspecies  transmission  or  transmission  through  meat  products  have  been  suggested  as   sources  of  infection,  but  these  sources  have  yet  to  be  established  56-­‐58.

  Finally,  in  chapter  3,  MLVA  was  used  to  discriminate  between  recurrence  and  re-­‐

infection.    The  problem  here  was  that  when  a  patient  was  stricken  by  a  second  episode  of  CDI,   this  could  have  been  either  a  new  infection  (re-­‐infection),  especially  in  epidemic  settings  with   a  high  incidence  of  CDI,  or  the  second  episode  could  have  been  caused  by  the  same  strain  as   the  one  that  caused  the  Mirst  episode,  because  it  had  not  been  eradicated  from  the  patients’  gut   (relapse).  The  Minding  that  a  major  proportion  of  recurrences  was  caused  by  re-­‐infection   rather  than  relapse  has  been  reported  before  59,60.  In  chapter  3,  it  was  observed,  by  use  of   MLVA,  that  a  majority  (56%)  of  recurrences  was  caused  by  a  different  strain  (re-­‐infection),   despite  identiMication  of  the  identical  PCR-­‐ribotype  in  initial  infection  and  recurrence.  This   observation  may  be  of  clinical  relevance,  because  the  treatment  approach  towards  a  re-­‐

infection  with  a  different  strain  differs  from  the  approach  for  recurrent  infections  with  the   same  strain.  However,  it  remains  difMicult  to  distinguish  between  a  re-­‐infection  with  a  different   strain  and  a  relapse  with  the  same  endogenous  strain.  The  Mirst  could  represent  a  relapse  with   a  different  previously  unrecognized  endogenous  strain;  the  second  could  represent  a  re-­‐

infection  from  the  environment  with  the  same  circulating  strain.  To  complicate  matters  even   more,    van  den  Berg  et  al.  61  showed  that  different  PCR  ribotypes  could  be  found  

simultaneously  in  stool  samples  of  two  of  23  patients  with  CDI.  By  contrast,  O’Neill  et  al.  found   that  all  10  cultured  colonies  of  each  of  10  patients  with  a  Mirst  episode  of  CDI  contained  the   same  REA  type  59.  In  all,  the  Minding  that  the  majority  of  recurrences  were  re-­‐infections  with  a   different  017  MLVA  type,  supports  the  hypothesis  that  the  environment  and  possibly  other   patients  or  healthcare  workers  contributed  to  the  mode  of  transmission  signiMicantly.  This  is   also  supported  by  the  work  of  Riggs  et  al,  who  found  that  spread  through  asymptomatic   carriers  was  an  important  risk  factor  for  nosocomial  transmission  62.  

(17)

Epidemiology  revisited:  type  078,  humans  and  animals

  In  chapter  5,  the  emergence  of  a  novel  strain  of  C.  dif-icile  across  The  Netherlands  was   described.  This  novel  strain  belongs  to  PCR-­‐ribotype  078  (type  078)  and  toxinotype  V  and  was   found  to  have  similar  virulence  characteristics  as  the  type  027  strain,  such  as  the  presence  of   tcdA,  tcdB,  and  binary  toxin  genes  and  also  a  mutation  (C184T)  in  the  regulatory  tcdC  gene,  

that  results  in  a  premature  stop  codon  and  a  non-­‐functional  TcdC-­‐protein.  This  mutation  in   toxinotype  V  strains  had  been  reported  elsewhere,  but  had  never  been  ascribed  to  type  078  

63,64.  When  the  study  was  published,  type  078  was  the  second-­‐most  frequently  encountered   type  (13%)  in  The  Netherlands.  By  June  2009,  it  still  was  the  third  most  frequently  found  type  

11. By  contrast,  in  2005,  type  078  was  the  eleventh-­‐most  frequently  found  type  in  Europe  65.  In   a  recent  study  by  Bauer  et  al.,  395  isolates  from  73  hospitals  in  26  countries  were  investigated   by  PCR-­‐ribotyping.  Among  the  65  different  PCR  ribotypes  that  were  identiMied,  type  078  was   the  fourth  most  frequently  encountered  type  (Migure)  66.  From  these  data  it  can  be  concluded   that  the  increase  in  incidence  of  the  type  078  strain  is  a  phenomenon  that  has  also  occurred  in   other  parts  of  Europe.

  The  intriguing  aspect  about  this  type  is  the  fact  that  it  is  predominant  type  among  pigs,   calves  and  horses  63,67-­‐71. This  is  depicted  in  table  2.

Host Number  of  PCR-­

ribotypes  found Most  prevalent  

PCR-­ribotypes References

Humans Approximately  200 014,  020,  001,  078 Bauer  et  al  66 Horses 10  to  12 078  (up  to  35%) Keel  et  al  67,  Arroyo  et  al  69

Calves 3  to  8 078  (up  to  94%) Rodriguez-­‐Palacios  et  al  71,  Hammit  et  al  63  ,  Keel  et  al  67 Piglets 2  to  4 078  (up  to  83%) Keel  et  al  67,  Pirs  et  al  70

Table  2.  Predominant  PCR-­‐ribotypes  of  Clostridium  dif-icile  per  species.

168

Referenties

GERELATEERDE DOCUMENTEN

A post hoc analysis showed that among patients with a recurrence, 2 of the 7 patients in the antibody group (29%) had severe diarrhea during the recurrent episode, as compared

Demographic data and risk factors for patients with Clostridium difficile–associated disease (CDAD) due to ribotype 027, compared with patients with CDAD due to non-027

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden. Downloaded

For MLVA, the collection of 51 isolates was expanded with 11 human type 078/toxinotype V isolates that were available from other countries and another 3 Dutch type 078/toxinotype

Note: To cite this publication please use the final published version

Recently, a retrospective study analysing risk factors for CDI in an endemic setting in the USA reported an incidence rate of CDI of 106 per 10,000 hospital admissions, which is

Note: To cite this publication please use the final published version

Note: To cite this publication please use the final published version