• No results found

Cover Page The handle

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The handle"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle

http://hdl.handle.net/1887/74050

holds various files of this Leiden University

dissertation.

Author: Kaczmarczyk, A.

Title: Nucleosome stacking in chromatin fibers probed with single-molecule force- and

torque-spectroscopy

(2)

Nucleosome stacking in chromatin

fibers probed with single-molecule

(3)
(4)

Nucleosome stacking in chromatin

fibers probed with single-molecule

force- and torque-spectroscopy

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties

te verdedigen op woensdag 19 juni 2019

klokke 11:15 uur

door

Artur Kaczmarczyk

geboren te Ruda Śląska, Polen

(5)

Promotores:

Prof. dr. ir. S. J. T. van Noort

Prof. dr. N. H. Dekker (Delft University of Technology)

Promotiecommissie: Prof. dr. J. Lipfert

(Ludwig-Maximilian-University, Munich, Germany)

Dr. F. Mattiroli (Hubrecht Institute, Utrecht)

Prof. dr. E. R. Eliel

Prof. dr. H. Schiessel

Prof. dr. T. Schmidt

©2019 Artur Kaczmarczyk. All rights reserved.

Cover: Little silhouettes pulling and twisting chromatin inside a cellular matrix.

(image of silhouettes adapted from: Sergey Nivens/Shutterstock.com)

Casimir PhD Series, Delft-Leiden, 2019-22

ISBN 978-90-8593-398-4

(6)
(7)
(8)

C o n t e n t s

1 Introduction 1

1.1 From DNA through nucleosomes to chromatin . . . 2

1.2 Regulation of the structure of chromatin fibers . . . 5

1.3 Single-molecule magnetic tweezers for studying the dynamics of chromatin . . 7

1.4 Mechanical properties of a stretched and supercoiled DNA . . . 10

1.5 Statistical mechanics . . . 12

1.6 Outline of this thesis . . . 13

2 Methods for probing chromatin structure with magnetic tweezers 21 2.1 Introduction . . . 22

2.2 List of materials . . . 24

2.3 DNA cloning . . . 27

2.4 DNA digestion and labelling . . . 27

2.5 Chromatin reconstitution . . . 28

2.6 Electrophoretic band shift assay . . . 29

2.7 Assembly of the flow cell chamber . . . 30

2.8 Flow cell functionalization . . . 33

2.9 Dynamic force spectroscopy on chromatin fibers . . . 35

2.10 Data analysis . . . 39

2.11 Additional notes . . . 44

3 Single-molecule force spectroscopy on histone H4 tail-cross-linked chro-matin reveals fiber folding 53 3.1 Introduction . . . 54

3.2 Results . . . 56

3.2.1 Chromatin with short NRL folds into a stiffer structure than chromatin with long NRL . . . 56

3.2.2 The H4 tail mediates the nucleosome-nucleosome interactions in folded chromatin fibers . . . 58

3.2.3 H4-V21C/H2A-E64C mutations affect chromatin stacking . . . 60

3.3 Discussion and conclusions . . . 63

3.4 Materials and methods . . . 67

3.4.1 Chromatin reconstitution and cross-linking . . . 67

3.4.2 Sample preparation . . . 67

3.4.3 Magnetic tweezers . . . 68

3.4.4 Data analysis . . . 68

(9)

viii

CONTENTS

4 Chromatin fibers stabilize nucleosomes under torsional stress 77

4.1 Introduction . . . 78

4.2 Results . . . 81

4.2.1 Chromatin fibers fold into left-handed superhelices that absorb positive twist . . . 81

4.2.2 Nucleosome unstacking is influenced by torque . . . 84

4.2.3 Positive twist can stabilize and destabilize chromatin fibers . . . 86

4.2.4 The torsional modulus of chromatin fibers can be determined experi-mentally and computationally . . . 90

4.2.5 The response of chromatin fibers to torsion does not vary with NRL . 92 4.3 Discussion and conclusions . . . 94

4.4 Materials and methods . . . 99

4.4.1 DNA constructs and chromatin assembly . . . 99

4.4.2 Flow cell preparation . . . 99

4.4.3 Magnetic tweezers . . . 100

4.4.4 Magnetic torque tweezers . . . 100

4.5 Supplementary Information . . . 101

4.5.1 Model of elastic response of DNA to torsion . . . 101

4.5.2 Model of elastic response of chromatin to torsion . . . 103

4.5.3 Distribution of the linking number between the chromatin fiber and DNA handles . . . 104

4.5.4 Computational determination of twist-induced chromatin unstacking . 105 4.6 Supplementary Figures . . . 107

5 Linker histone H1 stabilizes nucleosome stacking in chromatin fibers 127 5.1 Introduction . . . 128

5.2 Results . . . 130

5.2.1 Chromatin higher-order structure is stabilized by the linker histone . . 130

5.2.2 Chromatin unstacking enhances H1 dissociation . . . 133

5.2.3 Quantification of discrete unstacking steps reveals asymmetric unwrap-ping of chromatosomes . . . 135

5.3 Discussion and conclusions . . . 138

5.4 Materials and methods . . . 141

5.4.1 DNA and chromatin preparation . . . 141

5.4.2 Chromatin with linker histone . . . 142

5.4.3 Flow cells . . . 142

5.4.4 Magnetic tweezers . . . 143

5.5 Supplementary Information . . . 143

5.5.1 Non-equilibrium statistical mechanics model . . . 143

5.5.2 Quantification of discrete unfolding steps . . . 147

5.6 Supplementary Figures . . . 151

6 Summary 161

Referenties

GERELATEERDE DOCUMENTEN

relaxed 197-NRL fiber (twist = 0) cannot absorb negative turns, and as such the entire linking number change is absorbed by the DNA handles.. The consequences of imposed positive

Linker histone H1 stabilizes nucleosome stacking. Fibers undergo the unstacking transition at 3.5 pN followed by step-wise unwrapping of singly wrapped nucleosomes. B)

Titel Euthanasie van varkens op het bedrijf Korte beschrijving Aan de orde komen:. Redenen en methoden

Op deze manier kunnen de verkregen gegevens niet alleen gebruikt worden voor de evaluatie van de bedrijven, maar kunnen ze ook als basis dienen voor andere bedrij fsopzetten

In opdracht van het Waterschap de Dommel heeft DLO-Staring Centrum in 1991, 1992 en 1993 een hydrologisch onderzoek uitgevoerd binnen het gebied van het Waterschap de Dommel en

As said in the introduction, importance sampling methods use information about the way rare events occur in the model to speed up the simulation. Because this information

We discuss representations and bounds for the rate of convergence to stationarity of the number of customers in the system, and study its behaviour as a function of R, N and the