• No results found

Epidemiological explorations on Clostridium difficile Infection Goorhuis, A.

N/A
N/A
Protected

Academic year: 2021

Share "Epidemiological explorations on Clostridium difficile Infection Goorhuis, A."

Copied!
41
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Epidemiological explorations on Clostridium difficile Infection

Goorhuis, A.

Citation

Goorhuis, A. (2011, October 12). Epidemiological explorations on Clostridium difficile Infection. Retrieved from https://hdl.handle.net/1887/17925

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/17925

Note: To cite this publication please use the final published version (if applicable).

(2)

Chapter  1

General  Introduction

Clostridium  dif-icile  Infection:  Disease,  Epidemiology,  Typing,   Diagnosis  and  Therapy

7

(3)
(4)

Introduction

  Nosocomial  diarrhea  has  been  a  long  been  regarded  as  a  “nuisance”  problem,  

associated  with  prolonged  hospital  stay  and  use  of  antibiotics.  Initially,  antibiotic  associated   diarrhea  was  attributed  to  Staphylococcus  aureus  1.  The  organism  Clostridium  dif-icile  was  Mirst   discovered  by  Hall  and  O’Toole  in  1935  2,  but  it  was  not  until  1977  that  Bartlett  and  colleagues   identiMied  C.  dif-icile  at  the  causative  agent  of  “antibiotic  associated  pseudomembranous  

colitis”  3.  To  date,  Clostridium  dif-icile  infection  (CDI)  is  the  most  important  cause  of   nosocomial  diarrhea  and  the  emergence  of  severe  disease  associated  with  CDI  has  now   become  a  problem  of  equal  magnitude  as  methicillin  resistant  Staphylococcus  aureus   infections.  Over  the  past  10  years,  CDI  has  been  increasing  in  incidence  and  severity,  and  is   associated  with  an  increased  duration  of  hospitalization,  costs,  morbidity,  and  mortality   among  patients  4,5.

  This  thesis  describes  the  emergence  of  outbreaks  of  severe  CDI  caused  by  certain   virulent  types  of  Clostridium  dif-icile  and    in  the  Netherlands.  In  addition,  type  speciMic  risk   factors  are  investigated  and  the  question  is  explored  whether  differences  exist  between  CDI   that  occurs  in  outbreaks  and  CDI  that  occurs  in  non-­‐epidemic  settings.  Another  research   question  in  this  thesis  concerns  the  usefulness  of  highly  discriminatory  molecular   Mingerprinting  techniques,  to  better  understand  the  dynamics  of  CDI  outbreaks.

Clinical  disease

  Clostridium  dif-icile  is  a  gram-­‐positive,  spore  forming  rod,  that  grows  in  a  strict   anaerobic  environment.  The  bacterium  is  ubiquitous  in  the  soil  and  is  capable  of  causing   disease  among  both  humans  and  animals  (also:  chapter  5)  6-­‐8.  

  The  clinical  spectrum  of  disease  caused  by  CDI  can  range  from  mild  diarrhea,  deMined   as  3  or  more  loose  stools  (taking  the  shape  of  the  container)  per  24-­‐hour  period,  to  fatal  colitis  

9,10.  Severe  CDI  is  deMined  as  shown  in  table  1  4.

9

(5)

CDI  causing  admission  to  a  healthcare  facility  for  treatment CDI  causing  admission  to  an  intensive  care  unit  for  treatment

Surgery  (colectomy)  for  toxic  megacolon,  perforation  or  refractory  colitis

Death  within  30  days  after  diagnosis  if  CDI  is  either  the  primary  or  a  contributive  cause

Table  1.  DeMinitions  for  severe  CDI.  Adapted  from  Kuijper  et  al  4.

  Severe  disease  is  often  accompanied  by  a  typical  endoscopic  picture,  known  as  

pseudomembanous    colitis,  where  destruction  of  bowel  anatomy  with  hemorrhage  and  deep   ulceration  causes  the  formation  of  pseudomembranes.  As  a  result,  patients  suffer  from   dehydration  and  tremendous  discomfort  caused  by  abdominal  pain,  fever  and  nausea.  The   most  serious  disease  entity,  although  rare,  is  the  syndrome  known  as  toxic  megacolon,  deMined   by  an  acute  dilatation  of  all  or  part  of  the  colon  to  a  diameter  greater  than  6  cm,  accompanied   by  systemic  toxicity;  this  syndrome  is  associated  with  a  33%  mortality  rate11.  When  CDI  is   complicated  by  toxic  megacolon,  surgery  (colectomy)  is  required  in  65–71%  of  cases  12.

! One  of  the  most  challenging  aspects  of  caring  for  patients  with  CDI  is  the  recurrence  of   disease  after  successful  initial  therapy  is  completed.  A  recurrence  is  deMined  by  an  episode  of   CDI  that  occurs  within  8  weeks  following  the  onset  of  a  previous  episode  4.  A  recurrence  can   correspond  to  a  relapse  involving  the  same  strain  or  to  a  re-­‐infection  with  a  different  strain  

13-­‐16. Recurrence  rates  after  treatment  with  metronidazole  or  vancomycin  are  similar  (20.2%  

and  18.4%,  respectively)  (Table  2).  The  use  of  either  metronidazole  or  vancomycin  impairs   resistance  to  colonization,  thereby  facilitating  recurrent  infection.  Treatment  options  for   recurrent  disease  are  discussed  later.

(6)

T h e ne w e ngl a nd jou r na l o f m e dicine

n engl j med 359;18 www.nejm.org october 30, 2008

1936

of disease after successful initial therapy is com- pleted. Recurrence rates after treatment with metronidazole or vancomycin are similar (20.2%

and 18.4%, respectively) (Table 1). The use of ei- ther metronidazole or vancomycin impairs resis- tance to colonization, thereby facilitating recurrent infection, which typically occurs within 4 weeks after the completion of therapy. Antimicrobial resistance to vancomycin in patients with C. dif-

ficile infection has not been reported, and resis-

tance to metronidazole is rare. Recurrence may result from reinfection with a different strain of

C. difficile or persistence of the strain responsible

for the initial episode.

29

Role of Host Immunity

The risk of recurrent C. difficile infection is in- creased in patients who have already had one re- currence, rising from about 20% after an initial episode to about 40% after a first recurrence and to more than 60% after two or more recurrenc- es.

30,31

This dramatic escalation in the risk of re- current C. difficile infection is probably caused in part by the selection of patients without protec- tive immunity against C. difficile, which makes them vulnerable to repeated attacks. C. difficile infection develops in only half the hospitalized patients who become colonized with toxigenic C. difficile as a complication of antimicrobial therapy, where- as the remainder are symptomless carriers.

32

Af- ter colonization, symptomless carriers manifest an early increase in serum IgG antibodies against toxin A, whereas patients in whom C. difficile in- fection develops do not have such increased lev-

els (Fig. 4A).

32

During an initial episode of infec- tion, some patients manifest a primary immune response with an early rise in IgM antitoxin A, followed by an increase in IgG antitoxin (Fig. 4B).

33

In one study, patients with the highest titers of serum IgG antitoxin at the end of antimicrobial therapy were at a decreased risk for subsequent recurrence by a factor of 44, as compared with those with lower antitoxin titers.

33

Management of Recurrence General Considerations

First, the ultimate goal of treatment is to discon- tinue all antibiotics and allow the normal bowel microflora to restore itself. Early studies of anti- biotic-associated colitis (published before C. dif-

ficile was identified as the causative agent) report-

ed complete recovery in most patients after the discontinuation of clindamycin.

34,35

Second, not all patients in whom recurrent diarrhea develops when they stop taking metronidazole or vanco- mycin have recurrent C. difficile infection. Other conditions, such as postinfectious irritable bowel syndrome, microscopic colitis, and inflammato- ry bowel disease, may be responsible. Third, a positive toxin assay in a patient with minimal or no symptoms should not prompt treatment. Re- peated stool assays are not recommended after therapy, except in patients with moderate or se- vere diarrhea. Fourth, in patients with persistent diarrhea despite several weeks of treatment with metronidazole or vancomycin, another cause should be sought, since C. difficile is rarely if ever resistant to metronidazole or vancomycin.

Antibiotics and Probiotics

An approach to the management of recurrent

C. difficile infection is presented in Table 2.36

Since antimicrobial resistance is not clinically prob- lematic, a first recurrence of C. difficile infection can be treated with the same agent used to treat the initial episode. There is no standard or prov- en therapy for multiple recurrences. However, in one study of 163 patients with recurrent infec- tion, regimens that incorporated tapering or pulsed administration of vancomycin resulted in significantly fewer recurrences, with rates of 31.0% (P = 0.01) for tapering and 14.3% (P = 0.02) for pulsed administration, as compared with the rate for all other metronidazole or vancomycin treatments combined (49.6%).

31

Probiotics, such

Table 1. Treatment Failures and Recurrences of C. difficile Infection with Metronidazole and Vancomycin Therapy.*

Variable No. of

Studies Treatment Failure Recurrence no./total no. (%) Metronidazole

Year 2000 or before 4 18/718 (2.5) 48/715 (6.7) After 2000 5 275/1508 (18.2) 332/1162 (28.6) Combined periods 9 293/2226 (13.2) 380/1877 (20.2) Vancomycin

Year 2000 or before 11 22/637 (3.5) 112/624 (17.9)

After 2000 2 2/71 (2.8) 36/181 (19.9)

Combined periods 13 24/708 (3.4) 148/805 (18.4)

* Data are from Aslam et al.21 and Zar et al.24

The New England Journal of Medicine

Downloaded from nejm.org at LEIDS UNIVERSITY MEDISCH CENTRUM on January 12, 2011. For personal use only. No other uses without permission.

Copyright © 2008 Massachusetts Medical Society. All rights reserved.

Table  2.  Treatment  Failures  and  Recurrences  of  C.  dif-icile  Infection  with  Metronidazole  and  Vancomycin  Therapy  17-­‐19.  

  In  The  Netherlands,  a  national  sentinel  surveillance  in  19  hospitals  across  the  country   is  being  conducted  since  since  May  2009.  Extrapolating  the  data  of  this  surveillance  to  all  

hospitals  in  The  Netherlands,    it  is  estimated  that  each  year,  more  than  2700  hospitalized  patients   will  develop  CDI,  of  which  100  will  succumb  as  a  direct  or  indirect  consequence  of  the  infection.  

In  these  estimations,  the  impact  of  CDI  in  other  healthcare  facilities  than  hospitals  was  not  

included.  Therefore,  the  true  number  of  patients  with  CDI  admitted  to  healthcare  facilities  will  be   higher.

  Based  on  a  recent  study,  current  U.S.  estimates  suggest  that  CDI  affects  7178  inpatients   on  any  given  day,  and  causes  the  deaths  of  about  300  patients  per  day  20.  These  staggering   statistics  have  brought  Clostridium  dif-icile  to  the  forefront  as  one  of  the  major  challenges  that   healthcare  facilities  are  addressing  today.

Virulence

! Only  toxigenic  (toxin  producing)  forms  of  Clostridium  dif-icile  cause  disease.  Before  the   toxins  can  exert  their  effects,  ingestion  and  germination  of  spores  in  the  intestinal  tract  is   required  21. The  organism’s  spores  are  very  resilient  to  heat,  desiccation,  air,  detergents  and  

11

(7)

alcohol  and  can  remain  viable  in  the  hospital  environment  for  weeks  to  years.  Recently,   differences  in  sporulation  capacity  of  different  C.  dif-icile  strains  have  been  associated  with   virulence  22. Two  recent  studies  by  Lawley  et  al.,  gave  more  insight  in  the  role  of  spores  in  the   transmission  of  CDI  23,24.  First,  they  described  a  novel  protocol  for  the  isolation  of  highly   puriMied  spores  from  cultures  of  a  human-­‐virulent  C.  dif-icile  strain  24.  The  availability  of   puriMied  spores  facilitated,  for  the  Mirst  time,  an  estimate  of  the  infectious  dose  of  this  

pathogen.  Second,  they  described  in  a  mouse  model  a  highly  contagious  “super  shedder-­‐state”  

of  spores  that  was  caused  by  antibiotic  treatment  of  CDI  and  characterized  by  a  dramatic   reduction  in  the  intestinal  microbiota  species  diversity,  C.  dif-icile  overgrowth,  and  excretion  of   high  levels  of  spores  23.  Stopping  antibiotic  treatment  led  to  recovery  of  the  intestinal  

microbiota  species  diversity  and  suppression  of  C.  dif-icile  levels.  Spore-­‐mediated  

transmission  to  immunocompetent  mice  treated  with  antibiotics  resulted  in  self-­‐limiting   mucosal  inMlammation  of  the  large  intestine.  In  contrast,  transmission  to  mice  whose  innate   immune  responses  were  compromised,  led  to  a  severe  intestinal  disease  that  was  often  fatal.

  Two  structurally  similar  toxins,  denoted  A  and  B,  are  the  main  virulence  determinants   linked  to  CDI,  and  most  pathogenic  strains  of  Clostridium  dif-icile  produce  both  toxins  25,26.  The   role  of  these  toxins  in  the  pathogenesis  of  CDI  has  been  well-­‐described  26.  Both  toxin  A  and   toxin  B  are  pro-­‐inMlammatory,  cytotoxic  and  enterotoxic  in  the  human  colon  27,28.    In  a  recent   nature  study,  the  importance  of  both  toxins  was  demonstrated,  because  Clostridium  dif-icile   producing  either  one  or  both  toxins  showed  cytotoxic  activity  in  vitro  that  translated  directly   into  virulence  in  vivo  29. The  authors  demonstrated  this  effect  by  creating  a  genetic  knockout   model,  in  which  they  neutralized  the  genes  encoding  for  toxin  A,  toxin  B,  or  both  toxin  genes.  

In  that  way,  they  were  able  to  show  that  in  the  situation  where  the  genes  for  both  toxin  A  and   toxin  B  were  neutralized,  virulence  was  completely  attenuated,  whereas    isogenic  mutants  of   C.  dif-icile,  producing  either  toxin  A  or  toxin  B  alone,  caused  fulminant  disease  in  the  hamster   model  of  infection.  The  result  of  this  study  contradicted  an  earlier  study  that  was  published  in  

(8)

nature,  that  showed  that  toxin  B,  and  not  toxin  A,  was  the  determinant  of  virulence  30.  A   possible  explanation,  among  others,  for  the  contradicting  result  in  that  study,  is  the  fact  that   different  genotyping  methods  were  used.

  Toxins  A  and  B  are  encoded  by  two  genes,  tcdA  and  tcdB,  that  map  to  a  19.6-­‐kb   pathogenicity  locus  (PaLoc,  see  Migure  1)  containing  additional  regulatory  genes  31.  An   important  additional  regulatory  gene  is  tcdC,  which  is  a  putative  negative  regulator  of  the   production  of  toxins  A  and  B  32.  Deletions  in  this  gene  could  lead  to  an  increased  production  of   toxins  A  and  B,  due  to  lack  of  negative  regulation.

Figure  1.  Pathogenicity  locus  of  Clostridium  dif-icile  33.

tcdC  lies  downstream  of  tcdA  and  is  transcribed  in  the  opposite  direction  from  the  two  toxin  

genes,  and  TcdC  is  highly  expressed  in  early  exponential  phase  but  declines  as  growth  moves   into  the  stationary  phase  34.  This  decline  in  TcdC  expression  corresponds  to  increases  in  TcdA   and  TcdB,  suggesting  that  TcdC  may  function  as  a  negative  regulator  of  toxin  production.

tcdD  is  found  upstream  of  tcdB  and  is  coordinately  expressed  with  both  of  the  toxin  genes.  

TcdD  is  also  homologous  to  TetR  and  BotR,  which  serve  as  positive  regulators  of  tetanus  and  

13

(9)

botulinum  toxin  synthesis,  respectively  35,36.  It  is  assumed  that  TcdD  is  a  major  positive   regulator  of  tcdA  and  tcdB  expression.

The  gene  encoding  TcdE  is  positioned  between  tcdB  and  tcdA  and  shows  homology  with  holin   proteins  and  thus  has  been  speculated  to  facilitate  the  release  of  TcdA  and  TcdB  through   permeabilization  of  the  C.  dif-icile  cell  wall  37.  In  summary,  toxin  expression  appears  to  be   dependent  on  decreases  in  TcdC,  TcdD-­‐enhanced  expression,  and  TcdE-­‐mediated  release  from   the  cell.

Clostridium  dif-icile  isolates  with  varying  genetic  modiMications  within  the  PaLoc  have  been  

described  38,39.  These  include  variant  Clostridium  dif-icile  isolates  that  produce  functional  toxin   proteins  TcdA  and  TcdB,  and  toxin-­‐variant  isolates  that  fail  to  produce  detectable  toxins  38,40-­‐42.   Although  originally  thought  to  be  non-­‐pathogenic,  clinically  relevant  toxin  A-­‐negative,  toxin  B-­‐

positive  strains  of  Clostridium  dif-icile  that  cause  diarrhea  and  colitis  in  humans  have  been   isolated  with  increasing  frequency  worldwide  (also  chapter  3)  43-­‐46.

  Another  proposed  virulence  factor  is  the  binary  toxin,  which  has  been  associated  with   increased  disease  severity  and  mortality  47. Genes  for  the  binary  toxin  are  located  outside  the   PaLoc  48.  The  extent  to  which  this  toxin  contributes  to  the  pathogenicity  of  Clostridium  dif-icile   had  been  unknown  until  recently.  However,  in  a  recent  study  by  Schwan  et  al.,  the  effects  of   binary  toxin  on  human  colon  carcinoma  cells  were  studied  49.  The  authors  observed  that  the   toxin  caused  rearrangement  of  microtubules  and  the  formation  of  long  cellular  protrusions.  

The  microtubule-­‐based  protrusions  formed  a  dense  meshwork  at  the  cell  surface,  which   wrapped  and  embedded  Clostridia,  thereby  increasing  the  adherence  of  the  pathogens.    The   authors  also  found  that  C.  dif-icile  colonization  of  the  cecal  content  was  signiMicantly  decreased   when  binary  toxin  was  functionally  neutralized  in  the  gut  of  mice.  They  concluded  that  the   increased  cell-­‐surface  adherence  optimized  the  colonization  by  the  pathogen.

(10)

Other  possible  virulence  factors  include  surface  layer  proteins,  cell  wall  proteins,  

bacteriophages  and  other  non-­‐toxin  factors;  these  are  currently  under  intensive  investigation  

23,50-­‐52.

Epidemiology

  Since  2000,  the  incidence  of  CDI  has  been  increasing  worldwide  and  several  large   outbreaks  of  CDI  in  Montreal  starting  in  2003  have  marked  a  new  era  of  Clostridium  dif-icile   investigations  and  research  53,54.  The  number  of  Clostridium  dif-icile  cases  in  North  America   and  Europe  has  been  expanding  dramatically  over  the  past  several  years,  in  part  due  to  the   emergence  of  novel  strains  and  to  prolonged  outbreaks  of  disease,  which  facilitates  the   continuing  spread  of  the  organism  (see  also  chapters  2,  3,  5  and  6)  55-­‐59.  As  shown  in  Migure  2,   data  from  U.S.  show  a  signiMicant  increase  in  CDI  discharges  since  2001  60,61.  

!"#$%&'()!"#$%&'()*!('+*!,-(!!"#$%&'(')*+(',-'.'"/!'$$-%#'+*.!.#$*'$*!/0"1"23!4*(!563666!&-$4#+'7!.#$%&'()*$3!,(-8!599:!

+&(-;)&!<66=>!?(-8!599:!+-!<6653!+&*!('+*!-,!0"1"!4*(!563666!.#$%&'()*$!#@%(*'$*.!AB!C6!4*(%*@+!D&#7*!+&*!('+*!-,!#@%(*'$*!

,(-8!<665!+-!<66=!D'$!%-@$#.*('A7B!$+**4*(E!9<!4*(%*@+>!F&;$!+&*!(*%*@+!$&'(4!(#$*!#@!0"1"!D'$!@-+!'++(#A;+'A7*!$-7*7B!+-!'@!

#@%(*'$*!#@!+&*!@;8A*(!-,!&-$4#+'7!.#$%&'()*$>!

Figure    2.  Discharge  rate  for  Clostridium  dif-icile  associated  disease  (CDAD),  per  10,000  hospital  discharges,  from  1993   through  2005.  The  upper  line  represents  the  discharges  where  CDAD  was  one  of  the  listed  diagnoses.  The  lower  line   represents  the  discharges  where  CDAD  was  the  principal  dignosis.  From  1993  to  2001,  the  rate  of  CDAD  per  10,000  

discharges  increased  by  60  percent  while  the  rate  of  increase  from  2001  to  2005  was  considerably  steeper:  92  percent.  Thus   the  recent  sharp  rise  in  CDAD  was  not  attributable  solely  to  an  increase  in  the  number  of  hospital  discharges.  

 

  Although  CDI  has  traditionally  been  seen  in  elderly  inpatients  and  those  recently   discharged  from  healthcare  facilities,  CDI  can  also  occur  in  the  community.  According  to  the   proposed  deMinitions  4, CDI  cases  are  classiMied  as  healthcare  facility-­‐onset  if  they  are  

15

(11)

diagnosed  more  than  48  hours  after  admission.  They  are  deMined  as  community-­‐onset  if  they   are  diagnosed  in  the  community  or  within  48  hours  after  admission.  Furthermore,  community   onset  CDI  cases  are  classiMied  on  the  basis  of  the  time  since  the  last  discharge:  if  within  4   weeks,  CDI  is  considered  to  be  healthcare  facility-­‐associated;  if  4-­‐12  weeks:  indeterminate   exposure;  and  if  more  than  12  weeks:  community-­‐associated.  See  Migure  3  for  a  schematic   presentation  of  these  deMinitions.  A  study  carried  out  in  the  U.S.  showed  that  only  42%  of  more   than  1000  patients  with  CDI  had  onset  of  their  infection  in  a  healthcare  facility  62.  In  fact,  34%  

of  the  cases  were  acquired  in  the  community  and  had  no  healthcare  associated  risk  factors.

SEVERE CDAD CASE

This is a CDAD patient to whom any of the following criteria apply:

1. admission to a healthcare facility for treatment of community-associated CDAD;

2. admission to an intensive care unit for treat- ment of CDAD or its complication (e.g., for shock requiring vasopressor therapy);

3. surgery (colectomy) for toxic megacolon, per- foration or refractory colitis;

4. death within 30 days after diagnosis if CDAD is either the primary or a contributive cause.

OUTBREAK OF CDAD

An outbreak can be defined as the occurrence of two or more related cases of CDAD over a defined period agreed locally, taking account of the background rate [28].

ORIGIN (Fig. 2)

The proposed categories are based on information concerning the origin of CDAD (healthcare-asso- ciated or community-associated) and the onset of symptoms (within the context of healthcare or within the community).

Healthcare-associated case

This is a CDAD case patient with onset of symptoms at least 48 h (>48 h) following admis- sion to a healthcare facility (healthcare-onset, healthcare-associated) or with onset of symptoms in the community within 4 weeks following dis- charge from a healthcare facility (community- onset, healthcare-assocciated).

Community-associated case

This is a CDAD case patient with onset of symptoms while outside a healthcare facility, and without discharge from a healthcare facility

within the previous 12 weeks (community-onset, community-associated) or with onset of symp- toms within 48 h following admission to a health- care facility without residence in a healthcare facility within the previous 12 weeks (healthcare- onset, community-associated).

Unknown case

This is a CDAD case patient who was discharged from a healthcare facility 4–12 weeks before the onset of symptoms.

ONSET (Fig. 2) Healthcare onset

Symptoms start during a stay in a healthcare facility.

Community onset

Symptoms start in a community setting, outside healthcare facilities.

NECESSITY FOR INVESTIGATION AND REPORTING OF OUTBREAKS ON BOTH NATIONAL AND EUROPEAN LEVELS

The definitions proposed above may be used in implementing CDAD surveillance schemes in spe- cific populations. Depending upon the populations and the reasons for surveillance and reporting, all or some of these definitions may be appropriate.

For example, in the UK (http://www.hpa.org.uk/

cdr/archives/2005/cdr3405.pdf), the population can be restricted to patients over 65 years of age, regardless of the presence or absence of specific risk-factors (e.g., prior antimicrobial therapy).

Since the implementation of comprehensive and systematic surveillance systems at the national level in each of the European member states will require some time, countries should first develop early-warning and response capa-

time

Admission Discharge

Healthcare-onset Community-onset

48h 4 weeks 8 weeks

Community-associated Unknown

Healthcare-associated (*)

(*) : - may be community- or healthcare-associated, depending on case’s history.

- if healthcare-associated, may have been acquired in the same facility or imported from another.

Fig. 2. Relationship among epide- miological definitions.

14 Clinical Microbiology and Infection, Volume 12 Supplement 6, 2006

! 2006 Copyright by the European Society of Clinical Microbiology and Infectious Diseases, CMI, 12 (Suppl. 6), 2–18

Figure  3.  Epidemiological  deMinitions  for  healthcare  vs.  community  onset  of  CDI  and  a  healthcare  association  vs.  a  community   association  of  CDI  4.

  Recently,  severe  CDI  was  also  reported  among  pregnant  women  63.  The  fact  that  CDI  is   increasingly  found  in  a  population  that  has  previously  been  regarded  as  low  risk,  could  reMlect   a  change  in  epidemiology  related  to  the  emergence  of  novel  strains  of  Clostridium  dif-icile   (chapters  2,  3,  5  and  6)53,64-­‐66.

  In  May  2009,  Jarvis  et  al.  published  a  survey  regarding  Clostridium  dif-icile  infections,   which  showed  increasing  prevalence  of  CDI  in  the  United  States  20.

(12)

For  this  survey,  infection  control  departments  were  asked  to  report  laboratory  data  from   patients  in  their  facility  that  were  tested  for  Clostridium  dif-icile  on  a  single  day  sometime   during  the  period  of  May  to  August  2008.  In  total,  data  were  collected  from  648  hospitals  in  47   states  (i.e.  12.5%  of  all  the  hospitals  in  the  United  States).  See  also  Migure  4.

The  average  number  of  facilities  participating  per  state  was  14.3.    On  average,  more  than  12  of   every  1000  inpatients  in  the  U.S.  healthcare  system  was  found  to  be  infected  with  Clostridium   dif-icile.  In  Europe,  a  recent  (2010)  study  by  Bauer  et  al.    also  reported  an  increase  in  

incidence,  from  2.5  to  4.1  per  10.000  patient-­‐days,  compared  to  data  from  Barbut  in  2007    

67,68. In  this  last  study,  all  cause  and  attributable  mortality  rates  were  strikingly  high:  22%  vs.  

7%.

Our respondents reported 1443 C difficile-colonized or -infected patients in 110,550 inpatients (our denomin- ator being nearly 20% of inpatients on any 1 day). Thus, the overall C difficile prevalence in US health care facili- ties was 13.1 per 1000 inpatients. This is 6.5 to 20 times higher than any previous incidence estimates (using different methodologies). Our C difficile rate should be considered a minimum estimate because all patients with diarrhea are not tested for this pathogen and the most frequent test used by our respondents was the EIA, which has a limited sensitivity (73%-75% on a sin- gle test).13-15Given that very few facilities were culturing for C difficile, it is not surprising that none of the respon- dents reported detecting the NAP1 strain. Our data also show that studying the epidemiology of the NAP1 strain (or any other emerging C difficile strain) will be severely hampered by the failure to use culture as a method to detect C difficile in patients with diarrhea.15

When we asked our respondents to examine the CDC surveillance criteria for health care- versus community- associated CDI, the majority (73%) of reported CDI patients was classified as health care-associated (with

either hospital or community onset).9Given the findings that 54.4% of CDI patients were detected within 48 hours of admission, 47% had been hospitalized within 90 days of onset, and 35% had long-term care facility admission within 30 days of onset, this suggests that a large propor- tion of the patients with CDI acquired the pathogen dur- ing previous health care facility admissions.

The major risk factors for CDI are age, health care facility exposure, and antimicrobial exposure. We found that nearly 70% of our reported CDI patients were .60 years of age (52.2% were .70 years of age) and that nearly 80% had received antimicrobials within 30 days of CDI onset. Our survey also shows that ,50% of respondent facilities had antimicrobial stewardship programs. Such programs were more common at medical school- than nonmedical school- affiliated hospitals and involved a wide variety of inter- ventions. The CDI prevalence rate was significantly higher at facilities without an antimicrobial steward- ship program, but these data likely are confounded by type of antimicrobial stewardship intervention(s), which varied widely across facilities, patient case-mix

A L

(9.55)

A K

(N/A)

A Z

(12.8)

A R

(26.67)

C A (18.70)

C O(13.76)

NH (11.40)

MA (24.96)

RI (28.88)

CT (7.29)

NJ (17.67)

DE (N/A)

MD (10.70)

V T (6.00)

F L

(12.22)

G A (7.36)

H I(0/00)

ID(3.68)

IL

(16.15) IN(10.69)

IA (6.82)

K S(12.84) K Y(21.80)

L A

(5. 45)

ME

(23.81)

MI(22.72)

MN(7.21)

MS(6.01)

MO(10.20)

N E

(7.04)

N V(11.11)

N M(10.40)

N Y(19.40)

N C(6.17)

N D(9.51)

O H

(10.42)

O K

(7.02)

O R

(9.43)

P A

(12.31)

S C(14.15)

S D(19.00)

T N(14.45)

T X

(12.70)

U T (12.99)

V A (9.25)

W A

(2.57)

W V(10.00)

W I

(17.6)

W Y(N/A)

MT(12.22)

≥ 20 per 1,000.

15- <20 per 1,000.

12.5- <15 per 1,000.

10- <12.5 per 1, 000.

7- <10 per 1,000.

0- <7.0 per 1,000.

No Responses. *Rate per 1,000 in patients.

DC (N/A)

Fig 2. The APIC National C difficile Inpatient Survey: C difficile prevalence rates by state.

268 Jarvis et al. American Journal of Infection Control

May 2009

Figure  4.  The  APIC  National  C.  dif-icile  Inpatient  Survey:  C.  dif-icile  prevalence  rates  by  state  20.

17

(13)

Given  the  morbidity  and  mortality  associated  with  CDI,  the  impact  of  these  infections  is   considerable.  If  the  data  from  the  survey  by  Jarvis  et  all  would  be  extrapolated  to  all   healthcare  facilities  in  the  United  States,  then  there  would  be  approximately  7178  CDI   inpatients  on  any  1  day  20.  The  published  literature  provides  an  average  cost  for  each  CDI   patient  of  approximately  4475  U.S.  dollars  per  episode  5,69-­‐72.  Thus,  the  approximate  cost  for   these  7178  patients  would  be  32  million  U.S.  dollars.  The  estimated  excess  length  of  stay  is  5.6   days  71-­‐73, so  these  7178  CDI  patients  would  have  an  average  of  40.197  extra  days  of  

hospitalization  as  a  result  of  their  CDI.    Furthermore,  several  studies  have  estimated  the   mortality  associated  with  CDI;  the  mean  mortality  in  these  studies  is  4.2%  74,75.  Thus,  301  of   the  estimated  7178  CDI  patients  who  present  on  any  1  day  as  inpatients  would  be  expected  to   die.  These  estimates  indicate  that  the  impact  of  CDI  is  enormous  and  well  worth  the  cost  of   prevention.

  Patients  in  healthcare  institutions  are  most  at  risk  of  acquiring  the  organism,  which   becomes  a  component  of  their  gut  Mlora  10.  In  a  prevalence  study  by  Johnson  et  al.  ,  it  was   found  that  >20%  of  patients  who  remained  in  the  facility  longer  than  one  week  and  up  to  nine   weeks,  became  colonized  with  Clostridium  dif-icile  76.  This  study  supported  the  view  that   patients  acquire  Clostridium  dif-icile  during  their  hospitalization,  as  opposed  to  the  view  that   the  organism  is  a  small  component  in  virtually  everyone’s  bowel  microbiotia  and  colonizes   larger  parts  of  the  colon,  following  disruption  of  the  normal  bowel  Mlora  caused  by  the  use  of   antibiotics.  In  fact,  some  patients  who  are  already  colonized  with  their  own  non-­‐toxinogenic   strain  before  they  enter  healthcare  may  be  protected  from  acquiring  a  pathogenic  version  of   Clostridium  dif-icile  77.  

Typing  and  identiJication  of  new  Clostridium  dif-icile  strains

  Several  typing  methods  exist  for  Clostridium  dif-icile.  Depending  on  the  typing  method   that  is  used,  different  names  can  exist  for  the  same  strain.    In  a  study  by  Killgore  et  al,  the  

(14)

seven  most  frequently  used  genotyping  methods  were  described  and  compared  78.  The  names   of  these  methods  are  multilocus  variable-­‐number  tandem-­‐repeat  analysis  (MLVA),  ampliMied   fragment  length  polymorphism  (AFLP),  surface  layer  protein  A  gene  sequence  typing  

(slpAST),  PCR-­‐ribotyping,  restriction  endonuclease  analysis  (REA),  multilocus  sequence   typing  (MLST),  and  pulsed-­‐Mield  gel  electrophoresis  (PFGE).  All  these  techniques  were  capable   of  detecting  outbreak  strains,  but  only  REA  and  MLVA  showed  sufMicient  discrimination  to   distinguish  strains  from  different  outbreaks.  The  current  epidemic  strain  is  known  as  027/

NAP1/BI,  which  is  based  on  three  different  typing  systems:  PCR-­‐ribotype  027,  PFGE  type   NAP1  and  REA  type  BI.

  In  Europe,  PCR-­‐ribotyping  is  used  a  the  standard  typing  method.  This  method  is  based   on  the  fact  that  every  bacterial  strain  contains  several  rRNA  operons  and  that  there  is  a  strain-­‐

dependent  variation  in  the  size  and  number  of  the  16S-­‐23S  intergenic  spacer  regions.  

AmpliMication  of  these  regions  results  in  a  variety  of  PCR-­‐products  whose  size  and  number  will   vary  among  different  strains.  PCR-­‐ribotyping  has  appeared  a  robust  typing  method,  that  is   stable  and  reproducible  79-­‐81.

! To  study  spread  and  epidemiology  among  strains  with  the  same  PCR-­‐ribotype,  such  as   in  outbreak  situations,  a  more  discriminatory  method  is  needed.  A  good  method  in  such  a   situation  is  Multi  Locus  Variable-­‐number  of  Tandem-­‐repeat  Analysis  (MLVA).  This  method  is   based  on  the  ampliMication  of  regions  with  short  tandem  repeats.  The  number  of  tandem   repeats  within  these  regions  (or  loci)  can  differ  between  strains  and  can  therefore  be  used  for   typing.  The  availability  of  the  complete  sequence  of  the  C.  dif-icile  genome  of  strain  630  

provided  the  opportunity  to  identify  these  short  tandem  repeats  82.  The  MLVA  developed  by   van  den  Berg  et  al.,  uses  automated  fragment  analysis  and  multi-­‐colored  capillary  

electrophoresis  and  proved  to  be  a  highly  discriminatory  method,  able  to  discriminate  among   strains  that  had  the  same  PCR-­‐ribotype  83. In  chapter  3,  this  method  is  used  to  investigate  a   large  outbreak  of  CDI  caused  by  PCR-­‐ribotype  017.  

19

(15)

  The  changing  epidemiology  of  CDI  may  well  be  related  to  the  rise  of  new,  epidemic   strains  that  have  spread  rapidly  across  major  geographic  areas  during  the  last  decade.  The   Mirst  of  these,  called  “J”  strain  (now  known  as  PCR-­‐ribotype  001/PFGE  type  NAP2/REA  type  J),   was  Mirst  recognized  in  Europe,  causing  outbreaks  in  England  and  Wales,  where  PCR  ribotype   001  was  the  most  common  strain  among  hospitalized  patients,  accounting  for  57  percent  of  all   isolates  in  one  survey  and  was  responsible  for  a  large  outbreak  in  northwest  England  

involving  175  patients  and  17  deaths  at  one  hospital  84,85.  Later,  this  strain  was  also  found  in   the  United  States  86.  The  strain  was  resistant  to  clindamycin,  causing  the  organism  to  survive   when  this  antibiotic  was  administered  and  to  substitute  the  original  bowel  Mlora  that  was   killed  by  clindamycin,  thus  causing  disease.  Use  of  clindamycin  has  for  many  years  been   regarded  as  one  of  the  most  important  risk  factors  for  CDI.

  The  global  increase  incidence  of  CDI  since  the  Mirst  outbreaks  in  Canada,  the  United   States  and  the  United  Kingdom  has  been  associated  with  the  spread  of  the  hyper  virulent  type   027/NAP1/BI  strain,    that  has  been  the  cause  of  severe  nosocomial  disease  (see  also  chapter   2)  53,56,59,65,87-­‐90.

In  the  period  between  October  2003  and  June  2004,  the  type  027  strain  was  recognized  in  the   UK  at  the  Stoke  Mandeville  Hospital  in  an  outbreak  involving  174  cases  and  19  (11%)  deaths   that  were  deMinitely  or  probably  due  to  C.  dif-icile.  A  second  outbreak  occurred  between   October  2004  and  June  2005  in  Stoke  Mandeville  hospital  involving  160  new  cases  and  19   (12%)  further  deaths  58,59.  The  Healthcare  Commission  investigation  concluded  that  the   outbreaks  were  a  consequence  of  a  poor  environment  for  patient  care,  poor  practice  in  the   control  of  infection,  lack  of  facilities  to  isolate  patients  and  insufMicient  priority  being  given  to   the  control  of  infection  by  senior  managers.

In  July  2005,  the  Mirst  outbreak  with  the  type  027  strain  was  recognized  in  The  Netherlands,     in  a  hospital  in  Harderwijk  91-­‐93.  The  incidence  of  CDI  in  the  hospital  had  increased  from  4   cases  per  10.000  patient  admissions  in  2004  to  83  per  10.000  in  2005,  at  the  time  that  the  

(16)

outbreak  was  recognized.  Measures  taken  by  the  hospital  included  isolation  of  all  patients   with  diarrhea,  cohorting  of  all  C.  dif-icile-­‐infected  patients  on  a  separate  ward,  banning  of  all   Mluoroquinolone  use  and  limiting  the  use  of  cephalosporins  and  clindamycin.  In  January  2006,   the  situation  appeared  to  be  under  control.    A  second  outbreak  occurred  in  another  hospital   30  km  from  the  Mirst  and  was  probably  related  to  the  Mirst  outbreak  through  a  transferred   patient  with  CDI  91,92.  This  outbreak  is  described  in  chapter  6.  

In  response  to  the  outbreaks  in  The  Netherlands,  the  Center  for  Infectious  Disease  Control   (CIb)  at  the  National  Institute  for  Public  Health  and  the  Environment  (RIVM)  in  Bilthoven   issued  guidelines  for  infection  control  and  treatment94.  Furthermore,  diagnostic  facilities  were   increased  and  made  accessible  to  all  microbiology  laboratories  in  the  country.  Subsequently,   three  hospitals  and  a  nursing  home  in  the  western  part  of  the  country  also  reported  an   increase  in  the  incidence  of  severe  CDI.  A  cluster  of  12  patients  with  CDI  caused  by  type  027   was  reported  in  July  and  August  2005  in  a  large  teaching  hospital  in  Amsterdam.  One  patient   died  due  to  CDI  and  two  other  patients  developed  severe  complications  95.  Another  hospital  in   Amsterdam  also  reported  an  increase  in  severe  cases  of  CDI  in  July  2005  among  patients  who   were  cared  for  in  the  department  of  geriatrics.  By  April  2006,  type  027  was  found  to  be  the   cause  of  an  outbreak  in  11  hospitals  and  was  isolated  from  sporadic  cases  in  Mive  hospitals  

92,96.  Simultaneously,  severe  CDI  caused  by  type  027  was  reported  in  Belgium  and  France  97,98.   Because  the  type  027  strain  is  resistant  to  Mluoroquinolones,  use  of  this  antibiotic  has   been  described  as  an  important  risk  factor  for  nosocomial  CDI  caused  by  this  type  and  has   been  implicated  in  outbreaks  of  CDI  in  several  reports  (see  also  chapter  2)  66,99,100.    Other   virulence  factors  of  the  type  027/NAP1/BI  strains  are  the  presence  of  binary  toxin  genes  and   a  base-­‐pair  deletion  at  position  117  in  the  regulatory  gene  tcdC.    This  deletion  in  the  type  027/

NAP1/BI  strain  has  been  associated  with  a  16  to  20-­‐fold  increase  in  toxin  production  as   compared  to  wild  type  strains  of    Clostridium  dif-icile  101.  

21

(17)

  Another  emerging  strain  of  Clostridium  dif-icile  is  the  type  078/NAP7/BK  strain   (toxinotype  V),  which  has  been  associated  with  both  food  animals  and  humans  in  Europe   (chapter  5)  and  more  recently  in  the  United  States  102,103.  This  strain  is  also  binary  toxin   positive  and  contains  a  mutation  (C184T)  in  the  toxin  regulatory  tcdC  gene  (chapter  5).  

Several  different  strains  of  C.  dif-icile,  including  078,  have  been  isolated  from  retail  meats  in   Canada  and  the  United  States,  further  complicating  the  epidemiology  of  CDI  104.  However,  to   date  there  have  been  no  outbreaks  of  CDI  speciMically  linked  to  the  consumption  of  food.

  An  important  and  largely  unanswered  question  is  why  certain  types  of  Clostridium   dif-icile  cause  severe  disease  across  the  globe.  To  gain  more  insight  in  the  genetic  basis  for  the  

emergence  of  C.  dif-icile  as  a  human  pathogen,  He  et  al.  used  whole  genome  sequencing  to   analyze  genetic  variation  and  virulence  of  a  diverse  collection  of  thirty  C.  dif-icile  isolates  105.   Phylogenetic  analysis  demonstrated  that  C.  dif-icile  is  a  genetically  diverse  species,  which  has   evolved  within  the  last  1.1–85  million  years.  The  authors  observed  that  the  disease-­‐causing   isolates  had  arisen  from  multiple  lineages,  suggesting  that  virulence  evolved  independently  in   the  highly  epidemic  lineages.

Laboratory  diagnosis

! The  diagnosis  of  CDI  is  usually  based  on  the  clinical  history  in  combination  with   laboratory  tests.  Various  laboratory  tests  are  currently  available  for  the  detection  of  

Clostridium  dif-icile  or  its  toxins  106.  The  diagnostic  tests  for  Clostridium  dif-icile  can  be  divided   in  different  groups  (table  3).

Groups  of  diagnostic  tests Tests  per  group

Clostridium  dif-icile  products -­‐  Cell  culture  cytotoxicity  assay -­‐  Glutamate  dehydrogenase  (GDH) -­‐  Aromatic  fatty  acids

-­‐  Toxins  A  and/or  B

(18)

Groups  of  diagnostic  tests Tests  per  group Culture  methods  for  the  detection  of  

toxin-­‐producing  Clostridium  dif-icile -­‐  Toxigenic  culture

Genetic  tests -­‐  16S  RNA

-­‐  Toxin  genes -­‐  Genes  for  GDH

Table  3.  Diagnostic  tests  for  Clostridium  dif-icile

The  cell  culture  cytotoxicity  assay  (CCA)  is  still  regarded  as  the  reference  standard  for  the   detection  of  Clostridium  dif-icile  toxins  107.  Culture  followed  by  in  vitro  toxin  detection  of  the   isolated  strains  has  been  adopted  by  some  investigators  as  a  more  sensitive  reference  

standard  than  CCA,  although  the  clinical  relevance  of  this  so  called  toxigenic  culture  (TC)  is  not   entirely  clear  108.    Because  these  two  standard  methods  are  time-­‐consuming  and  require   speciMic  laboratory  facilities  and  technical  expertise,  many  laboratories  have  replaced  these   methods  by  enzyme  immunoassays  109.  These  are  rapid  and  easy-­‐to-­‐perform  assays  designed   to  detect  Clostridium  dif-icile  toxins  or  the  enzyme  GDH  (table),  which  is  produced  by  both   toxigenic  and  non-­‐toxigenic  Clostridium  dif-icile  strains.  Another  new  development  is  the   application  of  real-­‐time  PCR  to  detect  the  toxin  genes  of  Clostridium  dif-icile  directly  from   stools  110-­‐114.

  Although  these  rapid  and  easy  tests  can  be  attractive  alternatives  to  the  time-­‐consuming   reference  standards,  they  have  been  reported  to  have  limited  sensitivity  and/or  speciMicity.  

This  has  given  rise  to  many  different  testing  protocols,  including  multiple  sample  submission     or  multiple  testing  of  samples  by  different  methods  115-­‐119.

  In  2009,  Crobach  et  al  published  a  diagnostic  guideline,  based  on  a  systematic  review,  in   which  the  available  evidence  concerning  laboratory  diagnosis  of  CDI  was  evaluated  and   recommendations  to  optimize  CDI  testing  in  patients  suspected  of  CDI  were  formulated  120.  In   this  review,  the  test  characteristics  were  analyzed  of  13  commercially  available  enzyme  

23

(19)

immunoassays  (EIA)  detecting  toxins  A  and/or  B,  4  EIAs  detecting  Clostridium  dif-icile  GDH,   and  a  real-­‐time  PCR  for  Clostridium  dif-icile  toxin  B  gene.  In  comparison  with  CCA,  and   assuming  a  prevalence  of  CDI  of  5%,  positive  and  negative  predictive  values  varied  between   028-­‐0.77  and  0.12-­‐0.65,  respectively.  In  comparison  with  toxigenic  culture,  positive  and   negative  predictive  values  varied  between  0.98-­‐1.00  and  0.97-­‐1.00,  respectively.    Positive   predictive  values  would  only  be  acceptable,  if  the  tests  were  performed  in  a  population  with  a   hypothetical  CDI  prevalence  of  50  percent  (ranging  from  0.71  to  1.00).  Therefore,  to  overcome   the  problem  of  a  low  positive  predictive  value,  Crobach  et  al.  proposed  a  two  step  approach,   with  a  second  test  or  a  reference  method  in  case  of  a  positive  Mirst  test  (Migure  5).

  Because  the  negative  predictive  values  of  the  tests  were  very  acceptable  at  low   prevalences,  the  rapid  rests  can  serve  as  screening  tests  in  an  endemic  situation,  with  the   emphasis  on  a  negative  test  result.  When  a  negative  test  result  is  obtained,  CDI  can  very   reliably  be  excluded.  In  case  of  a  positive  test  result  however,  a  second  conMirmatory  test  must   be  performed.  This  can  either  be  a  reference  test  such  s  CCA  or  TC,  or  a  second  rapid  test.  The   Mirst  approach  has  been  described  by  Ticehurst  et  al,  who  applied  a  two-­‐step  algorithm  in   which  specimens  were  Mirst  tested  for  the  presence  of  GDH  antigen  by  an  EIA  and  the  positive   results  were  conMirmed  by  CCA  119.  Because  only  GDH-­‐positive  samples  were  tested  by  CCA,   this  approach  resulted  in  a  reduced  CCA  workload  (by  75–80%)  and  costs.  Gilligan  et  al.  

demonstrated  that  this  two-­‐step  algorithm  has  an  enhanced  ability  (by  40%)  to  detect  CDI   compared  with  the  results  of  an  EIA  detecting  toxins  A  and  B  121.

The  second  approach,  in  which  all  positive  samples  would  be  conMirmed  by  an  additional  rapid   test,  the  higher  prevalence  in  the  tested  population  will  result  in  acceptable  positive  predictive   values.  However,  due  to  the  higher  CDI  prevalence,  negative  predictive  values  will  be  less   acceptable.  Therefore,  samples  with  an  initial  positive  test  result,  but  a  negative  second  test   result  for  CDI,  require  testing  with  a  reference  method  as  a  third  step,  as  was  described  by  the   group  Hussain  et  al.  116-­‐118.  With  this  three-­‐step  approach,  results  of    85%  of  samples  were  

(20)

available  on  the  day  that  the  specimens  were  received  and  the  need  for  CCA  testing  was  even   further  reduced  to  15%.  Fenner  and  colleagues  have  also  applied  this  three-­‐step  approach.  In   their  laboratory,  the  results  of  92%  of  samples  were  available  within  a  turnaround  time  of  4  h;  

only  8%  of  samples  had  to  be  tested  by  CCA  122.

The  lack  of  conMidence  in  the  tests  for  CDI  detection  has  motivated  some  clinicians  to  submit   multiple  samples  per  patient  115.  In  an  endemic  situation,  all  rapid  tests  have  high  negative   predictive  values,  which  implies  that  repeat  testing  is  not  useful  123,124.  By  contrast,  in  an   epidemic  setting,  with  a  higher  prevalence  of  CDI,  negative  predictive  values  of  rapid  tests  will   be  signiMicantly  lower,  which  implies  that  repeat  testing  will  detect  additional  CDI  cases  125.  

25

Referenties

GERELATEERDE DOCUMENTEN

JE is a qualified pharmacist with a Bachelor ’s degree in Pharmacy who works as a Pharmacist Technical Advisor at the South to South Programme for Comprehensive Family HIV Care

Frozen vs fresh faecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a

License: Licence agreement concerning inclusion of doctoral thesis in the. Institutional Repository of the University

Demographic data and risk factors for patients with Clostridium difficile–associated disease (CDAD) due to ribotype 027, compared with patients with CDAD due to non-027

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden. Downloaded

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

LC693 was comparable to R20291 with respect to spore germination, motility, and bio film formation, but showed a faster germination rate, higher motility and a higher biofilm

Please cite this article as: Krutova M, Wilcox M, Kuijper E, The pitfalls of laboratory diagnostics of Clostridium difficile infection, Clinical Microbiology and Infection (2018),