• No results found

Cover Page The handle

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The handle"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle http://hdl.handle.net/1887/66824 holds various files of this Leiden University

dissertation.

Author: Barber, C.R.

Title: Monsters in the deep: using simulations to understand the excess baryonic mass in

the centres of high-mass, early-type galaxies

(2)

Monsters in the Deep

Using simulations to understand the excess baryonic mass

in the centres of high-mass, early-type galaxies

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties te verdedigen op dinsdag 20 November 2018

klokke 10.00 uur

door

Christopher Ryan Barber

(3)

Promotor: Prof. dr. Joop Schaye

Co-promotor: Dr. Robert A. Crain (Liverpool John Moores University, UK) Promotiecommissie: Prof. dr. Huub Röttgering

Prof. dr. Marijn Franx

Prof. dr. Charlie Conroy (Harvard University, USA) Dr. Madusha Gunawardhana

Dr. Russell Smith (Durham University, UK)

An electronic version of this thesis can be found at openaccess.leidenuniv.nl

Cover designed and created by Kyle Barber

(4)
(5)

“If you wish to make an apple pie from scratch,

you must first invent the Universe.”

– Carl Sagan

1

(6)

Contents v

Contents

1 Introduction 1

1.1 Galaxy formation and evolution . . . 2

1.2 Black hole monsters . . . 3

1.3 Stellar population monsters . . . 6

1.4 Simulations of galaxy formation and evolution . . . 9

1.5 This thesis . . . 11

1.6 Outlook . . . 13

2 The origin of compact galaxies with anomalously high black hole masses 15 2.1 Introduction . . . 16

2.2 The EAGLE Simulations . . . 18

2.2.1 Subgrid physics . . . 18

2.2.2 Subhalo identification and corrections . . . 20

2.3 Outliers in the MBH− M?relation . . . 21

2.4 The origin of outliers from the MBH− M?relation . . . 25

2.4.1 Environment at z = 0 . . . . 27

2.4.2 Evolution . . . 28

2.4.3 Tidal stripping as the primary cause of anomalously high MBH(M?) 29 2.4.4 Early formation time as a secondary cause of anomalously high MBH(M?) . . . 32

2.4.5 The relative importance of tidal stripping and early formation . 35 2.4.6 Galaxies with “monstrous” black holes in galaxy cluster environments . . . 38

2.5 Relation to compact galaxies . . . 42

2.6 Summary and Conclusions . . . 46

3 Calibrated, cosmological, hydrodynamical simulations with variable IMFs I: Method and effect on global galaxy scaling relations 49 3.1 Introduction . . . 50

3.2 Methods . . . 53

3.2.1 The EAGLE simulations . . . 54

3.2.2 IMF calibration . . . 55

(7)

vi Contents

3.3.1 IMF vs stellar velocity dispersion . . . 65

3.3.2 Subgrid calibration diagnostics . . . 71

3.4 Effect of variable IMFs on galaxy properties . . . 76

3.4.1 Alpha enhancement . . . 76

3.4.2 Metallicities . . . 77

3.4.3 Star formation . . . 81

3.4.4 ETG galaxy sizes . . . 84

3.5 Summary and Conclusions . . . 86

3.A Aperture effects and IMF calibration details . . . 89

3.B Self-consistency tests . . . 91

3.C The dwarf-to-giant ratio . . . 94

4 Calibrated, cosmological, hydrodynamical simulations with variable IMFs II: Correlations between the IMF and global galaxy properties 99 4.1 Introduction . . . 100

4.2 Simulations . . . 101

4.3 Is the (M/L)-excess a good tracer of the IMF? . . . 105

4.4 Trends between the (M/L)-excess and global galactic properties . . . . 107

4.4.1 MLE vs age . . . 107

4.4.2 MLE vs metallicity . . . 111

4.4.3 MLE vs [Mg/Fe] . . . 112

4.4.4 MLE vs Chabrier-inferred galaxy mass, luminosity, and size . . . 113

4.4.5 MLE vs MBH/M? . . . 116

4.4.6 Which observables correlate most strongly with the MLE? . . . . 118

4.5 MLE of satellite galaxies . . . 120

4.6 Summary and Conclusions . . . 121

5 Calibrated, cosmological, hydrodynamical simulations with variable IMFs III: Spatially-resolved properties and evolution 125 5.1 Introduction . . . 126

5.2 Simulations . . . 128

5.3 IMF trends within galaxies . . . 131

5.3.1 Sample selection . . . 131

5.3.2 Radial IMF gradients . . . 134

5.3.3 Radial gradients in stellar population properties . . . 143

5.3.4 IMF vs local quantities . . . 145

5.4 Redshift dependence of galaxy properties . . . 148

5.4.1 Redshift dependence of the IMF . . . 148

5.4.2 Redshift-dependent cosmic properties . . . 155

5.5 Discussion . . . 157

5.6 Summary and Conclusions . . . 159

(8)

Contents vii

Nederlandse Samenvatting 171

Publications 175

Curriculum Vitae 177

Referenties

GERELATEERDE DOCUMENTEN

Here, we construct a new suite of large-volume cosmological hydrodynamical simulations called BAHAMAS, for BAryons and HAloes of MAssive Systems, where subgrid models of stellar

Despite the differences in model parameters between eagle and hydrangea, we combine the two models because.. Comparison of simulated and observational data in the size-mass diagram.

This is different to the result presented in Figure 10, where the star formation rate surface density in ring galaxies is higher in the outer radii (r > 20 kpc) in comparison

In this paper we presented a consistent comparison of the stacked weak lensing calibrated X-ray luminosity- and tSZ - mass scaling relations of FoF galaxy groups between the GAMA

Figure 4 shows left the fraction of the baryonic mass (in the form of stars and gas) in the simulation that is inside dark matter haloes with m > m min = 3.1 × 10 8 M as a

Crucially, both pressure- dependent IMFs have been calibrated to reproduce the observed trends of increasing excess M/L with central stellar velocity dispersion (σ e ) in

Lower panel: FUV-weighted high-mass (m > 0.5 M ) IMF slope as a function of ΣSFR,Salp for the same galaxy sample as in the upper panel.The high-mass slope for all LoM-50

For HiM-50, MLE also correlates positively with age and [Mg/Fe] but has no significant correlation with metallicity due to the fact that the C13 selection criteria exclude faint,