• No results found

Chemical evolution from cores to disks Visser, R.

N/A
N/A
Protected

Academic year: 2021

Share "Chemical evolution from cores to disks Visser, R."

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Chemical evolution from cores to disks

Visser, R.

Citation

Visser, R. (2009, October 21). Chemical evolution from cores to disks. Retrieved from https://hdl.handle.net/1887/14225

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/14225

Note: To cite this publication please use the final published version (if applicable).

(2)

Chemical evolution from cores to disks

(3)
(4)

Chemical evolution from cores to disks

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op woensdag 21 oktober 2009 klokke 15.00 uur

door

Ruud Visser

geboren te Amersfoort in 1983

(5)

Promotiecommisie

Promotor: Prof. dr. E. F. van Dishoeck

Overige leden: Prof. dr. H. V. J. Linnartz Prof. dr. K. Kuijken Dr. M. R. Hogerheijde

Prof. dr. G. A. Blake California Institute of Technology Prof. dr. S. D. Doty Denison University

Prof. dr. E. A. Bergin University of Michigan

Dr. C. P. Dullemond Max-Plank-Institut für Astronomie

(6)

voor papa & mama

(7)
(8)

“Welcome the task that makes you go beyond yourself.”

– Frank McGee

(9)
(10)

Inhoudsopgave

1 Introduction 1

1.1 From ancient astronomy to modern astrochemistry . . . 2

1.2 Low-mass star formation and the role of chemistry . . . 4

1.3 Planets, comets and meteorites . . . 8

1.4 Chemical models . . . 10

1.4.1 Historical development and reaction types . . . 10

1.4.2 Solution methods . . . 12

1.5 This thesis . . . 14

2 The chemical history of molecules in circumstellar disks I: Ices 19 2.1 Introduction . . . 21

2.2 Model . . . 22

2.2.1 Envelope . . . 23

2.2.2 Disk . . . 25

2.2.3 Star . . . 28

2.2.4 Temperature . . . 30

2.2.5 Accretion shock . . . 30

2.2.6 Model parameters . . . 31

2.2.7 Adsorption and desorption . . . 32

2.3 Results . . . 33

2.3.1 Density profiles and infall trajectories . . . 34

2.3.2 Temperature profiles . . . 36

2.3.3 Gas and ice abundances . . . 37

2.3.4 Temperature histories . . . 44

2.4 Discussion . . . 45

2.4.1 Model parameters . . . 45

2.4.2 Complex organic molecules . . . 49

2.4.3 Mixed CO-H2O ices . . . 52

2.4.4 Implications for comets . . . 53

2.4.5 Limitations of the model . . . 54

2.5 Conclusions . . . 55

Appendix: Disk formation efficiency . . . 56

3 The chemical history of molecules in circumstellar disks II: Gas-phase species 59 3.1 Introduction . . . 61

3.2 Collapse model . . . 63 ix

(11)

Inhoudsopgave

3.2.1 Step-wise summary . . . 63

3.2.2 Differences with Chapter 2 . . . 64

3.2.3 Radiation field . . . 65

3.3 Chemical network . . . 66

3.3.1 Photodissociation and photoionisation . . . 67

3.3.2 Gas-grain interactions . . . 67

3.4 Results from the pre-collapse phase . . . 70

3.5 Results from the collapse phase . . . 72

3.5.1 One single parcel . . . 72

3.5.2 Other parcels . . . 79

3.6 Chemical history versus local chemistry . . . 88

3.7 Discussion . . . 97

3.7.1 Caveats . . . 97

3.7.2 Comets . . . 98

3.7.3 Collapse models: 1D versus 2D . . . 102

3.8 Conclusions . . . 102

4 Sub-Keplerian accretion onto circumstellar disks 105 4.1 Introduction . . . 107

4.2 Equations . . . 109

4.3 Size and mass of the disk . . . 111

4.4 Gas-ice ratios . . . 112

4.5 Crystalline silicates . . . 114

4.5.1 Observations and previous model results . . . 114

4.5.2 New model results . . . 115

4.5.3 Discussion and future work . . . 120

4.6 Conclusions . . . 122

5 The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks 123 5.1 Introduction . . . 125

5.2 Molecular data . . . 126

5.2.1 Band positions and identifications . . . 127

5.2.2 Rotational constants . . . 130

5.2.3 Oscillator strengths . . . 131

5.2.4 Lifetimes and predissociation probabilities . . . 132

5.2.5 Atomic and molecular hydrogen . . . 134

5.3 Depth-dependent photodissociation . . . 134

5.3.1 Default model parameters . . . 134

5.3.2 Unshielded photodissociation rates . . . 135

5.3.3 Shielding by CO, H2and H . . . 135

5.3.4 Continuum shielding by dust . . . 137

5.3.5 Uncertainties . . . 138

5.4 Excitation temperature and Doppler width . . . 139 x

(12)

Inhoudsopgave

5.4.1 Increasing Tex(CO) . . . 139

5.4.2 Increasing b(CO) . . . 142

5.4.3 Increasing Tex(H2) or b(H2) . . . 142

5.4.4 Grid of Texand b . . . 143

5.5 Shielding function approximations . . . 146

5.5.1 Shielding functions on a grid of N(CO) and N(H2) . . . 146

5.5.2 Comparison between the full model and the approximations . . . 147

5.6 Chemistry of CO: astrophysical implications . . . 151

5.6.1 Translucent clouds . . . 151

5.6.2 Photon-dominated regions . . . 159

5.6.3 Circumstellar disks . . . 162

5.7 Conclusions . . . 166

6 PAH chemistry and IR emission from circumstellar disks 169 6.1 Introduction . . . 171

6.2 PAH model . . . 172

6.2.1 Characterisation of PAHs . . . 172

6.2.2 Photoprocesses . . . 173

6.2.3 Absorption cross sections . . . 176

6.2.4 Electron recombination and attachment . . . 177

6.2.5 Hydrogen addition . . . 179

6.2.6 PAH growth and destruction . . . 179

6.2.7 Other chemical processes . . . 180

6.3 Disk model . . . 182

6.3.1 Computational code . . . 182

6.3.2 Template disk with PAHs . . . 183

6.4 Results . . . 183

6.4.1 PAH chemistry . . . 183

6.4.2 PAH emission . . . 186

6.4.3 Other PAHs . . . 190

6.4.4 Spatial extent of the PAH emission . . . 190

6.4.5 Sensitivity analysis . . . 191

6.4.6 T Tauri stars . . . 193

6.4.7 Comparison with observations . . . 194

6.5 Conclusions . . . 194

Nederlandse samenvatting 197

Literatuur 204

Publicaties 219

Curriculum vitae 221

Nawoord 223

xi

(13)

Referenties

GERELATEERDE DOCUMENTEN

This chapter focuses on the chemistry of the PAHs in a circumstellar disk and on its effects on the mid-IR emission, as well as on the differences between disks around Herbig Ae/Be

We also see a lot of envelope material hitting the outer parts of the disk in our semi-analytical collapse model, but there is still a fair amount (up to 50%) that makes its way to

Figure 2.3 – Dust temperature due to the accretion shock (vertical axis) and stellar radiation (hor- izontal axis) at the point of entry into the disk for 0.1-µm grains in a sample

For example, it was already known that the collapse-phase chemistry is dominated by a few key chemical processes and that the collapsing core never attains chemical equilibrium

The 2D treatment of the accretion results in material accreting at larger radii, so a smaller fraction comes close enough to the star for amorphous silicates to be thermally

Figure 5.7 – Histogram of the absolute relative difference between the approximate method (see text for details) and the full computation for the absolute photodissociation rates

A disk around a Herbig Ae/Be star containing PAHs of 50 or 96 carbon atoms shows strong PAH features, but the 24-C spectrum contains only thermal dust emission.. The goal

A disk shadow model of Ced 110 IRS 4 must reproduce the broad dark band and the central compact source seen in the near-infrared image (Fig. This morphology is not consis- tent with