• No results found

Activation pathways taking place at molecular copper precatalysts for the oxygen evolution reaction

N/A
N/A
Protected

Academic year: 2021

Share "Activation pathways taking place at molecular copper precatalysts for the oxygen evolution reaction"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Catalysis Today

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

Activation pathways taking place at molecular copper precatalysts for the oxygen evolution reaction

Cornelis J.M. van der Ham

a

, Furkan Is¸ ık

a

, Tiny W.G.M. Verhoeven

b

, J.W. (Hans) Niemantsverdriet

c

, Dennis G.H. Hetterscheid

a,∗

aLeidenInstituteofChemistry,LeidenUniversity,2300RALeiden,TheNetherlands

bDepartmentofChemicalEngineeringandChemistry,EindhovenUniversityofTechnology,P.O.Box513,5600MBEindhoven,TheNetherlands

cSynCat@DIFFER,SyngaschemBV,P.O.Box6336,5600HHEindhoven,TheNetherlands

a r t i c l e i n f o

Articlehistory:

Received7September2016 Receivedinrevisedform 19December2016 Accepted21December2016 Availableonline7January2017

Keywords:

Wateroxidation Copperoxide Catalystactivation

a b s t r a c t

Theactivationprocessesof[CuII(bdmpza)2]inthewateroxidationreactionwereinvestigatedusing cyclicvoltammetryandchronoamperometry.TwodifferentpathswhereinCuOisformedweredistin- guished.[CuII(bdmpza)2]canbeoxidizedathighpotentialstoformCuO,whichwasobservedbyaslight increaseincatalyticcurrentovertime.When[CuII(bdmpza)2]isinitiallyreducedatlowpotentials,a moreactivewateroxidationcatalystisgenerated,yieldinghighcatalyticcurrentsfromthemomenta sufficientpotentialisapplied.Thisworkhighlightstheimportanceofcatalystpre-treatmentandthe choiceoftheexperimentalconditionsinwateroxidationcatalysisusingcoppercomplexes.

©2016PublishedbyElsevierB.V.

1. Introduction

The water oxidation reaction is important to ensure future energystorage andsustainability. Thereactionhasbeenexten- sivelystudiedinthepresenceof homogeneouswater oxidation catalyststhat predominantlyarebasedonnoblemetals suchas ruthenium[1–3]andiridium[4–9].Inparticularincaseofmolecu- larrutheniumsystemsbearingbipyridinetypeligands,mechanistic studieshaveprovidedthecommunitywithdetailedinsightshow wateroxidation catalysisoccurs[10–12].Incase ofotherwater oxidationcatalyststhetrueactivespeciesturnedouttobemetal oxidedepositsthatwereformedfromtheirorganometallicpre- cursorsundertheharshoxidativeconditionsapplied[13–16].In termsofatomabundanceandeconomicviability,complexesthat arebasedonfirstrowtransitionmetalsaremoreinterestingthan theirsecondandthirdrowcounterparts,albeitsuchsystemstypi- callydon’toperatewellunderacidicconditions.Duetosubstantial faster ligand dissociation kineticsat these first row transitions metals,control overthecatalyst structureis considerablymore cumbersome. Nevertheless,molecularcatalystsin case of man- ganese[17],iron[18–20],cobalt[21]andsinceveryrecentlycopper [22–30]havebeenreported.Especiallyincaseofthelatter,lig-

∗ Correspondingauthor.

E-mailaddress:d.g.h.hetterscheid@chem.leidenuniv.nl(D.G.H.Hetterscheid).

andexchangekineticsarefast,andconsequentlyseveralpapers haveappearedwhereincopperoxidesprovedtobethecompetent catalyticspeciesratherthantheirmolecularprecursors[31–35].A fruitfulstrategytopreventformationofcopperoxidesappearsto liewithmulti-denticity[29].Nevertheless,alsothecopperbipyri- dine complexes, first reportedby Mayer et al., appear to react exclusivelyviamolecularsites[22,23],suggestingthatdiscrimina- tionbetweenhomogeneousversusheterogeneouscatalysisismuch morecomplex.Fromearlycobaltpolyoxometallatewateroxidation chemistrythescientificcommunityhasalreadylearnedthatthe formationofwhichtypeofcatalyticspeciesisformedcanbelargely dependentontheexactreactionconditionsapplied,especiallyin caseofhighlydynamicsystems[36–39].

Preliminary water oxidation studies in our lab in the pres- enceof[CuII(bdmpza)2](bdmpza=bis(3,5-dimethyl-1H-pyrazol- 1-yl)acetate, Fig. 1), a structure similar to the aforementioned copperbipyridinesystem,revealedthattheobservedwateroxi- dation activity is strongly dependent on the electrochemical pretreatment of themolecularcatalyst, even thoughthe even- tualcatalyticexperimentswerecarriedoutundertheexactsame conditions.Inlightofthediscussionwhethercatalysisoccursat a homogeneousversusheterogeneous speciesand howonecan control theactivityof these catalytic species,the pretreatment dependencetriggeredustoinvestigatethecatalystactivationpath- waysof[CuII(bdmpza)2]indetail.Inthiscontributionwediscuss twoindependentpathwaystotheformationofCuO,thetrueactive http://dx.doi.org/10.1016/j.cattod.2016.12.042

0920-5861/©2016PublishedbyElsevierB.V.

(2)

Fig.1. Pathsofactivationobservedfor[CuII(bdmpza)2].

species,whereintheobservedreactivityisgreatlyactivationpath dependent.

2. Experimental 2.1. Complexsynthesis

[CuII(bdmpza)2] was obtained by dropwise addition of 0.33mmolbdmpzaNain25mlmethanoltoasolutionof0.33mmol CuII(OTf)2in25mlmethanol.Afterstirringfor30min,partofthe methanol was evaporated and diethyl ether was added to the reactionmixturetoyieldablue-greenprecipitateovernight.The crystallinematerial wasdried in vacuoand recrystallized from methanolat−20C,yielding[CuII(bdmpza)2].Theinfraredspectra of[CuII(bdmpza)2]areingoodagreementwithpreviousreported data(seesupportinginfo)[40].ESIMSm/z(calc):558.2(558.2,[M]+ 580.2(580.2,[M+Na]+),612.2(612.2,[M+Na+MeOH]+).

2.2. Electrochemicalmethods

All experiments were performed on an Autolab PGSTAT 128N.Allelectrochemicalexperiments wereperformedin one- compartment25mlglasscellsinathree-electrodesetup,usinga goldworkingelectrode(WE).Inallcasesagoldwirewasusedasa counterelectrodeandallexperimentsweremeasuredagainstthe reversiblehydrogenelectrode.Theelectrochemicalcellwasboiled twiceinMilliporeMilliQwater(>18.2Mcmresistivity)priorto theexperiment.TheAuworkingelectrodeconstistedofadiscand wasusedinahangingmeniscusconfiguration.TheWEwascleaned byapplying10VbetweentheWEandagraphitecounterelectrode for30sin a 10%H2SO4 solution.Thiswasfollowed bydipping theWEina 6MHCl solutionfor 20s. Theelectrode wasflame annealed,followed byelectrochemicalpolishingin0.1MHClO4, whilescanningbetween0and1.75VversusRHEfor200cycles at1Vs−1.Eventually5␮lofa18mMsolutionof[CuII(bdmpza)2] inethanolwasdropcastedontotheworkingelectrodeanddried inair.TheelectrolytesolutionswerepreparedfromMilliQwater (>18.2Mcm resistivity) and ≥99.9995% NaOH obtained from Sigma-Aldrich.

Theelectrochemicalquartzcrystalmicrobalance(EQCM)exper- iments were performed in a 3ml Teflon cell purchased from Autolab.Asaworkingelectrode,anAutolabEQCMelectrodewas used,whereina200nmgoldlayer(1.5cm2)wasdepositedona quartzcrystal.SincethehydrogenbubblesoftheRHEreference electrodedisturbedthefrequencyduringtheEQCMmeasurements, aPd/H2referenceelectrodewaspreparedbyapplyingapotential of−4.0VbetweenthePdwireandaplatinumcounterelectrode forapproximately10min.Priortotheexperiment thepotential ofthePd/H2 electrode relative totheRHEwasdetermined.All EQCMdatawerecorrectedtotheRHEscale.Thesensitivitycoef- ficient of thequartz crystal (cf)was determinedby deposition

therelationshipbetweenthefandtheamountofPbdeposited ontotheelectrode.Thesensitivitycoefficientwasdeterminedto be1.26×10−8gcm−2Hz−1(Fig.S3).Forthecatalyticexperiments, 10␮lofan18mMsolutionof[CuII(bdmpza)2]inethanolwasdrop- castedontotheEQCMelectrode,yetduetoitsgeometryit was impossibletoavoidthatsome[CuII(bdmpza)2]wasdepositedon thequartzpartoftheassembly. Theactualamountof catalytic materialthatisincontactwiththeworkingelectrodeistherefore overestimated.

Duringtheonlineelectrochemicalmassspectrometry(OLEMS) measurementsthegaseousproductsformedattheworkingelec- trodewerecollectedviaahydrophobictip(KEL-Fwithaporous Teflonplug)incloseproximitytothesurfaceoftheworkingelec- trodeandanalyzedinaPfeifferQMS200massspectrometer.An Ivium A06075 potentiostat was used in combination with the OLEMSexperiments.AdetaileddescriptionoftheOLEMSsetupis availableelsewhere[40].

2.3. XPS

XPS measurements were carried out with a Thermo Scien- tificK-Alpha,equippedwithamonochromatic small-spotX-ray sourceanda180doublefocusinghemisphericalanalyzerwitha 128-channeldetector.Spectrawereobtainedusinganaluminium anode (AlK␣=1486.6eV) operating at 72W and a spot size of 400␮m.Surveyscansweremeasuredataconstantpassenergy of 200eV and region scans at 50eV. The background pressure was2×10−8mbarandduringmeasurement4×10−7mbarArgon becauseofchargecompensation.

Samples for XPS were prepared by chrono amperometry in 0.1MNaOH at pH13, using 0.8cm2 pyroliticgraphite discs as workingelectrodes.Priortouse,theelectrodesweresandedwith waterproof 2500 grit sandpaper. A total amount of 180nmol [CuII(bdmpza)2]wasdropcastedontotheelectrodesandthediscs wereusedinahangingmeniscusconfiguration.

3. Results

Thebdmpza ligands of[CuII(bdmpza)2] are centrosymmet- ricallyarrangedaroundthecopperion,forminga trans-CuN4O2 complex,whereinthecoppersiteiscoordinativelysaturated[41].

However,itisnotunprecedentedthatoneoftheligandarmsof bdmpzadissociatesinfavorofcoordinationofwater[42],pro- vidinganentryintocatalysisata molecularspecies.Theredox chemistry of [CuII(bdmpza)2] was explored by dropcastingthe complex ontoa gold workingelectrode (WE). Fig.2 showsthe cyclicvoltammogramof90nmol[CuII(bdmpza)2]dropcastedonto a0.050cm2(geometricsurfacearea)goldelectrodeina0.1Maque- ousNaOHsolutionatpH13.Theexperimentwasstartedat1.2V versusRHEandscannedtowardspositivepotentialsinitially.Inthe firstscanrelativelylittlecatalyticcurrentisobserved,whichcon- traststhesecondandthirdscans.Scanningthepotentialupto2.0V versusRHEresultedinasmallpeak(designated1inFig.2)inthe cyclicvoltammogram,whichdoesnotexceedthecurrentdisplay- ingthatofablankgoldelectrodeunderthesameconditions(seeFig.

S4).Whilestartingabove1.2VversusRHEandscanningintoapos- itivedirectionfirstorscanninginnegativedirectionimmediately doesnotresultinchangesinthereductionchemistry.Below1.2V aseriesofsharpreductionpeaks(2–5inFig.2)canbeobserved that lieon topof a broad negative baselinecurrent that starts roughlyat0.8VversusRHE.Thenegativebaselinecurrentcontin- uesuponscanningintothepositivedirectionuntil0.8Vafterwhich avery sharpoxidativepeak(7) isobservedat0.9V versusRHE.

(3)

Fig.2.Thefirstthreescansofacyclicvoltammetryexperimentof[CuII(bdmpza)2]in0.1MNaOHata100mVs−1scanrate(left).Thefirstscanofthecyclicvoltammetry (red)isdepictedinmagnifiedviewseparately(right)fromthe2nd(blue)and3rdscan(green).(Forinterpretationofthereferencestocolourinthisfigurelegend,thereader isreferredtothewebversionofthisarticle.)

Withanonsetofroughly1.6VversusRHEasubstantialcatalytic waveisobservedinthecyclicvoltammetrythatgreatlyexceeds theoxidative currentthatwasobservedinthefirstscan. When aninitialstartingpotentialwasselectedbelow0.8VversusRHE, suchacatalyticcurrentcanalreadybeobservedattheveryfirst oxidativescan,suggestingitistriggeredbyaninitialreductionof [CuII(bdmpza)2].Inthesecondreductivescanabroadfeatureat 0.5VversusRHEisobservedfollowedbyacatalyticreductivecur- rentwithanonsetat0.2VversusRHE.Thislattercatalyticfeatureis mostlikelyduetoreductionofdioxygenthatisformedabove1.7V versusRHEinthe2ndscan.Fromhereontheredoxfeaturesinthe cyclicvoltammogramdonotfurtherchangeuponpotentialcycling.

Thecatalyticcurrentdoesincreasesomewhatfromscan2–3,indi- catingthatstillmoreactivewateroxidationsitesareformedonthe WE.

The displayed catalytic activity in the presence of [CuII(bdmpza)2] was further evaluated by chrono amperome- tryexperimentsusing both gold(Fig.3)and pyrolytic graphite electrodes. In this series of experiments 1.2V versus RHE was selected as a standby potential as no oxidative or reductive currentswereobservedatthis potentialin thefirstscanofthe voltammogramof [CuII(bdmpza)2]. Ongoldaninitialcurrentof 7.2␮Acm−2 wasobserved after 120s of amperometryat 2.0V thatsteadilyincreadesto12␮Acm−2 after 30min(Fig.3).This suggeststhatsomeactivationof[CuII(bdmpza)2]toa(more)active catalytic species takes place under these oxidative conditions.

Inlinewiththeoxidativecurrentobservedintheamperometry, onlineelectrochemicalmassspectrometry(OLEMS)datadoshow formationofsomedioxygenoverthecourseoftime(Fig.3,top panel).

X-rayphotoelectronspectroscopyof[CuII(bdmpza)2]thatwas kept at 2.0V versus RHE for 10min dropcasted on a pyrolytic graphiteelectrodeshowstwoindependentsignalsinthebinding energyregionofthe2pelectronsofcopperat931.1and933.3eV.

Thelow bindingenergypeak(931.3eV)canbeduetoeitherCu metaloraCu(I)species,suchasCu2OTheCuLMMAugerpeaks (notshown),fallinginthebindingenergyrange,excludethepres- enceofmetallicCu(whichhasadistinctpeakat565,5eV),and, interestingly,alsothatofCu(OH)2.Thesignalat933.3eVissimi- lartothatofCuOforwhichwefindabindingenergyof933.4eV (slightlyhighervalueshavebeenreportedinliterature:i.e.933.9eV [34],933.7eV[43],933.8eV[44]).Theshake-upstructureismostly characteristicofCuO,exceptforthesmallbutvisiblefeatureonthe highbindingenergyside(about942eV),whichisalsopresentinthe

1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2

j / mA cm-2

1500 1000

500 0

t / s

Oxygen production / a.u.

Fig. 3.Chrono amperometry of 360nmol [CuII(bdmpza)2]dropcasted onto a 0.72cm2goldelectrode(geometricalsurfacearea)in0.1MNaOH.Thepotential wassetat2.0VversusRHEfor600s,thensetto0.0Vforanother600sandthen returnedto2.0Vforthelast600s(bottompanel).Theevolutionofdioxygenwas followedsimultaneouslyusingOLEMS(toppanel).

spectrumofCu2O.HenceweinterprettheexsituXPSmeasurement of[CuII(bdmpza)2]keptat2.0VversusRHEfor10mintoamixture ofCu(I)andCu(II)oxides,whilethespectrashownoevidencefor CumetalnorCu(OH)2.

Apparently [CuII(bdmpza)2] slowly converts to CuO at 2.0V versusRHE.SinceCuOisaknownwateroxidationcatalyst[45–47]

andthecatalyticactivityincreasesuponprolongedelectrolysisit seemslikelythatCuOisresponsibleformost–ifnotall–catalytic current. Infact atthis pointwe have noreason tobelievethat anyoftheobservedcatalyticactivityshouldbedescribedtothe [CuII(bdmpza)2]speciesitself.

Whenthepotentialaftertheinitialamperometryexperimentat 2.0Vissetat0.0Vfor10minandthenplacedbackat2.0Vversus RHE,aconsiderablyhighercatalyticcurrentisobserved.Thisisin linewithOLEMSdataatthis stage,whichshowsthat aconsid- erableamountofdioxygenis produced(Fig.3,toppanel).After 60sacurrentof56␮Acm−2wasrecordedthatslowlydecreased

(4)

Fig. 4. Electrochemistry of [CuII(bdmpza)2] combined with a quartz crystal microbalanceshowingthelossofmassoftheelectrode(toppanel)duringcyclic voltammetry(bottompanel)ina0.1MaqueousNaOHsolutionofpH13.Estart=1.3V, scanrate=1mVs−1.

to28␮Acm−2.Evenhighercatalyticcurrentsareobtainedwhen [CuII(bdmpza)2]isimmediatelyreducedat0Vandthenbroughtto 2.0V.X-rayphotoelectronspectroscopynowonlyshowsasingle peakat933.3eVsuggestingthatfullconversiontoCuOhastaken place.Thedecreaseofthecatalyticcurrentuponprolongedelectrol- ysisismostlikelyduetodepletionofCu2+fromtheelectrodeunder theseconditions.Itislikelythatuponreduction[CuII(bdmpza)2] convertstometalliccopper(0)attheelectrode interfacethat in turnisoxidizedtoCuO.Forseveralrelatedsystemsconversionof molecularspeciestocopper(0)hasbeenobservedinrelationtothe catalytichydrogenevolutionreaction[48–50].

FromthecyclicvoltammetryinFig.2itwasobservedthatthe reductionof[CuII(bdmpza)2]ontheelectrodehasagreatinfluence onthecurrentobservedintheoxidativeregimeand isbelieved toproceedviainitialformationofmetalliccopper.Electrochemi- calquartzcrystalmicrobalance(EQCM)incombinationwithcyclic voltammetryisapowerfultooltogaininsightintotheprocesses takingplaceontheelectrode.Inthesestudiesroughly180nmol [CuII(bdmpza)2]inEtOHwasdropcastedontotheEQCMelectrode.

Fig.4showstheEQCMof[CuII(bdmpza)2]between1.3and0.2V versusRHE.Thebottompanelshowsthepotential–currentrelation- shipfromtheCV,whereasthetoppanelshowsthecorresponding masschangeofthequartzcrystal,determinedfromthechangein oscillationfrequencyofthequartzcrystalsimultaneouslywiththe cyclicvoltammetryexperiment.Atascanrateof1mVs−1abroad andclearlyvisiblereductionpeakisobservedwithanonsetof0.7 versusRHE,duetoreductionof[CuII(bdmpza)2]tocopper(0).The featuresobservedinthecyclicvoltammetryuponreductionlead- ingtoformationofcopperarestronglyscanratedependent.Similar tothecyclicvoltammetrydepictedinFig.2,anegativebaselineis observedinbothnegativeandpositivescan.Inadditiontoreduc- tionof[CuII(bdmpza)2]thisinpartmaybeduetoreductionofsome dioxygenthatleaksintotheTeflonEQCMcell.Thetoppanelof Fig.4showsthattheinitialmassoftheelectrodedoesnotchange uponscanningthepotentialfrom1.3to0.7VversusRHE.Beyond

Fig.5.CyclicvoltammogramofapolycrystallineCuelectrodeat100mVs−1in0.1M aqueousNaOHsolution(pH13).Theexperimentisstartedat0.5VversusRHEand scannedtowardspositivepotentialsfirst.

theonsetofthereductionwaveat0.7VversusRHEinthecyclic voltammogram,themassofthecrystalstartstodecrease,indicat- ingthatdesorptionofmaterialfromtheelectrodetakesplace.This massdecreasecontinuesinthepositivegoingscanandreachesa plateauat0.4VversusRHE.

Thesharpoxidationpeakobservedat0.8VversusRHEisconsid- erablylessdependentonthescanrate.Thisismostlikelyastripping peak[51],illustratedbyasmallandabruptdecreaseinmass.The secondandthirdscanshowconsiderablylesscurrentandsmaller masschangesthanthefirstscanandisinagreementwithahigh conversionof[CuII(bdmpza)2]tometalliccopperatthisstage.In Fig.4,atotalchargeof8.5mChaspassedthroughtheWEtoreduce [CuII(bdmpza)2],whichequalsatotalof88nmolelectrons.Asome- whatlargeramountof180nmol[CuII(bdmpza)2]wasdropcasted ontothe goldelectrode, butit proved difficulttoexcludelarge amountsofmaterialfromendinguponthequartzratherthanon thegoldsurfacewhichiselectrochemicallyactive.Moreoversome ofthechargeflowmaybeduetoreductionofdioxygenasitproved tobedifficulttoexcludeairleakingintotheTeflonEQCMcell.Nev- erthelessthesenumbersareinlinewithaconsiderablepartofthe dropcastedmaterialtobereducedtocopperintheEQCMexper- imentandagreewithfullconversionof[CuII(bdmpza)2]totake placeduringprolongedamperometryat0.0VversusRHE.

The EQCM data in Fig. 4 shows that relatively little ligand (∼20nmolbdmpzaequaling5%ofdropcastedbdmpza)islostfrom theelectrodeinterfaceduringthereductionof[CuII(bdmpza)2]to copper(0).Alsotheamountofcopperlosttothesolutionatthe copperstrippingpeakat0.8VversusRHEislimited(after three scans∼18nmolCu,10%ofalldropcastedcopper).

In the cyclic voltammetry of polycrystalline copper a small oxidation waveis observedat 0.6V versusRHEthat isascribed tooxidation ofcopper(0)toCu2O(Fig.5,signal1)[52]. Avery similaroxidationwaveis observedat0.6Vincase ofdeposited [CuII(bdmpza)2](Figs.2and4).FurtheroxidationtoCuO,however, isconsiderablymorefacilein caseofdeposited[CuII(bdmpza)2] comparedtopolycrystallinecopper,whichshowsbroadfeatures (signals 2 and 3 in Fig. 5)as the result of oxidation of differ- entcrystaldomains [51–53].Thecopperdeposit obtainedfrom [CuII(bdmpza)2]onlyshowsasmallandverysharpoxidationwave (Fig.2,signal7).Wehavebeenunabletoreproducetheseelectro- chemicalfeaturesofusingothersourcesofcopper,includingcopper oxidenanoparticles,Cu(OTf)2 and apolycrystallinecopperelec- trode(seeFig.5andthesupportinginfo).Inallthesecasescopperis considerablyeasierremovedfromtheelectrodesurfacecompared

(5)

tosamplesof[CuII(bdmpza)2].Inlinewiththeremarkablestability ofthecoppercatalystobtainedfrom[CuII(bdmpza)2]comparedto othersourcesofcopper,alsotheobservedcatalyticcurrentismore persistentandsignificantlyhigher.Itappearsthatthebdmpzalig- andhascleareffectonthestabilityofthecopperparticlesthatare formed,andseemstopreventsolvationofCu2+uponreoxidation ofcoppertothe+IIoxidationstate.Inlinewithsuchahypothesis thepresenceofconcentratedsolutionsofcarbonate[54]andespe- ciallyborate[34,55]haveadramaticinfluenceonthestabilityand thereforeactivityofcopperdepositsunderoxidativeconditions.It seemsthatsimilartocoordinatinganions,thebdmpzaligandhas astabilizingeffectoncopperoxideversussolvation,therebypos- inganinterestingapplicationoftheuseoforganicligandsand/or additivesinheterogeneouswateroxidationchemistry.

4. Conclusions

Twopathshavenbeenidentified wherein[CuII(bdmpza)2] is convertedtoCuO,whichisthetrueactivespeciesinthewateroxi- dationreaction.Underoxidativeconditions[CuII(bdmpza)2]slowly convertstoCuOandleadstomoderateactivityonly.Initialreduc- tion of [CuII(bdmpza)2] below 0.8V versus RHE leads to initial formationofcopper(0),whichultimatelyconvertstoCuOunder catalyticconditions.Thispathleadstoasubstantialhighercatalytic activityundertheconditionsexplored.Onethereforehastobevery carefulwhichstandbyand/orstartpotentialisselectedpriortocat- alyticwateroxidationmediatedbymolecularcoppercomplexes, asthesesettingsmayhaveadramaticeffectonthedisplayedcat- alyticactivityasillustratedabove.Alsothebdmpzaligandplays animportantrolein theobservedcatalyticactivity,sincedrop- castingvariousothercoppersourcesresultsinmediocrestability andactivity.Clearlyonecannotusesuchalternativecoppersources convincinglyasacontrolfortheformationofactiveCuOnanopar- ticles.The precisemechanismwhereinbdmpza influencesthe catalyticactivityisnotwellunderstoodatpresent.

Acknowledgements

TheauthorsgratefullyacknowledgeDr.TomvanDijkmanand Prof.Dr.ElisabethBouwmanforsupplyingthebdmpzaNaligands usedinthiswork.ThisworkwasfinanciallysupportedbytheERC (StG637556).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.cattod.2016.12.

042.

References

[1]L.L.Duan,F.Bozoglian,S.Mandal,B.Stewart,T.Privalov,A.Llobet,L.C.Sun,A molecularrutheniumcatalystwithwater-oxidationactivitycomparableto thatofphotosystemII,Nat.Chem.4(2012)418–423.

[2]R.Matheu,M.Z.Ertem,J.Benet-Buchholz,E.Coronado,V.S.Batista,X.Sala,A.

Llobet,Intramolecularprotontransferboostswateroxidationcatalyzedbya Rucomplex,J.Am.Chem.Soc.137(2015)10786–10795.

[3]J.J.Concepcion,J.W.Jurss,M.R.Norris,Z.F.Chen,J.L.Templeton,T.J.Meyer, Catalyticwateroxidationbysingle-siterutheniumcatalysts,Inorg.Chem.49 (2010)1277–1279.

[4]O.Diaz-Morales,T.J.P.Hersbach,D.G.H.Hetterscheid,J.N.H.Reek,M.T.M.

Koper,Electrochemicalandspectroelectrochemicalcharacterizationofan iridium-basedmolecularcatalystforwatersplitting:turnoverfrequencies, stability,andelectrolyteeffects,J.Am.Chem.Soc.36(2014)10432–10439.

[5]R.Lalrempuia,N.D.McDaniel,H.Muller-Bunz,S.Bernhard,M.Albrecht,Water oxidationcatalyzedbystrongcarbene-typedonor-Ligandcomplexesof iridium,Angew.Chem.Int.Ed.49(2010)9765–9768.

[6]A.Bucci,A.Savini,L.Rocchigiani,C.Zuccaccia,S.Rizzato,A.Albinati,A.Llobet, A.Macchioni,Organometalliciridiumcatalystsbasedonpyridinecarboxylate

ligandsfortheoxidativesplittingofwater,Organometallics31(2012) 8071–8074.

[7]S.W.Sheehan,J.M.Thomsen,U.Hintermair,R.H.Crabtree,G.W.Brudvig,C.A.

Schmuttenmaer,Amolecularcatalystforwateroxidationthatbindstometal oxidesurfaces,Nat.Commun.6(2015).

[8]J.D.Blakemore,N.D.Schley,D.Balcells,J.F.Hull,G.W.Olack,C.D.Incarvito,O.

Eisenstein,G.W.Brudvig,R.H.Crabtree,Half-sandwichiridiumcomplexesfor homogeneouswater-oxidationcatalysis,J.Am.Chem.Soc.132(2010) 16017–16029.

[9]D.G.H.Hetterscheid,C.J.M.vanderHam,O.Diaz-Morales,M.W.G.M.

Verhoeven,A.Longo,D.Banerjee,J.W.Niemantsverdriet,J.N.H.Reek,M.C.

Feiters,Earlystagesofcatalystagingintheiridiummediatedwateroxidation reaction,Phys.Chem.Chem.Phys.18(2016)10931–10940.

[10]J.Nyhlen,L.L.Duan,B.Akermark,L.C.Sun,T.Privalov,EvolutionofO2ina seven-coordinateRuIVdimercomplexwitha[HOHOH]bridge:a computationalstudy,Angew.Chem.Int.Ed.49(2010)1773–1777.

[11]J.J.Concepcion,M.K.Tsai,J.T.Muckerman,T.J.Meyer,Mechanismofwater oxidationbysingle-siterutheniumcomplexcatalysts,J.Am.Chem.Soc.132 (2010)1545–1557.

[12]Z.F.Chen,J.J.Concepcion,X.Q.Hu,W.T.Yang,P.G.Hoertz,T.J.Meyer, ConcertedOatom-protontransferintheO–Obondformingstepinwater oxidation,Proc.Natl.Acad.Sci.U.S.A.107(2010)7225–7229.

[13]S.Fukuzumi,D.C.Hong,Homogeneousversusheterogeneouscatalystsin wateroxidation,Eur.J.Inorg.Chem.(2014)645–659.

[14]B.Limburg,E.Bouwman,S.Bonnet,Molecularwateroxidationcatalystsbased ontransitionmetalsandtheirdecompositionpathways,Coordin.Chem.Rev.

256(2012)1451–1467.

[15]H.Junge,N.Marquet,A.Kammer,S.Denurra,M.Bauer,S.Wohlrab,F.Gartner, M.M.Pohl,A.Spannenberg,S.Gladiali,M.Beller,Wateroxidationwith molecularlydefinediridiumcomplexes:insightsintohomogeneousversus heterogeneouscatalysis,Chem.Eur.J.18(2012)12749–12758.

[16]J.D.Blakemore,N.D.Schley,G.W.Olack,C.D.Incarvito,G.W.Brudvig,R.H.

Crabtree,Anodicdepositionofarobustiridium-basedwater-oxidation catalystfromorganometallicprecursors,Chem.Sci.2(2011)94–98.

[17]J.Limburg,J.S.Vrettos,L.M.Liable-Sands,A.L.Rheingold,R.H.Crabtree,G.W.

Brudvig,AfunctionalmodelforO–ObondformationbytheO2-evolving complexinphotosystemII,Science283(1999)1524–1527.

[18]J.L.Fillol,Z.Codola,I.Garcia-Bosch,L.Gomez,J.J.Pla,M.Costas,Efficientwater oxidationcatalystsbasedonreadilyavailableironcoordinationcomplexes, Nat.Chem.3(2011)807–813.

[19]K.G.Kottrup,D.G.H.Hetterscheid,Evaluationofiron-basedelectrocatalysts forwateroxidationanon-linemassspectrometryapproach,Chem.

Commun.52(2016)2643–2646.

[20]W.C.Ellis,N.D.McDaniel,S.Bernhard,T.J.Collins,Fastwateroxidationusing iron,J.Am.Chem.Soc.132(2010)10990–10991.

[21]D.J.Wasylenko,C.Ganesamoorthy,J.Borau-Garcia,C.P.Berlinguette, Electrochemicalevidenceforcatalyticwateroxidationmediatedbya high-valentcobaltcomplex,Chem.Commun.47(2011)4249–4251.

[22]S.M.Barnett,K.I.Goldberg,J.M.Mayer,Asolublecopper-bipyridine water-oxidationelectrocatalyst,Nat.Chem.4(2012)498–502.

[23]D.L.Gerlach,S.Bhagan,A.A.Cruce,D.B.Burks,I.Nieto,H.T.Truong,S.P.Kelley, C.J.Herbst-Gervasoni,K.L.Jernigan,M.K.Bowman,S.L.Pan,M.Zeller,E.T.

Papish,Studiesofthepathwaysopentocopperwateroxidationcatalysts containingproximalhydroxygroupsduringbasicelectrocatalysis,Inorg.

Chem.53(2014)12689–12698.

[24]J.S.Pap,L.Szyrwiel,D.Sranko,Z.Kerner,B.Setner,Z.Szewczuk,W.Malinka, ElectrocatalyticwateroxidationbyCuIIcomplexeswithbranchedpeptides, Chem.Commun.51(2015)6322–6324.

[25]T.Zhang,C.Wang,S.B.Liu,J.L.Wang,W.B.Lin,Abiomimeticcopperwater oxidationcatalystwithlowoverpotential,J.Am.Chem.Soc.136(2014) 273–281.

[26]X.J.Su,M.Gao,L.Jiao,R.Z.Liao,P.E.M.Siegbahn,J.P.Cheng,M.T.Zhang, Electrocatalyticwateroxidationbyadinuclearcoppercomplexinaneutral aqueoussolution,Angew.Chem.Int.Ed.54(2015)4909–4914.

[27]M.T.Zhang,Z.F.Chen,P.Kang,T.J.Meyer,Electrocatalyticwateroxidationwith acopper(II)polypeptidecomplex,J.Am.Chem.Soc.135(2013)2048–2051.

[28]Z.F.Chen,T.J.Meyer,Copper(II)catalysisofwateroxidation,Angew.Chem.

Int.Ed.52(2013)700–703.

[29]P.Garrido-Barros,I.Funes-Ardoiz,S.Drouet,J.Benet-Buchholz,F.Maseras,A.

Llobet,Redoxnon-innocentligandcontrolswateroxidationoverpotentialina newfamilyofmononuclearCu-basedefficientcatalysts,J.Am.Chem.Soc.137 (2015)6758–6761.

[30]M.K.Coggins,M.T.Zhang,Z.F.Chen,N.Song,T.J.Meyer,Single-sitecopper(II) wateroxidationelectrocatalysis:rateenhancementswithHPO42−asaproton acceptoratpH8,Angew.Chem.Int.Ed.53(2014)12226–12230.

[31]T.T.Li,S.Cao,C.Yang,Y.Chen,X.J.Lv,W.F.Fu,Electrochemicalwater oxidationbyinsitu-generatedcopperoxidefilmfrom[Cu(TEOA)(H2O)2][SO4] complex,Inorg.Chem.54(2015)3061–3067.

[32]X.Liu,H.X.Jia,Z.J.Sun,H.Y.Chen,P.Xu,P.W.Du,Nanostructuredcopperoxide electrodepositedfromcopper(II)complexesasanactivecatalystfor electrocatalyticoxygenevolutionreaction,Electrochem.Commun.46(2014) 1–4.

[33]X.Liu,S.S.Cui,Z.J.Sun,P.W.Du,Copperoxidenanomaterialssynthesized fromsimplecoppersaltsasactivecatalystsforelectrocatalyticwater oxidation,Electrochim.Acta160(2015)202–208.

(6)

627–630.

[35]X.Liu,S.S.Cui,M.M.Qian,Z.J.Sun,P.W.Du,Insitugeneratedhighlyactive copperoxidecatalystsfortheoxygenevolutionreactionatlowoverpotential inalkalinesolutions,Chem.Commun.52(2016)5546–5549.

[36]S.J.Folkman,J.T.Kirner,R.G.Finke,CobaltpolyoxometalateCo4V2W18O6810−: acriticalinvestigationofitssynthesis,purity,andobservedV-51quadrupolar NMR,Inorg.Chem.5(2016)5343–5355.

[37]J.J.Stracke,R.G.Finke,Wateroxidationcatalysisbeginningwith2.5␮M [Co-4(H2O)2(PW9O34)2]10−:investigationofthetrueelectrochemicallydriven catalystat>=600mVoverpotentialataglassycarbonelectrode,ACSCatal.3 (2013)1209–1219.

[38]J.J.Stracke,R.G.Finke,Electrocatalyticwateroxidationbeginningwiththe cobaltpolyoxometalate[Co4(H2O)2(PW9O34)2]10−:identificationof heterogeneousCoOxasthedominantcatalyst,J.Am.Chem.Soc.133(2011) 14872–14875.

[39]J.W.Vickers,H.J.Lv,J.M.Sumliner,G.B.Zhu,Z.Luo,D.G.Musaev,Y.V.Geletii, C.L.Hill,Differentiatinghomogeneousandheterogeneouswateroxidation catalysis:confirmationthat[Co4(H2O)2(␣-PW9O34)2]10−Isamolecularwater oxidationcatalyst,J.Am.Chem.Soc.135(2013)14110–14118.

[40]A.H.Wonders,T.H.M.Housmans,V.Rosca,M.T.M.Koper,On-linemass spectrometrysystemformeasurementsatsingle-crystalelectrodesin hangingmeniscusconfiguration,J.Appl.Electrochem.36(2006)1215–1221.

[41]B.Kozlevcar,P.Gamez,R.deGelder,W.L.Driessen,J.Reedijk,Unprecedented changeoftheJahn-TelleraxisinacentrosymmetricCuIIcomplexinducedby latticewatermoleculescrystalandmolecularstructuresofbis[bis(3, 5-dimethylpyrazol-1-yl)acetato]copper(II)anditsdihydrate,Eur.J.Inorg.

Chem.(2003)47–50.

[42]B.Kozlevcar,A.Golobic,P.Gamez,I.A.Koval,W.L.Driessen,J.Reedijk,A tridentatebis(pyrazolyl)ligandbindstoCu(II),withoutusingthepyrazole group:averyunusualcoordinationmodeoftheligandHbdmpb 1,3-bis(3,5-dimethylpyrazol-1-yl)-2-butanoicacid,Inorg.Chim.Acta358 (2005)1135–1140.

[43]M.Durando,R.Morrish,A.J.Muscat,Kineticsandmechanismforthereaction ofhexafluoroacetylacetonewithCuOinsupercriticalcarbondioxide,J.Am.

Chem.Soc.130(2008)16659–16668.

[45]F.Yu,F.Li,B.Zhang,H.Li,L.Sun,Efficientelectrocatalyticwateroxidationbya copperoxidethinfilminboratebuffer,ACSCatal.5(2015)627–630.

[46]X.Liu,S.Cui,Z.Sun,Y.Ren,X.Zhang,P.Du,Self-supportedcopperoxide electrocatalystforwateroxidationatlowoverpotentialandconfirmationof itsrobustnessbyCuK-EdgeX-rayabsorptionspectroscopy,J.Phys.Chem.C 120(2016)831–840.

[47]X.Liu,S.Cui,Z.Sun,P.Du,Copperoxidenanomaterialssynthesizedfrom simplecoppersaltsasactivecatalystsforelectrocatalyticwateroxidation, Electrochim.Acta160(2015)202–208.

[48]M.Kugler,J.Scholz,A.Kronz,I.Siewert,Coppercomplexesascatalyst precursorsintheelectrochemicalhydrogenevolutionreaction,DaltonTrans.

45(2016)6974–6982.

[49]X.Liu,H.F.Zheng,Z.J.Sun,A.Han,P.W.Du,Earth-abundantcopper-based bifunctionalelectrocatalystforbothcatalytichydrogenproductionandwater oxidation,ACSCatal.5(2015)1530–1538.

[50]X.Liu,S.S.Cui,Z.J.Sun,P.W.Du,Robustandhighlyactivecopper-based electrocatalystforhydrogenproductionatlowoverpotentialinneutralwater, Chem.Commun.51(2015)12954–12957.

[51]J.Ambrose,R.G.Barradas,DwShoesmit,Rotatingcopperdiskelectrode studiesofmechanismofdissolution-passivationsteponcopperinalkaline solutions,J.Electroanal.Chem.47(1973)65–80.

[52]S.D.Giri,A.Sarkar,Electrochemicalstudyofbulkandmonolayercopperin alkalinesolution,J.Electrochem.Soc.163(2016)I1252–I1259.

[53]J.M.M.Droog,C.A.Alderliesten,P.T.Alderliesten,G.A.Bootsma,Initial-stages ofanodic-oxidationofpolycrystallinecopperelectrodesinalkaline-solution, J.Electroanal.Chem.111(1980)61–70.

[54]J.L.Du,Z.F.Chen,S.R.Ye,B.J.Wiley,T.J.Meyer,Copperasarobustand transparentelectrocatalystforwateroxidation,Angew.Chem.Int.Ed.54 (2015)2073–2078.

[55]Y.Y.Shi,C.Gimbert-Surinach,T.T.Han,S.Berardi,M.Lanza,A.Llobet, CuO-functionalizedsiliconphotoanodesforphotoelectrochemicalwater splittingdevices,ACSAppl.Mater.Interfaces8(2016)696–702.

Referenties

GERELATEERDE DOCUMENTEN

Table 1 The ratio of nitrogen species with respect to the copper species of the modified electrodes and the reference compound Cu(DAT) as determined by XPS.. Sample Elemental ratio N

2 ] (bdmpza − = bis(3,5-dimethyl-1H-pyrazol-1-yl)acetate, Figure 3.1), a structure similar to the aforementioned copper bipyridine system, revealed that the observed water

Data collection: APEX2 Bruker, 2008; cell refinement: SAINT Bruker, 2008; data reduction: SAINT; programs used to solve structure: SHELXS97 Sheldrick, 2008b; programs used to

Experimental methods, stability of Cu-terpy and Cu- bmpa in pH 7 bu ffered electrolyte, EPR spectroscopy, single crystal X-ray crystallography, crystallographic data of

l een overdag en op wegen met straatverlichting gezien kunnen worden, 's Nachts zijn deze bood- schappen n i et waarneembaa r. Vanuit de ~'genaar of gebrUiker van

Mathematisch model voor de overdracht van de geluidsgenerator naar de geluidsstraler Als model voor de geluidsstraler van de axiaalplunjerpomp mag volgens [21] gekozen

potential pro files obtained during water oxidation catalyzed by polycrystalline Pt at pH 13, with the electrolyte saturated with O 2 (red line) and the electrolyte obtained by

70 Under more oxidative conditions that are compulsory to study the water oxidation reaction, SERS analysis of catalytic intermediates is more troublesome as formation of a metal