• No results found

Computability by monadic second-order logic

N/A
N/A
Protected

Academic year: 2021

Share "Computability by monadic second-order logic"

Copied!
5
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

Information

Processing

Letters

www.elsevier.com/locate/ipl

Computability

by

monadic

second-order

logic

Joost Engelfriet

LIACS,LeidenUniversity,P.O.Box9512,2300RALeiden,theNetherlands

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received27August2020

Receivedinrevisedform20November2020 Accepted21November2020

Availableonline23November2020 CommunicatedbyLeahEpstein Keywords:

Theoryofcomputation Recursivelyenumerable Graphrelation

Monadicsecond-orderlogic

Abinaryrelationongraphsisrecursivelyenumerableifandonlyifitcanbecomputedby aformulaofmonadicsecond-orderlogic.Thelattermeansthattheformuladefinesaset ofgraphs,intheusualway,suchthateach“computationgraph”inthatsetdeterminesa pairconsistingofaninputgraphandanoutputgraph.

©2020TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC BYlicense(http://creativecommons.org/licenses/by/4.0/).

There aremanycharacterizations ofcomputability,but theonepresentedheredoesnotseemtoappearexplicitly in theliterature.1 Nevertheless,itisa naturalandsimple

characterization, based on the intuitive idea that a com-putation ofa machine,ora derivation ofagrammar, can berepresentedbyagraphsatisfyingaformulaofmonadic second-order (MSO) logic. Assuming the reader to be fa-miliarwithMSOlogicongraphs(see,e.g.,[3,Chapter 5]), theMSO-computabilityofabinary relationongraphscan be givenin halfa page,see below.One advantage ofthe definition is that there isno need to code thegraphs as stringsornumbers.

For an alphabet



,we considerdirected edge-labeled graphsg

= (

V

,

E

)

over



whereV isanonemptyfiniteset ofnodesandE

V

× 

×

V isasetoflabelededges.We alsodenoteV byVg,andE byEg.Anedge

(

u

,

ψ,

v

)

Eg iscalleda

ψ

-edge.Isomorphicgraphsareconsideredtobe equal. The set of all (abstract) graphs over



is denoted by

G

.

To modelcomputationswe use aspecial edge label

ν

thatisnotin



.Wedefineacomputationgraph over



to

E-mailaddress:j.engelfriet@liacs.leidenuniv.nl.

1 Thisfirstsentenceandthefirstpartofthenextsentencearetaken

overfrom [8].

be agraphh over



∪ {

ν

}

withatleastone

ν

-edgesuch thatforeveryu

,

v

,

u

,

v

Vh,

(1)

(

u

, ν,

u

) /

Eh,and

(2) if

(

u

, ν,

v

),

(

u

, ν,

v

)

Eh,then

(

u

, ν,

v

)

Eh. The inputgraph in

(

h

)

is defined to be the subgraph ofh

induced by all nodes that havean outgoing

ν

-edge, and the outputgraph out

(

h

)

is the subgraph of h induced by allnodesthat haveanincoming

ν

-edge.By (2) above,the

ν

-edges of h connect every node of in

(

h

)

to every node ofout

(

h

)

, andso by (1) above, Vin(h) andVout(h) are

dis-joint.Infact,the roleof the

ν

-edges isjust tospecifyan ordered pair of disjoint subsets of Vh, in a simple way. Notethatthere maybe arbitrarily manynodesandedges inh thatbelongneithertoin

(

h

)

nortoout

(

h

)

.Also,there may be edges between in

(

h

)

and out

(

h

)

other than the

ν

-edges.Thisnotionofcomputation graphgeneralizesthe “pairgraph”of [9],whichonitsturngeneralizesthe “ori-gingraph”of [1].

For a set H of computation graphs over



we

de-fine the graph relation computed by H to be rel

(

H

)

=

{(

in

(

h

),

out

(

h

))

|

h

H

}

G

×

G

. Finally, for an al-phabet



, we say that a graph relation R

G

×

G

is

MSO-computable if thereare an alphabet



andan MSO-definable set H of computation graphs over



∪ 

such

https://doi.org/10.1016/j.ipl.2020.106074

0020-0190/©2020TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

(2)

γ γ β β α β β α d d d ν

Fig. 1. Acomputationgraphh foraninducedsubgraph,with



= {α, β, γ}.Theinputgraphin(h)andoutputgraphout(h)aresurroundedbyovals,and theν-labelededgefromtheleftovaltotherightovalrepresentsthe12ν-labelededgesfromeachnodeofin(h)toeachnodeofout(h).

thatrel

(

H

)

=

R.Asobservedbefore,weassumethereader tobefamiliarwithMSOlogicongraphs.2 TheclosedMSO formula

ϕ

thatdefinesthesetH canbeviewedasa “ma-chine” ofwhichthe computationsare representedby the graphsinH .Wewillalsosaythatrel

(

H

)

isthegraph rela-tioncomputedby

ϕ

.Foreachh

H ,theinputgraphin

(

h

)

andtheoutput graphout

(

h

)

mustbegraphs overthe in-put/outputalphabet



.Theauxiliaryalphabet



isneeded to allow the edges of a computation graph that are not partofits input oroutput graph,tocarry arbitrary infor-mation intheir label;it issimilar tothe “working alpha-bet”ofamachine.ThisnotionofMSO-computability gen-eralizesthe“MSO-expressibility” ofgraphrelationsof [9],3 whichonitsturngeneralizestheMSOgraphtransductions of [3,Chapter 7] (asshownin [9,Section 7.1]).

Examples.(1) Let R

G

×

G

be the set of all

(

g

,

g

)

such that g is an induced subgraph of g. The graph re-lation R isMSO-computable because itcan be computed

by an MSO-definable set H of computation graphs over



∪ 

,with



= {

d

}

.We note that,by definition,the set ofall computationgraphs h over



∪ 

isMSO-definable, andthesets ofnodesVin(h) and Vout(h) canbe expressed

inMSOlogic.Theset H consists ofcomputation graphsh

suchthatVh

=

Vin(h)

Vout(h),in

(

h

)

andout

(

h

)

aregraphs

over



,andthed-edgesformanisomorphismfromout

(

h

)

toaninducedsubgraphofin

(

h

)

.Thelastconditionmeans, indetail,thatforeveryu

,

v

,

u

,

v

Vh,

if

(

u

,

d

,

v

)

is an edge of h, then u

Vout(h) and v

Vin(h),

ifu

Vout(h),thenu hasanoutgoingd-edge,

if

(

u

,

d

,

v

)

and

(

u

,

d

,

v

)

areedgesofh,then

– u

=

uifandonlyifv

=

v,and

– for every

γ

∈ 

,

(

u

, γ

,

u

)

Eh if and only if

(

v

, γ

,

v

)

Eh.

There may be

γ

-edges in h between in

(

h

)

and out

(

h

)

, with

γ

∈ 

;thoughtheyareharmless,wecould addition-ally forbid them. For an example of such a computation

2 TheatomicformulasofMSOlogicarex=y,xX ,andedge

ψ(x, y),

wherex and y arenodes,X isasetofnodes,andedgeψ(x, y)expresses

thatthereisa

ψ

-edgefromx to y.

3 TherelationR is“MSO-expressible”,inthesenseof [9,Section 3.1],if

itisMSO-computablebyasetH ofpairgraphs,whereapairgraphisa computationgraphh suchthatVh=Vin(h)Vout(h).

graphseeFig.1.Obviouslytheaboveconditionscanbe ex-pressedbyanMSOformula

ϕ

,whichdefines H .Moreover rel

(

H

)

=

R,andhence R isMSO-computable.Notethat R

iseven“MSO-expressible”,inthesenseof [9].

Asanother(similar)example,ifR consistsofall

(

g

,

g

)

such that g has atleast two, disjoint,induced subgraphs isomorphic to g, then we take



= {

d1

,

d2

}

, we re-quirethatthedi-edgessatisfy thesameconditionsasthe

d-edges above(foreachi

∈ {

1

,

2

}

),andwerequirethatno node of in

(

h

)

has both an incoming d1-edge and an in-comingd2-edge.

(2)Letg0 beafixedgraphover



,andlet R

G

×

G

be the set of all

(

g

,

g0

)

such that the number of nodes of g withanoutgoing

α

-edgeequalsitsnumberofnodes with an outgoing

β

-edge, with

α,

β

∈ 

. There is an

MSO-definable set H of computation graphs over



∪ 

such that rel

(

H

)

=

R, where



= {

d

,

e

}

.It consistsof all graphs h thatareobtainedbyadding

ν

-,d- ande-edgesto thedisjointunionofg,g,andg0,whereg isanarbitrary graphover



andgisisomorphicto g.The

ν

-edges deter-minethatin

(

h

)

=

g andout

(

h

)

=

g0.Thed-edgesestablish anisomorphismbetweeng andg,andthee-edges estab-lishabijection betweenthe nodesof g withan outgoing

α

-edgeandthenodesofgwithanoutgoing

β

-edge.Since theserequirementscan easily beexpressed inMSO logic,

R isMSO-computable.Itisnot difficultto showthat R is

not“MSO-expressible”,cf.theConclusionof [9].



Ouraimisnowtoprovethefollowingtheorem. Theorem.AgraphrelationisMSO-computableifandonlyifit isrecursivelyenumerable.

Recursive enumerability of a graph relation R means

that there is a (single tape) nondeterministic Turing ma-chine M such that

(

g

,

g

)

R if andonly if, on input g, M hasacomputationthatoutputsg.Inonedirectionthis theoremisobvious:everyMSO-computablegraphrelation isrecursivelyenumerable.Infact,oninput g

G

(coded as a string in an appropriate way) M guesses a compu-tation graph h over



∪ 

such that in

(

h

)

=

g, checks whetherh satisfiestheMSOformula

ϕ

(cf. [3,Chapter 6]), andifso, outputs the(coded) graphout

(

h

)

.To show the other direction we first consider the caseof string rela-tions.ForthenotionofMSO-computabilitywerepresenta stringw

=

γ

1

γ

2

· · ·

γ

kover



bythegraphgr

(

g

)

G

such that Vgr(g)

= {

1

,

2

,

. . . ,

k

+

1

}

and Egr(g)

= {(

j

, γ

j

,

j

+

1

)

|

(3)

i α β B

β i β B

β α i B

β α f B

ν

Fig. 2. A computationgraph h over  ∪ ,with



= {α, β}and  = {i, f, B, ∗}.It representsthecomputationofa(verysimple)Turing ma-chineM thatchangeseveryαoftheinputstringinto

β

andviceversa. Heretheinputstringisαβ,andM usesspacem=3 andtimen=4.The initialstateofM isi,thefinalstateis f ,andtheinstructionsareiα βi, αi,andi Bf B,whereB istheblank.Thestringsw1, w2, w3, w4

correspondingtoM’scomputationareiαβB,

β

iβB,

β

αi B,and

β

αf B.The ∗-labelsoftheverticaledgesofh areomitted.

1

j

k

}

. The proof is similar to the one of [3, The-orem 5.6]. Let M be a nondeterministic Turing machine that computes the recursively enumerable string relation

R

⊆ 

× 

∗.Consideracomputationof M that,foran in-put string w,outputs the string w. Supposethat it uses

space m and time n. Thus, it can be viewed as a

se-quence ofstrings w1

,

. . . ,

wn,each of lengthm

+

1, such that wi is the content of M’s tape at time i (including thestate ofM), w1 contains w (plusthe initialstateand blanks),andwncontains w(andafinalstateandblanks). Clearly, thissequencecan berepresented bya gridof di-mensionn

× (

m

+

2

)

.Therowsofthegridarethegraphs gr

(

w1

),

. . . ,

gr

(

wn

)

,whichareconnectedby

-labeled col-umn edges fromthe j-thnode of wi tothe j-thnodeof

wi+1 forevery 1

i

n

1 and1

j

m

+

2.It iseasy to turn that grid into a computation graph h by adding

ν

-edges fromthenodesofgr

(

w

)

inthefirstrowtothose ofgr

(

w

)

inthe lastrow. Thus,h isacomputation graph over



∪ 

such that in

(

h

)

=

gr

(

w

)

andout

(

h

)

=

gr

(

w

)

, where the alphabet



consists of the columnsymbol

, the workingsymbolsof M (includingthe blank),andthe states of M. For an example see Fig. 2. Since the set of grids isMSO-definable(asshownin [3,Section 5.2]),itis a straightforward exercise inMSO logic to show that the computationgraphs h,obtainedfromthe(successful) com-putations of M, can be defined by an MSO formula

ϕ

M. Inparticular,

ϕ

M shouldexpressthattheconsecutiverows ofthegrid(correspondingtostrings wi and wi+1) satisfy the (local) changes determined by the instructions of M. This shows that the graph relation computed by

ϕ

M is gr

(

R

)

= {(

gr

(

w

),

gr

(

w

))

| (

w

,

w

)

R

}

, and so, gr

(

R

)

is MSO-computable.

Foran alphabet



, letthe graphencodingrelation enc

consistofallpairs

(

g

,

gr

(

w

))

suchthatg

G

andw isan appropriateencodingofg asastring(whichwewill spec-ify later).4 By definition,if a graphrelation R

G

×

G

4 Appropriatenessmeansthattheencodingandthecorresponding

de-codingarecomputableinastraightforwardintuitivesense.Inparticular,it

isrecursivelyenumerablethen thereisa recursively enu-merablestringrelation R such that R is thecomposition ofenc,gr

(

R

)

,andenc−1. Hence,to obtainour theorem

forgraph relationsit now sufficesto prove the following

twolemmas.

Lemma 1.The class of MSO-computable graph relations is closedunderinverseandcomposition.

Lemma2.Forevery



,thegraph encodingrelationenc is MSO-computable.

Proof of Lemma1. Closure under inverseis obvious: just reversethedirectionofall

ν

-edges.Toproveclosureunder composition, let R1 and R2 be graph relations computed byMSOformulas

ϕ

1 and

ϕ

2.Wemayassumethat

ϕ

1 and

ϕ

2 usethesameauxiliary alphabet



.Moreover,we may assumethat every computationgraphh defined by

ϕ

1 or

ϕ

2 isconnected:ifnot,thenaddaspecialsymbol

μ

to



and require that every node u of h that is not in in

(

h

)

orout

(

h

)

,hasa

μ

-edgetoin

(

h

)

orout

(

h

)

.Finally,we as-sumethat

ϕ

1 usesthe label

ν

1 insteadof

ν

,and

ϕ

2 uses

ν

2 instead of

ν

, with

ν

1

=

ν

2. The MSO formula

ϕ

that computesthecompositionofR1andR2,usestheauxiliary alphabet



∪ {

ν

1

, ν

2

,

d

}

anddefinescomputation graphsh that are obtained asthe disjointunion of a computation graph h1 of

ϕ

1 and a computation graph h2 of

ϕ

2, en-richedbyd-edgesthat establishanisomorphismbetween out

(

h1

)

andin

(

h2

)

,andby

ν

-edgesfromin

(

h1

)

toout

(

h2

)

. It should be clearthat this can be realizedby

ϕ

; for in-stance, it expresses that the connected components ofh

minus itsenriching edges satisfy

ϕ

1 or

ϕ

2, depending on whethertheycontaina

ν

1-edgeora

ν

2-edge.



Proof of Lemma2. We firstspecify therelation enc.Let g

G

. We may assume that Vg is the set of strings

{

a

,

a2

,

. . . ,

an

}

overthealphabet

{

a

}

,forsomen

1,where

a

∈ 

/

. Let Eg

= {(

u1

, γ

1

,

v1

),

. . . ,

(

um

, γ

m

,

vm

)

}

for some

m

0.Weencodeg,inastandardway,asthestring

w

=

#a#a2#

· · ·

#an$u1

γ

1v1$

· · ·

$um

γ

mvm$

over the alphabet

= 

∪ {

a

,

#

,

$

}

, and we define the graph encoding relation enc

G

×

G

to consist of

all pairs

(

g

,

gr

(

w

))

. Note that since w depends on lin-ear orderings of Vg and Eg, a graph g has in general

more than one encoding. On the other hand, the

rela-tion enc−1 is a function. The set of strings over

that

encode graphs over



is not a regular language, and

hence the set enc(G) of graphs over

is not

MSO-definable [2,6,12].However,by enrichingeachgr

(

w

)

with

α

-edgesand

δ

-edges (where

α

and

δ

arespecialsymbols not in

), we can turn enc(G

)

into an MSO-definable set of graphs. Fora string w as displayed above we de-finegr+

(

w

)

tobethegraphgr

(

w

)

towhich

α

-edgesand

δ

-edges are added asfollows.For an example see Fig. 3. The

α

-edgesallowanMSOformulatoexpressthefactthat

isdecidablewhetherornotagivenstringistheencodingofsomegraph. Anystandardencodingofgraphssatisfiestheserequirements.

(4)

# a # a a # a a a

a γ a $ a γ a a $

α α α α α

δ δ δ δ δ δ δ δ δ

$

Fig. 3. The graph gr+(w) for the string w=#a#aa#aaa$aγa$aγaa$, which is an encoding of the graph g with Vg= {a, aa, aaa} and Eg= {(a, γ, a), (a, γ, aa)}.Thegraphgr(w)isobtainedfromgr+(w)byremovingallα- and

δ

-edges.

x y γ x y # ai # # aj # x y $ ai γ aj $ e e δ δ δ δ

Fig. 4. Parts of a computation graph h showing the MSO-computability of enc. The nodes x and y belong to in(h), all other nodes to mid(h).

thefirsthalfofw isoftheform#a#a2#

· · ·

#an$.Foreach substring#ai#ai ofw (1

i

n

1)thereare

α

-edgesin gr+

(

w

)

fromthenodesofthefirstoccurrenceofgr

(

ai

)

in gr

(

w

)

tothe nodesof thesecond occurrenceof gr

(

ai

)

in gr

(

w

)

,suchthattheyformanisomorphismbetweenthese two subgraphs. An MSO formula on gr+

(

w

)

can express that w isintheregularlanguage#a

(

#a

)

(

$a



a

)

∗$,and, using the outgoing

α

-edges of gr

(

#ai#

)

, it can enforce that each substring #ai# is followed by ai+1# or ai+1$. The

δ

-edgesingr+

(

w

)

witnessthefactthatforeach sub-string $uj

γ

jvj$ of w (1

j

m) both uj and vj are in

{

a

,

a2

,

. . . ,

an

}

,i.e.,ujandvjare“declared”inthefirsthalf of w.Thus, thereare

δ

-edges fromthenodesofgr

(

uj

)

to thenodesofsomegr

(

#ai#

)

orgr

(

#ai$

)

inthefirsthalfof gr

(

w

)

that establishan isomorphismbetweengr

(

uj

)

and gr

(

ai

)

,andsimilarlyforgr

(

v

j

)

.Thiscanalsoeasilybe ex-pressedbyanMSOformula.Moreover,the

δ

-edgescanbe used to expressthat an edgeis not encodedtwice in w,

i.e., if j

=

k then$uj

γ

jvj$

=

$uk

γ

kvk$; infact,uj

=

uk if andonlyifthetwo

δ

-edgesthatstartfromthefirstnodes ofgr

(

uj

)

andgr

(

uk

)

ingr+

(

w

)

,leadtothesamenode(and similarlyforvj

=

vk).Wenowdefineenc+ toconsistofall

pairs

(

g

,

gr+

(

w

))

where w encodes g.It followsthat the setenc+

(

G

)

isMSO-definable.5

Finally,weshowthat enc

G

×

G

is

MSO-comput-able by describing thecomputation graphs h over

∪ 

in an MSO-definable set H such that rel

(

H

)

=

enc. The

auxiliary alphabet is



= {

α

,

δ,

d

,

e

}

. Let mid

(

h

)

be the

subgraph of h induced by the nodes of h that are not

5 Werecallthatthesetofgraphsgr

(w),wherew isanarbitrarystring over

,isMSO-definable,seeforinstance [3,Corollary 5.12] or [9, Exam-ple 2.1].

incident with a

ν

-edge, i.e., that are not in Vin(h) or Vout(h). First, we requirethat mid

(

h

)

is in enc+

(G

)

,i.e.,

mid

(

h

)

=

gr+

(

w

)

where w encodes some graph g in

G

. Second, werequirethat thereare d-edges fromout

(

h

)

to mid

(

h

)

thatestablishanisomorphismbetweenout

(

h

)

and the graph obtainedfrom mid

(

h

)

by removing all

α

- and

δ

-edges.Thismeansthatout

(

h

)

=

gr

(

w

)

.Third,itremains to require that in

(

h

)

is isomorphic to g. To realize this, we require that in

(

h

)

G

and that there are e-edges

from in

(

h

)

to mid

(

h

)

that establish a bijection between

Vin(h) and the nodes of mid

(

h

)

that have an incoming

#-edge (thus representinga bijection between Vin(h) and Vg

= {

a

,

a2

,

. . . ,

an

}

). Since we wish this bijection to rep-resent an isomorphism betweenin

(

h

)

and g, we require forevery

(

x

, γ

,

y

)

Vin(h)

× 

×

Vin(h) that

(

x

, γ

,

y

)

isan

edgeof in

(

h

)

ifandonly ifthereexistnodes x

,

x

,

y

,

y

ofmid

(

h

)

suchthat

(1)

(

x

,

e

,

x

)

and

(

y

,

e

,

y

)

areedgesofh,

(2)

(

x

,

δ,

x

)

and

(

y

,

δ,

y

)

areedgesofmid

(

h

)

, (3) x hasanincoming$-edgeinmid

(

h

)

,and

(4) there is a directed path from x to y in mid

(

h

)

, of which the consecutive edge labels form a string in a

γ

.

This situation is sketched in Fig. 4. Condition (1) means thatx and y correspondtosubstrings#ai

and#aj

of w (with

∈ {

#

,

$

}

),i.e., to nodesai andaj of g,and condi-tions(2)-(4)meanthatw hasasubstring$ai

γ

aj$,i.e.,that

(

ai

, γ

,

aj

)

isanedgeof g.Itshouldbeclearthatallthese requirementscanbeexpressedinMSOlogic,andthat the graphrelationcomputedbyH isenc.



(5)

Lemma 2 is trivial from the point of view of Turing computability:ifw encodesg,thenboth g andgr

(

w

)

can

be represented by w on the tape of a Turing machine.

This is however based on the intuition that our encod-ingofgraphsasstringsiscomputable.Sincethenotionof MSO-computabilitydiscussedhereusesgraphsasdatatype ratherthanstrings,wewereabletogiveaformalproofof thatintuition.Thereadermayobjectthattheformal proof is basedonthe intuitionthat theencoding of astring w

asthe graphgr

(

w

)

is computable.One mightthen argue thatthelatterencodingissimplerthantheformer.

Traditionally, it hasbeen shownthat MSO logic is re-latedtoregularity,e.g.,toregularstringlanguages [2,6,12] and regular tree languages [4,13]. If one identifies regu-larity with computability by a finite-state machine, then this approach failsforMSO logic on graphs, because “no

notion of finite graph automaton has been defined that

would generalize conveniently finite automata on words and terms” ([3, Section 1.7]). For this reason, the MSO transducers of [3, Chapter 7] were proposed to play the roleoffinite-statetransducersofgraphs,andinthecaseof stringstheyindeedturnedouttobeequivalenttotwo-way finite-state transducers [5]. We have shown above how, droppingthefinite-statecondition,MSOlogicisrelatedto computabilitybyanymachine.

If, ontheother hand,oneidentifies regularitywith ra-tionality,i.e.,withasmallestclasscontainingallfinitesets of objects and closed under a number of natural opera-tions onsetsofobjects (union,concatenation,andKleene starin thecaseof stringlanguages),then the classof all MSO-definable sets of graphs hasa rational characteriza-tion [7]. Sincethe recursivelyenumerablestring relations also havearational characterization(asdiscussed in [8]), the question remains whether there is a naturalrational characterization of the MSO-computable graph relations. Such a characterization wouldatleast involvethe opera-tionsofunion,composition,andtransitiveclosureofgraph relations.

Theabovequotefrom [3,Section 1.7] referstothe non-existence of a finite-state graph automaton that accepts exactly theMSO-definablesetsofgraphs. In [11] a finite-state graphacceptorisintroducedofwhichthe computa-tions are “tilings” of the input graphs (which have tobe graphsofboundeddegree).All“tiling-recognizable”setsof graphsacceptedbythesemachinesareMSO-definable,and the reverse is true forstrings andtrees. Ifwe would al-lowthenodesofourgraphstohavelabels,thenwecould modelthe inputgraphin

(

h

)

andtheoutput graphout

(

h

)

ofacomputationgraph h bytwospecialnodelabelsrather than by

ν

-edges. Then, similar to MSO-computability, we coulddefine agraphrelationtobe“tiling-computable” by requiring the set H of computation graphs to be tiling-recognizablerather thanMSO-definable.This leadsto the followingquestionforgraphsofboundeddegree: isevery recursively enumerable graph relation tiling-computable? Notethat,asshownin [11,Example 3.2(b)],thesetofgrids istiling-recognizable.

Descriptive complexity theory investigates logics that characterize complexity classes. By Fagin’s theorem (see, e.g., [10, Theorem 5.1]), the complexity class NP equals

the set of problems that can be specified by existential second-order formulas. In terms of graphs, such a for-mula requires the existence of an extension of the in-putgraph by additionallabeled hyperedges (wherea hy-peredge is a sequence of nodes), such that the resulting (hyper)graph satisfies a first-orderformula. In our notion ofMSO-computability we require that the input graph is an induced subgraph ofa graphthat satisfies a monadic second-order formula, and we obtain all recursively enu-merableproblems.

We finally note that the notion of MSO-computability caneasily be generalizedtodeal witharbitraryrelational structures(cf. [3,Section 5.1]).

Declarationofcompetinginterest

The authordeclares that he hasno known competing

financialinterestsorpersonalrelationshipsthatcouldhave appearedtoinfluencetheworkreportedinthispaper. Acknowledgement

Ithankthereviewersfortheirhelpfulsuggestions. That’sallfolks! Thiswas my last paper. Thankyou, dear reader,andfarewell.

References

[1]M.Boja ´nczyk,L.Daviaud,B.Guillon,V.Penelle,Whichclassesof ori-gingraphsaregeneratedbytransducers?,in:I.Chatzigiannakis,P. In-dyk,F.Kuhn,A.Muscholl(Eds.),Proc.44thInternationalColloquium onAutomata,Languages,andProgramming(ICALP2017),in: Leib-nizInternationalProceedingsinInformatics(LIPIcs),vol. 80,Schloss Dagstuhl–Leibniz-ZentrumfürInformatik,2017,pp. 114:1–114:13.

[2]J.R. Büchi, Weak second-order arithmetic and finite automata, Z. Math.Log.Grundl.Math.6(1960)66–92.

[3]B.Courcelle,J.Engelfriet,GraphStructureandMonadicSecond-Order Logic- aLanguage-TheoreticApproach,EncyclopediaofMathematics andItsApplications.,vol. 138,CambridgeUniversityPress,2012.

[4]J.Doner,Treeacceptorsandsomeoftheirapplications,J.Comput. Syst.Sci.4(1970)406–451.

[5]J.Engelfriet,H.J.Hoogeboom,MSOdefinablestringtransductionsand two-wayfinitestatetransducers,ACMTrans.Comput.Log.2(2001) 216–254.

[6]C.C.Elgot,Decisionproblemsoffiniteautomatadesignandrelated arithmetics,Trans.Am.Math.Soc.98(1961)21–51.

[7]J. Engelfriet, A regular characterization of graph languages defin-ableinmonadicsecond-orderlogic,Theor.Comput.Sci.88(1991) 139–150.

[8]J.Engelfriet,AKleenecharacterizationofcomputability,Inf.Process. Lett.101(2007)139–140.

[9]J.Engelfriet,H.Vogler,ABüchi-Elgot-Trakhtenbrottheoremfor au-tomatawithMSOgraphstorage,DiscreteMath.Theor.Comput.Sci. 22 (4)(2020)#3.

[10]R.Fagin,Finite-modeltheory- apersonalperspective,Theor. Com-put.Sci.116(1993)3–31.

[11]W. Thomas, Onlogics, tilings, and automata, in: J. Leach Albert, B. Monien,M.RodríguezArtalejo(Eds.),Proc.18thInternational Col-loquiumonAutomata, Languages,andProgramming(ICALP1991), in:LNCS,vol. 510,Springer,Berlin,Heidelberg,1991,pp. 441–454.

[12]B.A.Trakhtenbrot,Finiteautomataandthelogicofone-place predi-cates,Sib.Math.J.3(1962)103–131(inRussian).Englishtranslation: Am.Math.Soc.Transl.(2)59(1966)23–55.

[13]J.W.Thatcher,J.B.Wright,Generalizedfiniteautomatatheorywithan applicationtoadecisionproblemofsecond-orderlogic,Math.Syst. Theory2(1968)57–82.

Referenties

GERELATEERDE DOCUMENTEN

De afdeling Geo-Energie houdt zich bezig met onderzoek en advisering op het gebied van opsporing en productie van ondergrondse energiebronnen (olie, gas, aardwarmte) en op het.

”Wil je overleven dan moet je je eigen koers varen, maar daarnaast open staan voor kritiek.”.. Jos en Margret hebben

Ik denk dat een kind, ongeacht zijn leeftijd, het in zich heeft om zelf een inschatting te maken over wat hij of zij wel of niet kan.. Wat is erop tegen, zeker wanneer

Bestaande OBN-projecten (onderzoek of monito- ring) hebben enerzijds last gehad van de droogte waardoor onderzoek in 2018 niet kon worden uitge- voerd (monitoring

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

van de operationele research. Via de analogie met de uit de economie bekende bedrijf skolom zal onder meer warden gepleit voor verticale integratie van de operationele

 If amounts accrue to (or are received by) a discretionary trust during a year of assessment, those receipts and accruals are taxed at entity level in the trust’s hands

Om na te gaan hoe de stratigrafie zich langs de oostelijke zijde van spoor 80 manifesteerde, kwam er een tweede profiel dwars op spoor 80 (figuur 15).. Dit profiel toonde opnieuw