• No results found

Synthesis and antimalarial activity of amine derivatives of artemisinin

N/A
N/A
Protected

Academic year: 2021

Share "Synthesis and antimalarial activity of amine derivatives of artemisinin"

Copied!
24
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Synthesis and antimalarial activity of amine

derivatives of artemisinin

Theunis Cloete

B.Pharm., M.Sc. (Pharmaceutical Chemistry)

Thesis submitted in fulfilment of the requirements for the degree

Philosophiae Doctor

in the

Department of Pharmaceutical Chemistry, School of Pharmacy

Faculty of Health Sciences

at the

North-West University

(Potchefstroom Campus)

Supervisor: Prof. D.D. N’Da

Potchefstroom

(2)

i

Declaration

This thesis is submitted in fulfilment of the requirements for the degree of the Philosophiae Doctor in Pharmaceutical Chemistry, at the School of Pharmacy, North-West University.

I, Theunis Theodorus Cloete, hereby declare that the dissertation with the title:

Synthesis and antimalarial activity of amine derivatives of artemisinin

is my own work and has not been submitted at any other University either in whole or in part.

Signed at Potchefstroom on the 30th day of November, 2012.

__________________________ Theunis Theodorus Cloete

(3)

ii

Preface

This thesis is submitted in an article format in accordance with the General Academic Rules (A.13.7.3) of the North-West University. Four articles, two of which have been published, are included in this thesis:

Chapter 3- Article 1:

CLOETE, T.T., BREYTENBACH, J.W., DE KOCK, C., SMITH, P.J., BREYTENBACH, J.C., N’DA, D.D. 2012. Synthesis, antimalarial activity and cytotoxicity of 10-aminoethylether derivatives of artemisinin. Bioorganic & medicinal chemistry, 20(15):4701–4709, Aug.

Chapter 4- Article 2:

CLOETE, T.T., KREBS, H.J., CLARK, J.A., CONNELLY, M.C., ORCUTT, A., SIGAL, M.S., GUY, R.K., N’DA, D.D. 2012. Synthesis and antimalarial activity of 10alkyl/aryl esters and -aminoethylethers of artemisinin. Bio-organic chemistry, In press.

Chapter 5- Article 3:

CLOETE, T.T., CLARK, J.A., CONNELLY, M.C., MATHENY, A., SIGAL, M.S., GUY, R.K., N’DA, D.D. 2012. Synthesis, antimalarial activity and cytotoxicity of artemisinin-triazine hybrids. Bioorganic & medicinal chemistry, To be submitted.

Chapter 6- Article 4:

CLOETE, T.T., CLARK, J.A., CONNELLY, M.C., MATHENY, A., SIGAL, M.S., GUY, R.K., N’DA, D.D. 2012. Synthesis, antimalarial activity and cytotoxicity of dimeric artemisinin triazine hybrids. Bioorganic & medicinal chemistry letters, To be submitted.

The contributions and consent to submit the articles for degree purposes from all the co-authors are given in the table below. Both articles 1 and 2 were published by Elsevier, which grants the author the right to include the article(s) in a thesis. Permission from Elsevier, as per the website: http://authors.elsevier.com/definitions.html?journal_name= Remote%20 Sensing%20of%20Environment&lang=English&dc=OCTDEF

(4)

iii

Table of consent

Author Contribution Consent

Theunis T. Cloete

Responsible for the planning and design of the study. Carried out the synthetic procedures. Wrote all four

articles as first author. David D. N’Da As promoter he assisted in

all aspects of the study. Jaco C. Breytenbach

Co-author of article 1. Gave critical reviews of articles

2-4.

J. Wilma Breytenbach

Co-author of article 1. Planned and carried out statistical analysis of data.

Assisted with the interpretation of data. Peter J. Smith

Oversaw the antiplasmodial procedures in article 1. Gave

critical reviews of article 1.

Carmen de Kock

Conducted in vitro antiplasmodial experiments in article 1 and analysed the

data.

R. Kiplin Guy

Oversaw the antiplasmodial procedures in articles 2-4.

Gave critical reviews of articles 2-4.

Julie A. Clark

Conducted in vitro antiplasmodial experiments in articles 2-4 and analysed

the data.

Martina S. Sigal

Conducted in vitro antiplasmodial experiments in articles 2-4 and analysed

the data.

Amy Matheny

Conducted in vitro antiplasmodial experiments in articles 2-4 and analysed

the data.

Michele C. Connelly

Conducted in vitro antiplasmodial experiments in articles 2-4 and analysed

the data.

Henk J. Krebs

Designed and synthesised compounds 11-18 of article

2.

# I declare that I have approved the article(s) and that my role in the study was as indicated above. I hereby give my consent that the article(s) may be published as part of the thesis of Theunis Theodorus Cloete.

(5)

iv Dedicated to my wife, Anke Cloete.

(6)

v

Abstract

Malaria has since antiquity been a leading cause of morbidity and mortality throughout the world having serious health, sociological and financial implications. Today, the parasite kills an approximate 655 000 people annually, with most deaths being amongst pregnant women and children under the age of 5 in Africa. Plasmodium falciparum is the species that accounts for 91% of all case fatalities and predominates in Africa and Asia. The parasite is aggressive in its means of acquiring resistance, nullifying the majority of drugs used against it.

Artemisinin, a sesquiterpene lactone with a peroxide bridge, was discovered in 1971 and was found to possess remarkable antimalarial activity. Together with its semi synthetic derivatives, artemisinin not only lack cross-resistance with other antimalarials but also has the remarkable ability to induce a 10 000 fold reduction in parasitemia.

The artemisinin class of compounds is currently the basis of treatment favoured by the World Health Organisation (WHO) for the treatment of uncomplicated P. falciparum infection. Regrettably, resistance has started to emerge even against this class of compounds, characterised by a significantly longer in vivo parasite clearance time.

The global impact of this disease and its ability to circumvent most efforts to counter it justifies the search for new treatment methods and drugs.

The aim of this study was to synthesise three series of artemisinin-amine derivatives, to evaluate their antimalarial activity against both sensitive and resistant strains of P. falciparum and to determine their toxicity against mammalian cells. This may lead to new compounds with favourable properties and increased activity which can be used in the fight against malaria.

Chapter 3 describes the synthesis of eleven 10-aminoethylether derivatives of artemisinin, confirmation of their structures by physical means and the determination of their in vitro antimalarial activity against the chloroquine sensitive (D10) and resistant (Dd2) strains of P. falciparum as well as their toxicity against Chinese hamster ovarian (CHO) cells. All derivatives were active against both strains of the parasite, with no mentionable toxicity. The highest activity was displayed by compound 8, a short chain aromatic derivative containing only one nitrogen atom, which was found to have comparable activity to artesunate (AS).

(7)

vi Long chain polyamine derivatives had the lowest activity against both strains. An interesting correlation between the IC50, pKa values and resistance index (RI) was found.

Chapter 4 compares the same 10-aminoethylether derivatives of artemisinin discussed in chapter 3 with eight 10-n-alkyl/aryl/aroyl ester derivatives previously synthesised in our group. The in vitro antimalarial activity of these nineteen compounds was determined against both the chloroquine sensitive (3D7) and resistant (K1) strains of P. falciparum, whilst their cytotoxicity was determined against both human embryonic kidney cells (HEK 293) and hepatocellular carcinoma cells (Hep G2). Both series of compounds showed activity versus the 3D7 and K1 strains, with the majority of compounds possessing potency either comparable with or higher than that of AS. None of the synthesised derivatives had any mentionable toxicity against the mammalian cells. The 10-n-propyl and 10-benzyl ester derivatives, 11 and 18 respectively, were the most active compounds against both strains, whilst the other ester derivatives also showed a slightly higher degree of activity than the aminoethers. Compound 29, featuring an isobutylamine substituent, was the most active of all aminoethers.

Chapter 5 entails the synthesis of seven artemisinin-triazine hybrids, confirmation of their structures and the determination of their in vitro antimalarial activity against the 3D7 and K1 strains of P. falciparum, whilst their cytotoxicity was determined against HEK 293, Hep G2, B-lymphocyte cells (Raji) and human fibroblast cells (BJ). The synthesised hybrids all showed activity against both strains and were found to be non-toxic to all mammalian cells. Compound 17, featuring p-anisidine and 2-(diisopropylamino)ethylamine substituents on the triazine ring, was the most active of all synthesised compounds and had comparable activity to that of AS and artemether (AM), while being significantly more potent than chloroquine (CQ).

Chapter 6 describes the synthesis and structure determination of six dimeric artemisinin triazine hybrids and the determination of their antimalarial activity and toxicity against the same strains of P. falciparum and mammalian cells as in chapter 5. All dimers showed activity against both strains and no noticeable toxicity towards any of the mammalian cell lines used. All synthesised compounds showed higher activity than CQ, irrespective of the P. falciparum strain considered. Compound 15, featuring aniline and morpholine substituents on the triazine ring, was not only meaningfully more potent than CQ but was also found to possess activity comparable to those of AS and AM against both malaria strains. Compounds 10, 11, 12 and 13 all had corresponding monomer equivalents as have been reported in chapter 5. Against both strains of P. falciparum, most dimer compounds were slightly more active than their monomer counterparts.

(8)

vii This study delivered a number of compounds that exhibited activity comparable to that of potent antimalarial drugs currently on the market, and showed that there is ample scope for developments in the chemotherapy of malaria. These compounds stand as good candidates for in vivo and pharmacokinetic studies and may serve as leads for further investigations.

(9)

viii

Opsomming

Sedert die vroegste tye is malaria 'n groot oorsaak van siektes en sterftes regoor die wêreld, met ernstige gesondheidsprobleme en sosiologiese en finansiële implikasies. Die parasiet veroorsaak tans jaarliks 'n geskatte 655 000 sterftes waarvan die meeste swanger vroue en kinders onder die ouderdom van 5 jaar in Afrika is. Plasmodium falciparum is die spesie wat vir 91% van alle sterfgevalle verantwoordelik is en is die belangrikste een in Afrika en Asië. Die parasiet bou op ’n aggressiewe wyse weerstand teen geneesmiddels op en maak die meeste daarvan sodoende nutteloos.

Artemisinien, 'n seskwiterpeenlaktoon met 'n peroksiedbrug, is in 1971 ontdek en besit merkwaardige aktiwiteit teen malaria. Soos sy semi-sintetiese derivate, toon artemisinien nie net geen kruisweerstand met ander antimalariamiddels nie, maar het ook die merkwaardige vermoë om 'n 10 000-voudige verlaging in parasitemie teweeg te bring.

Die artemisinienklas van verbindings is tans die basis van middels wat deur die Wêreld-gesondheidsorganisasie (WGO) vir die behandeling van ongekompliseerde infeksie deur P. falciparum verkies word. Ongelukkig het weerstand selfs teen hierdie klas van verbindings begin verskyn, wat gekenmerk word deur 'n aansienlik langer tyd vir die in vivo-opklaring van die parasiet.

Die wêreldwye impak van hierdie siekte en sy vermoë om die meeste pogings om dit teen te werk te omseil, regverdig die soeke na nuwe metodes en middels vir behandeling.

Die doel van hierdie studie was om drie reekse amienderivate van artemisinin te sintetiseer, hulle aktiwiteit teen beide sensitiewe en weerstandbiedende stamme van P. falciparum te evalueer en hulle toksisiteit teen soogdierselle te bepaal. Dit kan tot nuwe verbindings met gunstige eienskappe en beter aktiwiteit lei wat in die stryd teen malaria gebruik kan word.

Hoofstuk 3 beskryf die sintese van elf 10-aminoetieleterderivate van artemisinien, bevestiging van die strukture daarvan met fisiese metodes en die bepaling van hulle in vitro-aktiwiteit teen die chlorokiensensitiewe (D10) en -weerstandige (Dd2) stamme van P. falciparum, sowel as hul toksisiteit teen ovariumselle van die Chinese hamster (CHO). Alle derivate was aktief teen beide stamme van die parasiet, met geen noemenswaardige toksisiteit nie. Verbinding 8, 'n aromatiese derivaat met ’n kort ketting en slegs een stikstofatoom, het die hoogste aktiwiteit vertoon, wat vergelykbaar met

dié

van artesunaat

(10)

ix (AS) is. Poliamienderivate met lang kettings het die laagste aktiwiteit teen albei stamme getoon. 'n Interessante korrelasie tussen die IC50, pKa-waardes en weerstandsindeks (WI) is gevind.

Hoofstuk 4 vergelyk dieselfde 10-aminoetieleterderivate van artemisinin van hoofstuk 3 met agt 10-n-alkiel/arielesterderivate wat voorheen in ons groep gesintetiseer is. Die in vitro-aktiwiteit van hierdie negentien verbindings is teen beide die chlorokiensensitiewe (3D7) en weerstandige (K1) stamme van P. falciparum bepaal, terwyl hulle sitotoksisiteit teen menslike embrioniese nierselle (HEK 293) en lewerkarsinoomselle (HepG2) bepaal is. Albei reekse verbindings toon aktiwiteit teenoor die 3D7- en K1-stamme en die meeste het ’n werking óf vergelykbaar met óf hoër as dié van AS. Geeneen van die gesintetiseerde derivate het enige noemenswaardige toksisiteit teen die soogdierselle nie. Die 10 -n-propiel- en 10-bensielesters, 11 en 18 onderskeidelik, was die mees aktiewe verbindings teen albei stamme, terwyl die ander esters ook 'n effens hoër mate van aktiwiteit as die aminoeters het. Verbinding 29, met 'n isobutielamiensubstituent, was die mees aktiewe van alle aminoeters.

Hoofstuk 5 behels die sintese van sewe artemisinien-triasien hibriede, bevestiging van hulle strukture en die bepaling van die in vitro-aktiwiteit teen die 3D7- en K1-stamme van P. falciparum, terwyl hulle sitotoksisiteit teen HEK 293, Hep G2, B-limfosietselle (Raji) en menslike fibroblastselle (BJ) bepaal is. Die gesintetiseerde hibriede toon almal aktiwiteit teen beide stamme en is nie toksies teenoor die soogdierselle nie. Verbinding 17, met 'n p-anisidien- en ’n 2-(diisopropielamino)etielamiensubstituent op die triasienring, was die mees aktiewe van alle gesintetiseerde verbindings en het aktiwiteit soortgelyk aan

dié van AS en

artemeter (AM), terwyl dit beduidend meer potent as chlorokien (CQ) is.

Hoofstuk 6 beskryf die sintese en struktuurbepaling van ses dimeriese artemisinien-triasien hibriede en die bepaling van hulle aktiwiteit en toksisiteit teen dieselfde stamme van P. falciparum en soogdierselle as in hoofstuk 5. Alle dimere toon aktiwiteit teen albei stamme en geen waarneembare toksisiteit teenoor enige van die gebruikte soogdiersellyne nie. Al die gesintetiseerde verbindings het hoër aktiwiteit as CQ, ongeag van die betrokke stam van P. falciparum. Verbinding 15, met ’n anilien- en ’n morfoliensubstituent op die triasienring, was nie net betekenisvol meer potent as CQ nie, maar het ook aktiwiteit wat vergelykbaar is met dié van AS en AM teen beide malariastamme. Verbindings 10, 11, 12 en 13 het elk 'n ooreenstemmende monomeer soos in hoofstuk 5 gerapporteer is. Teen beide stamme van P. falciparum was die meeste dimere effens meer aktief as hulle ekwivalente monomere.

(11)

x Hierdie studie het 'n aantal verbindings gelewer met aktiwiteit soortgelyk aan dié van kragtige malariamiddels wat tans op die mark is, en het getoon dat daar ruimte vir die ontwikkeling in die chemoterapie van malaria is. Hierdie verbindings is goeie kandidate vir in vivo- en farmakokinetiese studies en kan as leidrade vir verdere navorsing dien.

(12)

xi

Acknowledgements

Prof. David D. N’Da: My supervisor and friend. It was an honour to get to know you. You taught me that with hard work and faith, no obstacle is too big and no achievement is out of reach. Without you, none of this would have been possible. Thanks!

Prof. Jaco C. Breytenbach: Thank you for the experience of a lifetime. Thank you for your never ending optimism and for always making a plan. Thank you for your expertise, advice, encouragement and always being there.

In my herinneringe van my D, sal Pa altyd die een oorkant die gang wees.

Me. Wilma Breytenbach: Thank you for all the help with the statistical analysis of the data. Your hard work, insights and professionalism meant the world to me.

Ook baie dankie vir al Ma se ondersteuning en liefde. Dit word opreg waardeer.

Prof. Jeanetta Du Plessis: Prof., thank you very much for helping me through all the extremely difficult times. Your wisdom and kind words meant a lot to me when I needed it the most. I thank you not only for everything I know you did, but also for the things I will never know of. Dankie!

Prof. Jan Du Preez: Thank you for all your hard work with the recording of the MS and HPLC spectra. Thank you for sharing your expertise and your willingness to always help me.

Prof. Kobus Bergh: Thank you for your guidance and commitment.

The Department of Pharmaceutical Chemistry at the North-West University: I want to thank the whole department for making my post graduation experience one that will never be forgotten.

National Research Foundation (NRF): I want to thank the NRF for the financial support they provided me throughout the course of my study.

North-West University: I want to thank the North-West University for the financial support they provided me throughout the course of my study.

(13)

xii Dr. Johan Jordaan: Thank you for helping me with the recording of the MS data. You were always someone that I could depend on, no matter what.

Mr. Andre Joubert: Thank you for helping me with the recording of the NMR data. Thank you for always being a friendly face that I could talk to.

Prof. Jaques Petzer: Thank you for sharing your immense knowledge with all of us. You are one of the smartest, most humble people I know.

Prof. Sandra Van Dyk: Thank you for being my tutor and helping me with my internship. I will miss our conversations in the corridor.

Dr. R. Kiplin Guy: Thank you for overseeing the in vitro biological study of series 2 and 3. Prof. Peter J. Smith: Thank you for overseeing the in vitro biological study of series 1. My kollegas, Frans Smit, Paul Joubert, Marli Lombard en Marnitz Verwy: Dankie vir julle vriendskap en dat ons altyd lekker kon gesels. Dankie vir julle hulp met die prakties en julle insae in my studies.

Chucky Van Heerden: My muse! As jy in die lab was het dinge net gebeur. Dankie vir die wonderlike tyd saam in die lab. Ek waardeer jou vriendskap opreg baie.

Lizanne Van Heerden: Labie! Jy het ‘n baie spesiale plek in my hart. Dankie vir al die lekker chat in die lab en die SS koffie. Jy is regtig ‘n baie spesiale mensie. Mag daar net geluk, vrede en vreugde vir jou en Daniel voorlê.

Oupa: Dankie vir die wonderlike voorbeeld wat Oupa vir my was. Oupa was my eerste blootstelling aan die akademiese wêreld en verbaas my tot vandag toe nog. Dankie vir die besluite wat Oupa as jongmens geneem het, om nie net Oupa se lewe te verbeter nie, maar ook die van Oupa se nageslag. As dit nie vir Oupa was wat deur armoede, siekte en die moeilike tye geveg het nie sou niks wat ek tot dusvêr in my lewe bereik het moontlik gewees het nie. Vir dit sal ek vir ewig dankbaar wees. Lief Oupa!

My broers, Abri en Stefan Cloete: Stefan! Dankie vir die inloer elke nou en dan by my lab. Dit was vreeslik lekker. Dit is ‘n jammerte dat ons slegs een jaar saam op universiteit kon wees, maar dit was vir my ‘n voorreg. Jy is nou die laaste Cloete seun op universiteit, hou ons naam hoog! Abe man! Ek en jy het vanaf konsepsie a spesiale band gehad. Dankie vir alles wat ek en jy saam deur gemaak het, dit was altyd ‘n voorreg om jou langs my sy te hê. Dankie vir die liefde, en dat ek weet jy’s trots op my.

(14)

xiii My ouers, Theo en Augusta Cloete: Liefste Pappa en Mamma. Julle het my grootgemaak in ‘n huis met ‘n oorvloed liefde. Julle het my en my broers gekoester en beskerm en ons alles geleer wat nodig is om uit te styg. Julle harde werk, opofferinge en gebede het vir ons geleenthede geskep waarvoor ek inniglik dankbaar is.

Mamma, dankie dat toe ek gehakkel het, Ma geduldig na my lang stories geluister het. Dankie dat Ma kwaad was as mense met my lelik was, dat Ma opgewonde was as ek iets bereik het, dat Ma vir my grappies gelag het wanneer ek probeer snaaks wees het, en dat Ma deur siek wees, hartseer en moeilike tye altyd eerste aan Ma se kinders gedink het.

Liefste Pappa. Ek was 4 jaar oud gewees toe Pa ‘n verkiesing in ons wyk gewen het. Toe Pa uit ons kerksaal gestap het, het daar ‘n magdom mense om Pa saamgedrom, maar Pa het Pa se arms uitgestrek, en ek het deur al die mense gestap om deur Pa opgetel te word. Deur al die jare was Pa ‘n rots waarop ek, en nou ook my vrou, kon steun. Ek waardeer dit dat Pa my en Abri met Pa se sigarette gewys het hoe werk inflasie, dat Pa agter ons aangery het met Pa se motorfiets toe ons met ons fietse skool toe gery het en dat ek saam met Pa kon voëltjiehokke bou en ligte in die tuin opsit.

Julle onwrikbare geloof in my vermoë het my die selfvertroue gegee om te kom waar ek vandag is. Lief julle

My vrou, Anke Cloete: Liefste Anke. Toe ek jou op die trap by die flieks gesien het, het ek geweet jy’s dié een. Ek was daai dag so verlief, en kan met eerlikheid sê dat ek nog steeds presies so voel. Wat wel verander het is my liefde vir jou, elke dag raak dit eksponensieel meer. Jou bystand met my PhD het my net weer laat besef dat daar niks in die lewe is wat ek en jy nie saam kan doen nie. Dankie vir al jou oneindige ondersteuning elke dag, dat jy na my chemie stories geluister het, al het jy dit nie verstaan nie, en vir al die dae/nagte wat jy saam met my in die lab deur gebring het. Dankie dat jy altyd in my geglo het, selfs al het ek soms getwyfel. Dankie dat ek in jou oë kan sien hoe lief jy my het en hoe trots jy op my is. Jou liefde is die kosbaarste besitting wat ek het.

Ek dra my tesis op aan jou, want ek kan met sekerheid sê dat ek nie my studie sonder jou kon klaarmaak nie.

Dankie vir die beste tien jaar van my lewe. Ek kan nie wag om te sien hoe die res gaan uitdraai nie.

(15)

xiv

Table of contents

Declaration ... i

Preface ... ii

Table of consent ... iii

Abstract... v

Opsomming ... viii

Acknowledgements ... xi

Table of contents ... xiv

Table of figures ... xviii

Table of tables and schemes ... xx

Abbreviations ... xxii

Chapter 1 ... 1

Background and aim of the study ... 1

1.1 Background ... 1

1.2 Aim of the study ... 5

Chapter 2 ... 9

Literature review – Malaria and the treatment thereof ... 9

2.1 Epidemiology of malaria ... 9

2.2 Malaria parasite life cycle ... 10

2.2.1 Exoerythrocytic phase ... 11

2.2.2 Erythrocytic stage ... 12

2.2.3 Sexual stage and development in the mosquito ... 13

2.3 Symptoms... 14

2.4 Pathophysiology ... 14

2.4.1 Sequestration and rosetting ... 14

2.4.2 Cerebral malaria ... 15 2.4.3 Renal failure ... 16 2.4.4 Pulmonary oedema... 17 2.4.5 Anaemia ... 17 2.4.6 Blackwater fever ... 18 2.4.7 Enlarged spleen ... 18 2.4.8 Gastrointestinal dysfunction ... 19 2.4.9 Acidosis ... 19

(16)

xv 2.4.10 Hypoglycaemia ... 20 2.5 Diagnosis ... 20 2.6 Chemotherapy ... 21 2.6.1 4-Aminoquinolines ... 21 2.6.2 Aryl-amino alcohols ... 24 2.6.3 8-Aminoquinolines ... 29 2.6.4 The antifolates ... 31

2.6.5 The artemisinin compounds ... 35

2.7 Ion trapping ... 40

2.8 Mono- and bis-quaternary ammonium salt drug theory ... 41

2.9 Hybrids ... 44

2.10 Dimers ... 45

2.11 Targeted drug delivery ... 46

Chapter 3 ... 48

Synthesis, antimalarial activity and cytotoxicity of 10-aminoethylether derivatives of artemisinin - Article 1 ... 48

3.1 Introduction ... 50

3.2 Materials and methods... 52

3.2.1 Materials ... 52 3.2.2 General procedures ... 52 3.2.3 Biological testing ... 53 3.2.4 Statistical methods... 54 3.2.5 Synthesis ... 54 3.3 Results ... 62 3.3.1 Chemistry ... 62

3.3.2 In vitro antimalarial activity and cytotoxicity ... 62

3.4 Discussion ... 65

3.4.1 Chemistry ... 65

3.4.2 In vitro antimalarial activity and cytotoxicity ... 66

3.5 Conclusion ... 70

Chapter 4 ... 74

Antimalarial activity of 10-alkyl/aryl/aroyl esters and -aminoethylethers of artemisinin - Article 2 ... 74

4.1 Introduction ... 76

4.2 Materials and methods... 77

4.2.1 Materials ... 77

(17)

xvi

4.2.3 High performance liquid chromatography (HPLC) ... 78

4.3 Experimental procedures ... 79

4.3.1 Synthesis of esters 11-18 ... 79

4.3.2 Synthesis of 10-aminoethylethers of artemisinin 19-29 ... 83

4.3.3 Physicochemical properties ... 83

4.3.4 Methodology for in vitro biological evaluation ... 85

4.4 Results and discussion ... 87

4.4.1 Chemistry ... 87

4.4.2 Aqueous solubility and log D ... 87

4.4.3 In vitro antimalarial activity and cytotoxicity ... 89

4.5 Conclusions ... 91

Chapter 5 ... 97

Synthesis, antimalarial activity and cytotoxicity of artemisinin-triazine hybrids - Article 3 ... 97 5.1 Introduction ... 99 5.2 Results ... 101 5.2.1 Chemistry ... 101 5.2.2 Biological activity ... 102 5.3 Discussion ... 105 5.3.1 Chemistry ... 105 5.3.2 Biological activity ... 106 5.4 Conclusion ... 107

5.5 Materials and methods... 108

5.5.1 Materials ... 108

5.5.2 General chemical analytical procedures ... 108

5.5.3 Biological study ... 109

5.5.4 Synthetic procedure ... 111

Chapter 6 ... 123

Synthesis, antimalarial activity and cytotoxicity of dimeric artemisinin triazine hybrids – Article 4 ... 123

Chapter 7 ... 136

Summary and Conclusion ... 136

References ... 143

Annexure A ... 158

Annexure B ... 192

Annexure C ... 241

(18)

xvii Annexure E ... 265 Annexure F ... 266

(19)

xviii

Table of figures

Figure 1.1: Prevalence of P. falciparum around the world ... 2

Figure 1.2: Target compounds of series 1 (see Chapter 3). ... 6

Figure 1.3: Target compounds of series 2 (See Chapter 5) ... 7

Figure 1.4: Target compounds of series 3 (See Chapter 6) ... 8

Figure 2.1: Global map of the 34 most dominant malaria vector species ... 10

Figure 2.2: The life cycle of the malaria parasite ... 11

Figure 2.3: The Plasmodium intraerythrocytic development ... 13

Figure 2.4: Sequestration and rosetting in the microcirculation ... 15

Figure 2.5: Structures of the 4-aminoquinoline compounds chloroquine (26) and amodiaquine (27). ... 22

Figure 2.6: The aryl-amino alcohols, quinine (28), quinidine (29), mefloquine (30) and halofantrine (31) ... 25

Figure 2.7: The 8-aminoquinoline primaquine (32)... 29

Figure 2.8: The 2,4,6-trisubstituted-1,3,5-triazine (33) and the antimalarial triazine compound WR 99210 (34) ... 31

Figure 2.9: Pyrimethamine (35) and sulfadoxine (36) ... 31

Figure 2.10: Biosynthetic pathway of tetrahydrofolic acid ... 33

Figure 2.11: Proguanil (37), its active metabolite cycloguanil (38) and atovaquone (39) ... 34

Figure 2.12: Artemisinin (40), dihydroartemisinin (41), artemether (42), arteether (43) and artesunate (44) ... 36

Figure 2.13: (A) Areas of malaria transmission, (B) CQ treatment failure, (C) AQ treatment failure, (D) sulfadoxine-pyrimethamine treatment failure, (E) artemether-lumefantrine treatment failure ... 39

Figure 2.14: pH trapping in the malaria parasite ... 40

Figure 2.15: Biosynthetic pathways for PC, PE and PS in Plasmodium ... 42

Figure 2.16: Pharmacophore of the general mono- and bis-amine compounds as described by Calas and co-workers ... 43

Figure 2.17: Mono-ammonium compounds with activity against malaria ... 44

Figure 2.18: Hybrid drug theory ... 45

(20)

xix Figure 2.20: The natural occurring polyamines putrescine (50),

spermidine (51) and spermine (52) ... 47

Article 1

Figure 1: Artemisinin class of compounds... 51

Article 2

Figure 1: Structures of artemisinin 1 and

its clinically used derivatives; dihydroartemisinin 2,

artemether 2a, arteether 2b and sodium artesunate 2c ... 76 Figure 2: Structures of the semi-synthetic artemisinin derivative

artemisone and the synthetic ozonide OZ277 and OZ439 ... 77 Figure 3: 10-aminoethylethers 19-29 of artemisinin obtained

from dihydroartemisinin 2 and various amines ... 84

Article 3

Figure 1: Structures of cycloguanil and the

(21)

xx

Table of tables and schemes

Article 1

Scheme 1: Etheration of DHA using boron trifluoride etherate ... 55

Scheme 2: Synthesis of aminoethylether derivatives of artemisinin ... 56

Table 1: Descriptive statistics of antimalarial IC50 values, results of ANOVAs and Dunnett’s tests of compounds 2-12, artesunate, DHA and chloroquine ... 64

Table 2: Descriptive statistics of cytotoxicity IC50 values, results of ANOVA and Dunnett’s test of compounds 7, 8, 10, 12 and emetine ... 65

Table 3: p-Values of Tukey’s test for compounds 2 – 12 on the D10 strain ... 68

Table 4: p-Values of Tukey’s test for compounds 2 – 12 on the Dd2 strain ... 69

Article 2

Scheme 1: A general reaction scheme to illustrate the synthesis of 10-alkyl/aryl esters 11-18 of artemisinin ... 79

Table 1: Aqueous solubility, distribution coefficients and lipid solubility of esters 11-18 ... 88

Table 2: In vitro antimalarial activity of esters 11-18 and aminoethylethers 19-29 of artemisinin against 3D7 and K1 strains of Plasmodium falciparum ... 90

Article 3

Scheme 1: Etheration of DHA yielding compound 1 ... 101

Scheme 2: Monosubstitution of CyCl ... 102

Scheme 3: Amination of CyCl, 2 and 3 ... 102

Scheme 4: Synthesis of artemisinin-triazine hybrids 11 – 17 ... 103

Table 1: In vitro antimalarial activity of compounds 11 – 17 against the 3D7 and K1 strains of Plasmodium falciparum ... 104

Article 4

Scheme 1: Etheration of DHA yielding compound 1. ... 125

(22)

xxi Scheme 2: Monosubstitution of CyCl ... 126 Scheme 3: Amination of CyCl, 2 and 3 ... 126 Scheme 4: Synthesis of dimeric artemisinin-triazine hybrids 10 – 15. ... 127 Table 1: In vitro antimalarial activity of compounds 10 – 15

(23)

xxii

Abbreviations

ACT ... Artemisinin-based combination therapy AE ... Arteether

AM... Artemether AQ ... Amodiaquine

ARDS ... Acute respiratory distress syndrome ARF ... Acute renal failure

ART ... Artemisinin AS ... Artesunate

CDC ... Centre for disease control CGN ... Cycloguanil

CHO ... Chinese hamster ovarian CQ... Chloroquine

CyCl ... Cyanuric chloride DCM ... Dichloromethane DHA ... Dihydroartemisinin DHF ... Dihydrofolate

DHFR ... Dihydrofolate reductase DMF ... N,N-dimethylformamide DMSO ... Dimethyl sulfoxide DVS ... Dominant vector species EDA ... Ethylenediamine

EPO ... Erythropoietin EtOAc ... Ethyl acetate HF ... Halofantrine MDR ... Multidrug resistant MeOH ... Methanol

MQ ... Mefloquine

NADPH ... Adenine dinucleotide phosphate NAI ... Naturally acquired immunity NH4OH ... Ammonium hydroxide PABA ... p-Aminobenzoic acid PC ... Phosphatidylcholine

(24)

xxiii PE ... Petroleum ether PGN ... Proguanil PL... Phospholipid PQ ... Primaquine PYR ... Pyrimethamine QN... Quinine

RBC ... Red blood cell

RBM ... Roll back malaria initiative RH ... Relative humidity

RI ... Resistance index

ROS ... Reactive oxygen species SDX ... Sulfadoxine

SI ... Selectivity index

SP ... Sulfadoxine and pyrimethamine STP ... Staurosporine

THF ... Tetrahydrofuran

Referenties

GERELATEERDE DOCUMENTEN

This study was conducted to evaluate the effect of different wood vermicompost appli- cation rates on some soil physical and chemical properties as well as on growth

The aims of this study were to determine the effect of different dosages of the organosilicone, Break-Thru S240, applied at different water volumes on the depth of movement of a

On average about one sixth of the students applied reaction rate principles to predict the effect of a change in temperature on the given equilibrium systems and gave no indication

The nine focus areas of WSE are basic functionality; leadership, management and communication; governance and relationships with all stakeholders involved with the

Over and above the successes highlighted above and various service delivery initiatives as prescribed by legislation (such as integrated development planning, urban and

While the first commandment insists that there is no other god, the close proximity to the Prologue suggests that it is rooted in an internal posture that determines

Table 6.10: Limits of the MSMI algorithm as determined by the generated satellite image sequence test Parameter Maximum translation Maximum rotation Maximum change in

(Schools) policy Social Sciences. Pretoria: Government Printer. Syllabus for Geography in the primary school. Didactical guidelines for teaching History in a changing South