• No results found

Harmonic fingerprint measurement

N/A
N/A
Protected

Academic year: 2021

Share "Harmonic fingerprint measurement"

Copied!
68
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Harmonic fingerprint measurement

Citation for published version (APA):

Li, Y. (2009). Harmonic fingerprint measurement. (TU Eindhoven. Fac. Elektrotechniek : stageverslagen; Vol. 9016). Technische Universiteit Eindhoven.

Document status and date: Published: 01/01/2009 Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

Electrical Power Systems Department of Electrical Engineering

Den Dolech 2, 5612 AZ Eindhoven

P.O. Box 513, 5600 MB Eindhoven The Netherlands vwvw.tue.nl Author. Van LI (0666707) Coaches: Dr.ir. J.M.A. Myrzik Ir. S. Bhattacharyya

Ir. G. van der Wolk

Reference:

EPS.09.S.383

Date:

June 2009

Where innovation starts

University ofTechnology

Harmonic Fingerprint

Measurement

Stage 1: intern project

The Department of Electrical Engineering of the Eindhoven University of Technology

(3)

1.1 Background ...

...

... 1

1.2

Goals of the measurements ...

...

...

1

1.3 Methodology ... 1

1.4 Laboratory measurements ... 1

1.5 Concept

[4] ...

3

Chapter 2 Individual Measurement ... 5

2.1

Personal Computer. ...

6

2.2

Energy Saving Light ...

8

2.3 LED ...

...

... 10

2.4 Rectifier Characteristic

[6] ...

13

2.5 Refrigerator ...

...

...

...

...

... 18

2.6 Inverter ...

...

...

... 19

2

.

7

TV ....

...

...

...

20

2.8 TV Problem for 25

th

Harmonic ... 22

Chapter 3 Combined Measurement ... 26

Chapter 4 Conclusion ... 27

Acknowledgement ... 27

References ... 27

Appendix ... 28

Appendix A ...

... 29

Appendix B ...

..

... 35

Appendix C ....

...

...

...

...

... 41

Appendix D ...

... 47

(4)
(5)

Chapter 1 Introduction

1.1

Background

This project is done as a master student traineeship. It is part of the KTI (Kwaliteit van toekomst

infrastructuur). As the KTI is going on, harmonic fingerprint measurement for some household appliances is needed. Presented here is the harmonic fingerprint measurement for several household appliances (listed in Appendix 1). the measurement was done for individual appliance to find out its harmonic spectrum under various polluting grid conditions. Later, one combined measurement was done with

various appliances together to see their mutual responses.

1.2

Goals of the measurements

More and more power electronics technology is applied in household appliances, and this leads to

non-linear characteristics. There are standards to limit network operator and appliances manufacturers. The

standard IEC 61000-3-2 [I] provides individual harmonic current limits for appliances with a rated

current

::s;

16 A per phase, while IEC 61000-3-12 [2] deals with all equipment having a rated input current

> 16 A and ::S;75 A per phase. The standard EN 50160 limits the voltage at the point of connection (POC),

which means the connection point between the household appliances and LV network. While regulation for household customers is a controversial topic and it needs more research work. The harmonic spectrum

will be utilized for a model LV network developed for KTI project.

The goal of the measurements is to record the emission behavior of household devices at POC, including

both harmonic current amplitude and phase shift. By recording the data at POC, it is possible to help to make regulations for customers.

The scheduled tasks are:

• Finding out typical device's harmonics spectrum (up to 25th harmonic) from the laboratory

measurements and make simulation with LTspice.

• Finding out the mutual responses (up to 25th harmonic) when connecting different household

appliances simultaneously to the grids.

1.3

Methodology

Several appliances' harmonic fingerprint measurement has been done. All the measurements are done

between grid simulator and load as shown in Figure I-I and this is the POC in practical situation.

Fingerprints are shown in the appendix. Typical voltage and current wave form is recorded and simulation

by LT -spice is done to verify it. Harmonic component analysis is also presented here.

1.4

Laboratory measurements

(6)

u

-=.

"-:

y Grid Uac

i

Load simulator ." ." Power Computer

..

analyzer , Network

FiJ!lIl'{' 1-\ L.llh()nltn~ nwn. Url'mt'nl . ('tup ttl ml'Il~UI't.' ttll' CIII n'lIl III" lin appli:lIu,:1' unu.'r "pl'dli~d IlIhugl' Clllldiriull

The grid simulator will be adjusted to the nominal voltage of 230V / SOHz in ideal situation. What is more, the simulator can produce the voltage containing one specific order of hannonic with required amplitude and phase shift. The hannonic fingerprint is a dataset that contains a large set of hamlonic measurements for a single device. To establish a fingerprint, the device under test is first connected to an undistorted voltage. The harmonic current emission of the device is then measured. Subsequently, a specific odd order of harmonic voltage, from 3rd hannonic to 2Sth hamlonic is added to the supply voltage with the amplitude and phase shift stepwise increasing, from 1 % to 10% with I % step and from 0

o to 330

0

with a 300

step. Household appliance used in the measuement are listed in Appendix I. The output impedance of the grid simulator must be in accordance with IEe72S, this means:

Phase: Neutral: Total: R

=

0.24 and X

=

O.ISj R = 0.16 and X = O.IOj R = 0.40 and X = 0.2Sj.

The power analyzer will be used to sample a time series of U and I data with 10k samples per second, and the computer to store these samples. The time series of U and I will be used to build a Digsilent Power factory model. (Bhattacharyya & Heskes, 2008)[3J The work flow is shown in Figure 1-2.

(7)

Appliance connection~) I I~

J

Voltage setup.)

I

~

Voltage and current Next setup+l

measurenment+-'

~

I

Fourier calculation*,'

I

To make fingerprint (--,

I

To store data in Excel ,.-'

I

!

I

Ready for Power factory model use+-'

I

I

Figure 1-2 l.abnnltOf,) mCOsurl'nll'nt" or\, flu\\

1.5

Concept

[4]

In order to analysis the harmonics of normal loads, especially the nonlinear loads. First a schema is introduced as shown in Figure 1-3.

r ---

-

-

-

---

---

---

-

----

-

-

---

-

----

--

--1

Figllre 1-3 <iimpll' dll'lII:J \\ llh Innll cunnet'h·t.!lo tin' IIl'(" C11-k The symbols used in the schema are:

(8)

Rg

=

the grid resistance, including skin-effect

Lg

= the grid inductance

10 = the hannonic current emission of the load without background distortion

C

=

the capacitance of the load

G = the total conductance of the load

P = Active power connection point (for calculating G)

Q

= Reactive power at connection point (for calculating C)

To explain the method and to show the response on hannonic voltage of passive components, the results

of measuring a capacitor will be given. Figure 1-4 shows the results of a capacitor, corresponding with I kvar load at 230V. Picture a is the harmonic voltage put on to the capacitor. All bullets are harmonic voltages which are added to the fundamental voltage with the given amplitude and phase. The harmonic current response on this hannonic voltage is given in picture b. The thicker bullets in the two pictures correspond with each other. So, the hannonic current is linear with the harmonic voltage and with 90 degrees phase shift, as expected.

Due to the 90 degree phase shift, the hamlonic active power is zero, what means that G(n) =0, for each

harmonic. By calculating the C(n)lCref it shows that this value is 1, for each hannonic. It is more

practical to use a nonnalized value of the capacitance. Therefore C(n) will by divided by Cref, which is

defined as the value of the capacitor that would carry the same current as the inverter at nominal power.

-Q(

n

)

c~@[' .,- :2

~Il" U(nf - Q(n)' U (na.m)

!

P

oom

!

n

'

!P

li

O!'ll!'

U(n)2. w' U(oo={ t(l'l)

=

(9)

,

.

Harmonic hge

j%

of ~d."entll voltage I

..

..

..

..

+

.

....

..

i ... i ... f ... ..,. · .... ··+· .. ·· .. 1· .. · .. • .. · .... ·· .. ;· .... • ... • .... · , , , ' . I " • .. · .. ·· .. t ... ·i .. ··· ..

·j"

..

..

. · ..

·· ..

··r

.. ··.\·

....

.

·

..

i ... i.¥ ... ..

-

-

---t-· ---"'

:

.

;"

:

'"

-

..

.

i-

:

" -_ ... _ ..•.

.

.. _. -r

I

--' . -3- . -------i

;

' -...

..

... ~

:

... _. _ ... "'r

I

----

.

----r

.

... _-I •••••• --;-.--~ --.-:. ~-.. . - - - : - - - .• -~ •••••• ~ •. ~ ~ ••••• ?-- --·--·-T---T--. : -~······~- ····-···:~ ·· ----• , , • • • • I •• . ... ~., ... -: ... --~---- --.-.•. --;.-~-...• ". . ..• ' ··~·-~-... -i------- --.--- ... -._ ... -

-I

·

.

. ,

.

-

,

I J--."

.

: :

.

. .

Hannonlc curr~nt (% or nominal curr~nt)

: ... , ~ .. 1 . ... ,. ··20 .:-... ... "' -1-5 ... - · : H ) :.

i

! j : .. ;

.

.

; .. .t 1 .

.

:

·-··

.. ·t···---··

·

·

·

..

--·~··l·---··&· ----·-·--i--~ ··•· __

·

·

··

·

··_

-;_·

··

·

·---i

·

···-

-

···

: :.

. .

.; . .

.

..

~

.

~

~

...

~

;

.

.

:.:

~

.

.

t

.

.

~

.

L

.

..

.. ~

...

.

....

;

...

~

...

5

·~~

...

:.l

:

~

...

J:s

...

:~o

.

_

.

~

.t.

:

;. .

:

.

~~

..

i..~

.

..

.

~.~.

16

....~

...

~

.

. .

~ :. .. :

..

.

:

.

-f . --- -- ----T-' ---- --~ -'-' .••• < •. , •.• -••• : : . . .

!

..

.

...

....

}

:

~. I ; ~ ~ :

.

:

.

'

. --

-·'--i~·" ~··t···

...

.

.

.

; .

.

---6· ~-... +O. ---_._. ;":; .. -.... ----.-.. ---:' ..• ---~~---- ---, ~ 1.--- :"

.

,

-? :

.

. . .;.t_ ...... ; ... ". ..

1.-

L ... _. - ~ ...s. : :

.

: . • : ; , 1 .. : •

.

--

----~-

--

---f···

· _

.. -

-

~

.

..

-~

..

..

~

..

-+5· ---.. -: ---... -.--... -+.-... -~. -... ---, , , ,

..

· ....

·

+

·

·

..

..

·+···

..

·~

..

,

·

· ..

....

+-20· ...

! ...

! . .

+

.

....

...

; ...

.

..

..

i ! . ! 1 . ! : ' - :- 2" : _ __ ....;'_ - - - ' - _- l -3 ! ... : , . -··T .... ·~i· .. ···

!

....

t

t

.

I

!

.

, -:-. : ·6 a b

Figute 14: I1unnunic Yl)h~l"s and eW'rrOI iutel'oction cnpacillll' fill' 5th hal'lIlollic

The most common model for hannonic sources is in the fonn of a hannonic current source, specified by

its magnitude and phase spectrum. The phase is usually defined with respect to the fundamental

component of the tenninal voltage. The data used in this report is obtained from actual measurements. The net hannonic currents injected by large numbers of single phase electronic loads are significantly affected by both the attenuation and diversity.

Attenuation refers to the injection of voltage and current distortion. It is primarily due to the shared

transfonner impedance. When the non-linear loads are represented by a fixed hannonic current source,

there will be an error on the voltage THD when compared to the simulation where the currents are

dependent on the node voltage. The attenuation factor is represented by the ratio of the resultant current

(I: )

for hannonic h for N units to the total hannonic current for h hannonics injected by N sources (N*

I

h)'

I

h is the hannonic current injected by each non-linear device. When a system contains a single

dominant source of hannonics, phase spectrum is not important. However, phase angles should be taken into consideration when multiple hannonic current sources are present. The distortion of an aggregate

wavefonn might be limited because of the 'diversity effect'. This effect is due to the possible hannonic

cancellations among the non-linear loads because of the dispersion in hannonic current phase angles.

Attenuation considers hannonic current from the amplitude point of view and diversity from the phase

shift point of view. In the measurement, both the current amplitude and phase angle are necessary data, so

both of the two effect can influence the measurement[5]

Chapter 2 Individual Measurement

In this chapter, several devices are being measured individually. The typical voltage and current wave

(10)

2.1

Personal Computer

Nowadays, PC is a common used device in house consumer. So it is necessary to see its ham10nics

(11)

Fil!urc 2-2: PC cul .... 'nl and 'I)Jral!~ in (,IlSt' of2Slh harmunic 5o;.'lli~tl)rtiCln \\ ithilul phll.t' hifl

Harmonic Voltage for N = 25 Harmonic Current klr N = Z5

25 ---

,

0.4 ---r--~I- - - 1- - - - r - - - -.. - -,- - --1-- - -, 1

,

I , I , I I I ' r I I I " I [ I I • I I I I - ':':";'-0_ ... _. __ .1 .. - _ _ "I~-__ 1' ____ I 20 - - -1- - - -I - - - ,.-- -""1 - --r;--r---r--~---, " I I 0.3 - -- r ---r

,

, • • I • 1S _ _ _ I . ! ._ 1- __ . J _, __ .4 __ J----~---I-.... ~ 1 ... - --1 I • ~ • , " , , '

,

, I I I I 4 I , ', . I ! 0.2 ---~.- - _,-1 ____ 1 ____ ' ____ 1_.&. __ 1 _ _ _ .. ' ", I I !. 1 ____ .! _ _ .. _ _ _ 1 _ _ _ -' I • I I I ' I I . -,- - --, -. - -1--- ,- - 1 J. I , I I I ' " 10 . I : .: .: I .. ' ~ 0.1 ---I~~-_~----~-._.·_:_: __ I ___ ·_: __ . _';---1 5 - 1. -0</. - - -: - - --1 ... , - - - r - - - ~ - - -r-- -- 1 -.. - .., • J I • . , ' , ' i r 1 0 0 ' " -; "I. I . ' I I I I '0 I . . '[" , I . " I I I a. .. r I I 0' - __ L _ _ .J_ - J_ -;-+-;-_ ' L. ~ - - - : - -- -:- --~

1

of ---~,---:---~:--

.

*+

-

--':-- -

.;

--

-

'

-

;

-

-

,

-

-'

I ,0 . . . : • • • : . . I r DI r I I I I r I I .~ .. .. • I \. I . . J J. . . t I \ j 0, • t 1 • • ( I I •• ( ·5 ----:-~--I

:--;;

-

-:

---

:-

-

.

-:-

:-

.

-

-

-01 _ : _0"1_:_. ___ : __ . __ ; ____ : ____ : ___ --;'0 ____ : I I . I " I I I : I I , I I · • I I -10 - - -1- - - -t- - -.... -- -..,. ---.. -- . .. - --1-- - -I - - 4 I '- I I • .. .. I I I I I '0 I .. J ;-" . . I I -0.2 -- -r -!.-,.---·-,....-- -"..-- - -r - - I·-~'-- -I · , I I I i __ . . ' _ _ _ _ I_ _ _ 1 ' 1 I I • • ~ • • • : - -,- - - -I - - - 7- - ----~ : ---! ~ I .. I. I ·15 _ .... - - - 1- _ _ _ I I . ' I I I I I -20 - - -1-- - -, - - - ., - - - .., - - -or - -- r - - -r - - -,-- - ., I I I I -0.3 - . .*~ -

_

:

_

0

_

.-.-:

:

::-.-

_

:

_

_

__

;

____

:

... I I , -2~~0----.~,5~---.,~0~---.~5----~----~----f,0~--~,f.5~--~2~0~--~25 ... ~L.4--"""".3--"" .. ".2--"""".'----'--_~O.L'--"'OL.2---:'O.L.3---:'O.4

Real pert ReaJpart

(12)

From the current wave shape, it is clear that PC behaves like typical rectifier which converts AC to DC. Of course it is not linear any more. A linear behavior means that a certain change of voltage will result in a proportional change of current. Definitely it is not the case of Pc.

As is shown in Figure 2-3, for low amplitude of hannonics, PC behaves like a resistor while for high an1plirude of hannonics, PC behaves like a capacitor. At low frequency, taking voltage harmonic number

as 3, as shown in Appendix E-l, when the voltage harmonic increases from 1% to 10%, the current

harmonic does not change too much. While for high frequency, for example N is 25, as shown in firgure

2-3, the current ham10nic increases from 0.026805 A to 0.338653 A(obtained from measurement), which

is 10 times increase. From the fingerprint shown in Appendix E, it is obvious that at low frequency, there

is no linear behavior, such as Appendix E-\ and Appendix E-2; with the increase of frequency, the

fingerprint becomes more and more like a counter clock wise star shape, as shown in Appendix E-7.

However, it is still not linear. But there is a trend that for high order harmonics, with the increase of

harmonic voltage, the harmonic current shifts its phase from in phase with the voltage to leading the

voltage. This means that for high order harmonics, the finger print can be regarded as sectionalized

linearization.

2.2

Energy Saving Light

j m 1~.!J.·' .. ~ .. ~ l:(qla !J Ill .. f "',

(13)

Fil!Uh' 2-~. E.nrr~ a\in!! Inmp clIITrnl and \"ilul!r in tuw cor 25tb harTTHlnk 5 .... " di,,".,ti"11 \\jlhllllt pha (' shift Harmonic vollage for N -= 25

25 .. , ...... 'I ... - - ... I - - .... - ... -( - - -I ... - ... I" ... - - Harmonic Current for N = 25

I I I o,osr ... -; - ... ~ ... -; ... - ... ~ ... -;.-.-.- ~ ... -; ... - - ~ ... -; - - ... ; I \ • • I I t t I ~ • I ", I [ I I I 20 ... - - , - ' " ... 1 - ~ - ~ - ... - r ... --,-; ... i ... - T'" - ... r - ... -, 0.0 4 ' " ... -l ... __ L ... ~ ... _ L,,-_ -' _ ... L _ ... .J _ _ L. .... '_ ... J I I I j I I • ~ • O'O'"' I I 1 I I r. I I I l' ___ ,o. __ -' ___ T o -r - - ... '----,---,"'---r- ---, 0.03 __ --'_- -L:--I--- l - - -'- -- L- --I-- -L - - -'- --l I • • I I • • I I ,. "' I I I I '0 ~ ~

F

.

,

·'0

"

I I I I I I I 1 I I I I t I I I I -1- ... ~ . ... + ... :.. ... I- ... .! -1- ... -i ~ ... - - - ... -I .. , I I I I , ", O'O' 1 I I J I J ., I ! 0.02 --i---I-·--,---'-·---,--·-,---,-·--I-- .... I-.~-j I • I " I . • I I I 1 '--·-;::--~---7-"-~~·"-~-1---~--.- ~-:-

....

L

_

_

:

0.01 -:.---~---I---r

"

-

1

-

-;

--

--

--

--

1-I 1 . . . . I. • "I." 1 " . J. J t I! I' I I - -_1, ___ J, ___ • L ,._ -' ••

-t

._'.

_

_

."

,

___

_

',

_

__

1, ___ L, ___ ,I ~ ! 0 "i '"1 I - - -Ir -· - -1- - ~ ,r ---tI - - -I J .. - -, ,-. - - r ,. - -, . . . -... -I I I .. " .1' 1 . .," • ' . '. I r " I , • I I • •

-_

..

~--i--:+--.~: ":-4,-. -~--·-~----~~;-·i- -0.01 --~---~--'~--~~--~---r ' - ~-.--~--~--t: I I I I 1 J ," r • 1 I '. I I · 1 . , 1 I ' .t .1 I ---,---.' ---T-.- r ;-'---*';--"'T---r---r -0.02 - -• ..,---,..--..,~·--r----,---r---. .,---r---I--··\ I ' . ' ' " ' , I I I -, I . I I , I . ' " , ' , " I ' . I • I I. , 0' 1 - - -1- - - 1- 1"'"---r-- -' - I - - -""1-- - . - --r - - - 1 -0.03 1- --1-- ... - 1 - --1- -- 1- - - ... - --1-- -... - ... • ... , - - I • I .' ! I I I 1 I .' t 0 I .. I ·20 , I I , 1 I t I ' t , . , • ---I---I---·j.---~----T---_'---..l--· I - - -I -0.04 __ ....I ___ L.._ .... ~_· _ _ L ___ I_.-- L- _-I- - - ___ 1 ___ 1 I ,. I I I I I. I '" I 1 I '"I . ' " , '::-- -,--!'=-5 --.,!:0:---.5:---!0:--~,---:,'=0----!,,=-· - - '2::0:---:25 -O,'31.~ •• ;--: .. ~ .• 74--: .. ~ .• ::3:--.. -;;-.':c.z:--:_.~ .• :-, --!:--.=-.::.,;--;; •. '=.=-z --:.~ .• :::3--:.~ .• ;-:4:--::-'0.·0' ·.'l~.'lO

Real pan Real pan

(14)

Energy saving light is widely used device in house consumer. Of course it becomes more and more important for the po\>ver grid and it will affect the harmonic in the POC (point of connection).

What differs from PC is, for high order harmonics, with the increase of hannonic voltage, the ham10nic

current decrease the leading angle compared to the voltage, as shown in Figure 2-6. This means that for high order ham10nics, when the amplitude of harmonics is low, energy saving light behaves like a capacitor while for high amplitude; the inductive effect becomes more and more obvious.

This difference is shown also in the wave shape of voltage and current. The rectifier results in similar current, however, the phase shift is different. For PC, the fundamental current is in phase with the voltage

as shown in Figure 2-1, while for energy saving light; the fundamental current is leading the voltage as

shown in Figure 2-4.

Energy saving light also contains rectifier which leads to non-linear characteristic. Also similar with PC,

energy saving light has no linear behavior at low frequency, as shown in Appendix B-1; with the increase

of frequency, the fingerprint becomes more and more like a clock wise star shape, as shown in Figure 2-6.

The current amplitude increase is also similar with PC, at low frenquency, the current does not change too

much, for example, when harmonic number N is 3, as shown in Appendix B-1 . While with the increase

of frenquency, the current increase becomes more and more obvious. At high frenquency(above 19th

ham10nic), the amplitude increase is almost 10 times, corresponding to the harmonic voltage increase

from 1 % to 10%.

2.3

LED

A light-emitting diode (LED) is another efficient light source which deserves research. The voltage and current wave shape is sho'wn in Figure 2-7 and Figure 2-8.

(15)
(16)

Fi!!un' 2-H; LED lamp CUII'Cn! and \oltlle;e in 3.sC.,r 2S'" h:UllllllliI: S"q lli'llIrlillu \I ilhllul phll,e ~hirl

Harmonic Vottage for N = 1 J Hannonlc Currenf forN = 13

25 - ]- ·- r - - - ,- - - r-- -!- - - l - - - - -i - -- T -'"' I OA - - --, - - - -,- - -- --:- - ~ - -,- - -- r - - -I I I , I I 20 -- ..-l __ _ L ___ , -I , ___ ~_I _ _ _ I _ _ _ L __ --' __ _ L __ _ I I " I I

,

J I I I " l I I I I 15 - - , - - - r - ---,--- T - -•• ,-- - 1 ~ - - r - - -) - --: r - --, J J , I I I. I J .. I I I , • .. I I I L I L. ___ 1_ _ _ ~ ... _ 1 __ _ ..:t ___ L _ • _, _ _ _ 1 __ I .. .. I I .. I I oj . ' I I I , ,

.

... - .., - ~ r-- - .1-- - l' - I -; - , .- - - ~ - - - - r - - -, lio. I" I I I I; I I 1. , ,' °. I . 1 " .. I" J D.

i

0 -- ~ -- - ~ - -, :.- -,-+, - ;,

+ •

-

:

-

-

~

--

-

:

-

--

r

:

i

.§ .: . . . ," I I . . " ," " .. ~

* .

:

I I

:.§

-S - - -1 - - - - -f - - _.... . - , - -.~ - - - r*- • -I - - - +- ---I J ' , I I . I ,' " I • • I I I I.. I .. I I I • ...,0 ... ~ -, -- - 'I ... - - -... - t. - - -,--- -I -- -r - --,-- -T -.- -T " • ' I I "I I I f' ! I -15 - - ~ : - - ... - - . 1- - .. J. _ __ 1_ ~ _ -1 - - - L- r - -4 ~ - _ , .. __ I I I I I I I I I I , I I -20 --~ --~---~-·--i ---, ---10 - -, ..J , " "

,

-- --- -, - - -T -- -1 1 J I I I 0,3 - - - J _ _ _ 1 ___ :.. ...!.. ___ • 1_ .. __ l. ____ I _ • I I I I . I I' I 1* I 1. • I I. • I t I I [ I I . I I I --,-~--~-- ,----~---r.--'----r---~ , , J . • I r ., 0.1 - - - .J _ - _ _ ~ _ - - -1 .... _ .: __ • - ~ - - --. _:--. ~ - ~

:

_

0-

~

_

~ : .: ": . ~ I .. I I " " I . I I

-

- -

i -

'

-

~

-:- -. - -.

+

.- -:-

+

~!. - ... ~ .. - - -~ - ;-- - - ~ 1 I I • • • J . ' • I I ' j -0.2 _<l.1 - - - ~ - - - -1-~ - - -t - . -1- - ~ - r - - .... -1-- - - r-- - - -1 • • I • '. I 1 I ~ I I I 1 • I I • 1 t I I' I '" I I

-

- -

~

-

- -

-:-

-

-

..

+

-

-

-

-~-

-

- -

~.

-

-

-

-:

-

-'

-

.

-

~ -

-

-

~ , • I 4 .1 J , I I ' j - , .. - -- r - -- T - -".. -1- - - - f ~ - - 1- - - - r -- -I I J ' I I _<l,2 _<l.l "

,

' ,

,

~~~5----~LO----4~5----4~0----~~--~~---L----~10---,L5----2LO----~25 Real part -<llL.4---_<l~.~l---~L.2~--~_<lL.1----~---oL.l~--~0~.2---0~.~l---"0.4 Real part

(17)

In the LEO circuit, also there is rectifier, but now the capacitor value is very small that it charges and discharges fast. So the current will follow, resulting in such a sinusoidal similar shape. Because of the capacitor voltage divider, the current is leading the voltage as shown in Figure 2-9. At low frenquency(harmonic number is 3, 5, 7), as shown in Appendix 0-1, Appendix 0-2 and Appendix 0-3, it is almost linear, behaving like a capacitor. At higher frenquency, the fingerprint is becoming a clock wise star shape, as shown in Appendix 0-4 to Appendix 0-8. Above Appdix 0-9, the fingerprint becomes more complicated. It is part clock wise, part linear.

One thing needs to be mentioned here is that the current amplitude increase is much bigger than PC and energy saving lamp. At low frenquency(harnomic number is 3, Appendix 0-1), the current increase is already 10 times. While for high frenquecy(hamomic number is 25, Appendix 0-12), the current amplitude increase is up to 200 times. Taking the 2151

harmonic measurement(amplitude from I % to 10%, 0° phase shift) as an example, the current is shown in Figure 2-10.

o. 5 0.45 0.4 o. 35 O. 3 21 st Current Harmonic value 0.25 o. 2 o. 15 O. 1 O. OS o F ~ ~ V ~ V ~

V

I

~I

..,.

~

J

[

2

..

~

- .-3 4 " I--~

-

I--..

~ t-- -

I---

I -

-

I--I -

-

t-- r - I -I--

-

l - I-- I -I--

-

l - I--

t--...

...

Io.Jr "- io-5 6 7

21st Volta~e Harmonic Amplitude(~)

FiJ.:UII· 2-HI: High hlcn',lw of rU'Tl'1II at 2J..t h: ... mullk

2.4

Rectifier Characteristic

[6]

..

I-~ - l

--

r--

l

--

r--

I--

r--

I--

r--

....

'3 10

By comparing the simulation of personal computer, energy saving lamp and LEO lamp, it is clear to see that many household devices are using AC-OC converters now. However, these rectifiers may behave differently from each other.

(18)

C

1

+

(SJ

i~un' 2-11: T) I1kal in'lIi1

or

n'clifil'"

Now based on the typical circuit, simulation of PC, energy saving lamp and LED lamp has been done.

The capacitor is charged by the rectified voltage.

C1 0.00001

Pigurl' 2-12: Rcctilicl' iJllulatiull ciJ"{"lIit fiJI PC -IIV 1) 1 )(js

,

1.9ts R1

3000

I UA D.HA U bA

1-

O. A O.2A

r

~ .UA 1I.2A n 4A II .fiA n.nA

(19)

1,

""""

"'nOO?!

Fi"':lII'c 2-1-t: Simululilln rCII' \\ 1lH' form nf PC l'U.\C ur 25110 hUl'I1lt1l1ic :o/" IIi tul'tilln \ Hhuut phu~c . hUt (in urder tu U ercil 'C Ihc . imul:.&tiun lime, the R, C \ IIlu huH' been chnnged fmm lieuI'(' 2-11)

. tr n 0 6s 30 ms

C1 .

0.0000032 : .Rt

:

3000

:

fi!!UI'l' 2-15: Rl'(1"ifier ,imuhlliun tilTuit 1'111 l'lIl'1'~ '11\ ing lamp

2s

2.8

I 00 A A A A A OOmA -4DOmA (·OOmA 600mA s

... i/lure 2-16: i1nulaliun W:lH fonn o(IollllJ,!e source, Hlllllge IIIllh,' capadtol'lInd CUl'l'Cllt 114.·flll'\' I Ill- I rtifier rill' ... m-I'!!.)

(20)

\'1" i." ,I"

T/

I

/',j

Jrl

~\

,J \

J \

Figurl' 2-1 i: Silllul:Jlion lor" lIH' fOl'm 1)1' PC ell e .. r 15"1 IH\I'III11l1i~'

:'''''' lIj,tul liull II i.huUf phll'l" ,hif. (in IInll"· III

L1"n'l'lIsl' th,' ~iIllUI:ltiflll rin ... , Ihl' R. C \nil)1' hm,' hl'l'n cilanl!l'd 1'1'(1/11 fitWH' 2-I·n

When the rectified voltage is higher than the voltage on capacitor, the capacitor will be charged and there is current flowing.

The most important difference for PC and energy saving light is the capacitor used in the rectifier. The capacitor used in PC is bigger than the one used in energy saving light. If the capacitor value is big

enough that the voltage on it keeps almost constant, then the current will flow in phase with the voltage,

just like the case of Pc. While for the energy saving lamp, the capacitor value is smaller than the one in

PC, from Figure 2-16, it is clear to see that the corresponding current is leading the voltage which

matches the case in the fingerprint.

Then how about the phase shift for high order harmonics? It is clear from the fingerprint that for PC,

when the amplitude of harmonic voltage is increased, the current is changing from in phase to leading.

While for energy saving light, when the amplitude of harmonic voltage is increased, the current is

changing from leading to in phase. Why this happens?

Taking the 25th harmonic as an exan1ple, source supplies 5% amplitude of 25th harmonic without phase

shift to PC and energy saving light. The wave shape of voltage and current is shown in Figure 2-14 and 2-17.

It is clear to see that besides the current in phase with the peak value of voltage, there is current flowing in

the sub peak value of voltage because of the harmonic. Of course, the reason is that the sub peak value of voltage is bigger than the voltage of capacitor.

For PC, when the voltage with 25th harmonic is applied, more current flows before the peak voltage value.

So it is clear that the phase would be leading as shown in Figure 2-3.

For energy saving light, when source supplies the voltage with 25th harmonic, more current behind the

(21)

C1

.

.. . , " 0.0000003 '

.---

-

--f--

- -

-

_

' '

,

,

, ,

.

,

:

02

:

03

Fi~ur(' 2-18: R('cril"il'r simulurion cin:uil rOl' LED lamp

l' Om

~

IOOmA

r

OmA OmA

I

40mA l' U rnA [lmA 20mA 40mA 60mA

~

80mA 100mA

--0,---.,---

---TO,

- - - + -

-120mA I.Sas 1.89' 1.90 1.91

,

Rt

:

:

.3000 .

Fi/lul'l' 2-19: imuilltiull" Un' I'llI'm of ""I!ill-!: ,lIun:c, \nltll!! IIlIlh,· c:.pacitul' nlH.I turn'nt Iwllll',· IIII' !'('ctinl'/" rill' LED lamp VjNIOI NOt., (VII V \ ; _ .I \ • '. \

y

(22)

For the same reason as energy saving lamp, when high order harmonic voltage is applied to the LED lamp,

with the increase of voltage amplitude, the phase will become less leading, as shown in Figure 2-9.

Tahh' 2-1: umlmll") III' ll'l·tifj\,1' dlllrartl'rj lic

Capacitor value HID Current phase compared to Current phase compared to

voltage under clean condition voltage with harmonic

PC Big High In phase Leading

Energy saving lamp Middle Middle leading Less leading

LED lamp Small Lovv leading Less leading

Summary of rectifier characteristics is shown in Table2-1. From the wave form of voltage and

current( Figure 2-1, Figure 2-4, Figure 2-7), it is clear now that all PC, energy saving lamp and LED lamp

contain rectifier inside. Different capacitor value can be the reason for their difference behavior.

Simulation proves this assumption, however, there is a pre--condition in the simulation that all the load

after the rectifier is the same. While in reality, it is more complicated.

2.5

Refrigerator

Refrigerator is commonly used appliance in house all year long. It is necessary to do measurement about

this device. Foo: E ru. DC ~Icfl v .00000 'SfIII'tl:*'orteqAOCY lOfKJ<SJlMc.G 12twc1 300(()o ~ ...•....•••. 200C(lO -•• -'. 100000 -100.00 -2Q)OO .... --: i i ·30000 ... -... ... t

O!i So InrI1 ,OOCJrrw 1 S 00mt Mer.ruerTlleNpet'folillGGot ~1'" ?f¥]'g5-4-4l'Z!

~ .. . --

-... -. __ ...

j

"

""'"

..,'n

....

4500. '0","",

i!!:ul"t' 2-21: FI iug!' (111'1"('01 1111(.1 u"dbtlll-tl'tJ ,j"uS(ljtJal \llllu~('

oc A '0000 15lIOO I ... 00000 _IQO\l(J .lSlD) -20000

(23)

From Figure 2-21, it is easy to see that the fridge behaves like an inductor. The voltage phase is leading the current phase. This is understandable because the power source is connected to the motor directly for the refrigerator. And the motor appears inductive.

From the finger print shown in Appendix A, it is also clear to say that the refrigerator behaves as an inductor. When harmonic number is 3, the current amplitude changes only a little with the increase of

harmonic voltage from I % to 10%, while with the increase of frenquency, the current grows faster. At the

25th harmonic, the current increases almost 200 times.

2.6

Inverter

Solar energy system, as a green energy source, is getting more and more attention these days. So more and more solar inverters are connected into grid, and they will bring some effects to the power system.

DC M~(j(..".,.1aa:1 V

400000 SamDlng~~")I1OJJOIt:SlsK~ 11Ms

300000 .. ___ .. _4._ ...

!

_ ... ! 200.000 -.----.. -.. -~

.

.

100f)'X1 ···---t -··--··· _10000 .20000 _._--- .. _-•••.•. : ... ~ -; ·30000 ...•••••••••••. .j. --~. • ... _ .. . AOO 00 35JXrns

Figun' 2-22: iIlH'I"I~' CUITt'ot }lml undi~hll·tt'd '"usnidlll \ nlln~

DC II A 8000l 6000<> 40000 ... 'j 20(0) 00000 -20000 A 0000 ·ftOOOO ·80000 4!l1J011: "OOCJ1'l(

(24)

IX MIMa'~ 1 01 I

v

40000D $0-1 09 U-IJQJIJOCV 10 OOI&5ec.., '2 bit'S

t

-

...

--_ .

...

i i ... , oc II A 80000 (j1iOO\l 40000 10000 00000 .10000 JlOO!lCl .1;0000 ·8.0000

Figul'(, 2-23: UIHI't(,I' (UII'l'1I1 alltJ \l,ltltgl' ill GN' Ilf Z5'" hlll'lnunk : "I" di~wl'li<J1I II irhuul rhlls~ hift

From Figure 2-22 and Figure 2-23, it is clear to see that the hannonic component is pretty small, so the

pollution that brings to the grid by solar inverters is not so serious.

While from the inverter fingerprint shown in Appendix C, it is clear to see that inverter has approximate

linear behavior, especially for high order hannonics. There is an obvious phase shift between the voltage

and the current, for small order hannonics(hannonic number N is 3 to 17, as shown in Appendix C-I to

C-8), the inverter appears like inductor because of the filter inside. While for high order

hannonics(hannonic number N is 19 to 25, as shown in Appendix C-9 to C-12), the inverter behaves like

a negative resistor. This is because the inverter measured in the experiment combines the reference source and the synchronization with the supply voltage by using the wave fonn shape of the supply voltage as a

reference source. However, if this voltage is polluted with background distortion, the reference source

will also be polluted and the current regulator of the inverter will pollute its own output current

accordingly. Filtering of the pollution using such a controller is difficult. This kind of inverter has the

character of a negative resistor.[7]

2.7

TV

TV is a common used household device. Making fingerprint for such a frequently used appliance IS

(25)

DC v 400000 ".llm ""'000 ~,-toll

~ng.tI~ 10 IXItSIMcO 1}t'it!i

iOOeu;; .•...•.

i

.10000 ... ·· __ ·_--t-· ·""00 cc v oIW.WII '00'" 10000 ""'00 ."",.00 ... 00 ' " Sf;Omt 10 CXIms 15 00mt ~~P1 Milt 1OO1.(ltlJ.'5307 Mi.n.fiIiO'lI(1lci I ~~IO~¢I'ba

~\

-+ ... _--~. .., •• ·_·t

..

.

~--

\

.~

..

,

.

..

-

J

;

.

.

....

~

j-

-

-.

~

Ot .j1Xl!TJl la(l:)!ft 1:;010'11''" 20 ... "lIN'snert~.t ~. 75,2OOQ. 13 55 1.1 ... -.. ~

....

..

...

_

... so"""'" : : .. ,: . ... _-, ; DC A 40000 30000 20000 100103 00000 .100J0 ·20000 DC A

.

.-6(1000 2.0000

.,

,,,,,,,

.00000 .g 0000

Figurt' 2-25: TV rurrclll nOll voltaol' in cast:' of 2:;lh hanl14Jnk 5') '0 distol·lion \I Ithout phas(' ,hin

From Figure 2-24 and Figure 2-25, it seems that in TV circuit; also there exists an AC-DC converter. As

shown in Appencix F-l, when harmonic number is 3, there is no star shape. From the 5th harmonic to the

11th harmonic(Appendix F-2 to F-5), however, the linearity is much better; a star shape is formed in the

(26)

when the diode is conducting. So after the peak value of source voltage, still the source voltage is higher

than capacitor voltage value for some time, and current flows which makes the current more in phase of

voltage. Above the 13th harmonic, the linearity is not so good any more.

2.8

TV Problem for 25

th

Harmonic

When the measurement for TV was being done, there is a problem happening. When the harmonic order

goes up to 25th and the amplitude goes up to 10 percent, the TV will shut down itself. This phenomenon

does not happen in other devices. Then what is the TV problem?

Voltage was supplied to the TV with 10 percent amplitude harmonic; one harmonic each time and THO value is measured. (All figures are from FLUKE meter) The THO in this report is calculated with respect

to fundamental component (F, ) as shown in (1)

100 90 80 70 60 40 30 20 10

THD

F = '...n_>..:...'

-F;

(I) ~Al\.l

A

111.:.11 •••••

11 ... ___ ... _. ___ •. _. _______ ... _ •• _ •. _______ •• _______ ._

SO.O !5Il.0 2'$(1,0 )49.5 44911 549.9 64S.9 149.9 84U $4S.8 IOU,8 1149.1 1249.8 134$.7 l449.7 1549.7 IS4$,7 17U.1 .~'E On.6 20tH 2\41.5 22'9.6 23".5 24tlt.5 F,~stHzI -D"abtock-IName =AmpsM..l Dole • 5I28I2!JJ3 Tine ·8:55.15PM F..-.! -500Hz THOI -0182:: KFact - 5.0 ~Cur""v_­ X 1: 150 0 Hz X2: 349.9 Hz dX: 20l0Hz Yl: ,1.3% Y 2: 10.3 '!: dY: ·:n.O '!: Phi: ·168 • Ph2' ·2 '

(27)

100 Arro>sMl 90 80 7Q 30 10 10

1111111111.11 ••

1. ..

1. •.

1. ...

1

...

...

...

.

...

__

•.

____.

80.0 1&0.0 ~.O 3M.O teo.c s!t).o cw.o 7$0.0 1150.0 1SO.0 DSO.I reo.. tta,o 010.1 M!II.O 1510.' 1GSt.O me.a .soli . . . 2O!tOJ) 2'150.0 mo.o 23150.1 24&0.1 F...,.;..(Hz) r-Dotablocl<-Name • Arro>s M 1 Dot. - 5/2S121ll3 Tine -8:52;15 PM FIIld ·5110H, THOI • 89.9:t KFact -285 .-u....v ... -Xl: 15110H, Xl: '5110Hz dX: DlOHz Y1: 56.1 % Yl: 39.3% dY. ·16.8% Phl. ·189 • Ph2' ln .

Figure 2-27: THO \ uJUl' and IlIIl'rllouir cumpOnl'nl of TV ill Cll'l' of \ulragc "ith 7th hannllnic (HI ~I-cl'r\t,

n

phll'c hifl)

100 ArT()$AlL1 90 70 60 / 50% 4{) 30

O

••

11

.11

.1 ••

L

.J. ...

LI.I.l.J..I...I.J ..

LLLLI.J.,LLL

20 10

50.0 150.0 250D 350.0 450.0 550.0 6$).0 tso.O HO.D !lSlO 1)5(1.0 1150,0 Im.o 050.0 14!50.0 1550.0 1&50.0 1750.0 18SO.0 1950.0 2050..0 :mo,D 2250.0 n5G.\ 2 .. 50.1

Frequenaet (Hz) -Ootot:locl< -Name· Arro>s Ml Dale· S/28I2OO3 Tme -8.15:16 PM FcnJ • 5110 Hz THOI .IS4.8 % KFact - 127.7 -Cur,"'v ... -X 1 1500Hz Xl: 6!aOHz dX: 51JO.0Hz Y 1 n.3% Yl: 63.6" dY: ·13.7% PhI lBJ Ph2 -15 '

(28)

'00 Amp,All.1 90 80 70 60 /

.-D

N

D

.... ·

.

.

._

.

AtrpoM'

-5I2IlI2OOJ Tme • 9:0226 PM FIIld • 50.0 Hz THDI· '58.' ~ KFacl • 203.' x,: 150.0 Hz Ix 2: Bt9.9 Hz dX: 699.9H' Y 1· n;o:{ Y 2 58.7% dY ·17.3% Ph, laG' • - ---.• _. -. •• .- ---•. ---- lCf'h2=c._ ·34=-_·- , 40 30 20 '0 o

SO.O M

,I. ••• • ..

.O 25Q.O )4$.9 4493

1...

543.9

.1.... ,. .•• ... .•. . •.

649.9 l4U e.U! Sols-a IOU.. 11&,.. 12

1

4S

...

B 134

1

U

... 1

144$.1

...

~

1

'

...

.7

"

1

".

...

1

1149

1

...

.7 S

1

4S

...

.1 194

1. .

!.1

.

W49

1

.

.6 214$£ 2

.

.

1

...

2

1

49..6

...

23

1

"

.

.6 2449

..

1..

,8 Frequencies (H,)

fi~ut'l, 2·29: THD, alul' nlld hllrmoni compOLl('nt of 1 V ill C:IS(, of \IIItU!!,(' "ith tilh It .rmullk (III PI'I'C('nl, 11 (lh:t~c ,hill)

'00 AmpoM' 90 so

!

. . . 4 . . . . _ _ _ • • _ _ . _ . . . .. . . . 0 . 0 _ _ _ _ _ _ _ , . . . . . 70 60 ---

j~----

----_._---

-

-_

...

---50"< ~o 30 20 10

111 .. 1 •••

111.1 •••

1.1.1 ... 1 • ...

.

.1

.

.

.

1

..

.

1

...

1

.•.

1

.•.

1

...

1. ..

1

...

1. ..

1

...

1

...

1

.

.

..

SO.O 1!5O.0 250.0 3",9 44$.9 SitU S.S.S 74'.' &49.8 'of' 9 1().',' lMSJ! 124$..8 ,:}.IS.S 49.1 1$49.1 1$49.7 1148.7 'HS.7 1949.7 ZC49.t 2148.6 2249.6 234.U 144»

Frequencio.s (Hz) ;---Dat~­ N .... ·AnpsMI Db • 5I2IlI2OOJ T ... 9:!llDB PM FIIld • 50.0 Hz THOI • 141.2'" KFacI.IBO . -C., .. ", VaLes -. XI: 150.0 Hz X2: 9-19.8 Hz dX: 799.9 Hz YI: 76.6~ Y2: 6112"1: dY: ·16.~ ~ Phi: 190 • Fh2: ·28'

(29)

100 90 eo 70 60 50" 30 20 10 ~Ml / .. ---------------_ ...

--

...

/ r--Databkrl -N"""An1J'MI Oal • • 5/2812003 Tine ·8:19:13 f'Io4 Ftroj • 50 0 Hz .-THOf.I40.':< ~.c .. 203.5 ,u...v ... -Xl : 150.0Hz - --.-_ ....•. -... _ ...•.•••....••..•.•••..•. ----p<2: 1150.0Hz dX: lDDO.OHz Iv 1: 87.6" Y2: no% dY: -117" PhI: 185 • f'h2: ·30'

IdL.,I,I.L..L,,1...

II • •

1.

J.

d •

...I.,.I...I

...

,.J.J

...

Ll..1.,.LL

50.0 1!O.O 250.0 :J5O.O 4!50.o 550.0 G$O.O 750.0 8!5O.0 1&10 . ... 1150.0 12S)J) 1*.0 1450.0 1S5O.0 tGSO.o 17M.O 1850.0 1950.0 ~G~.O 219:1.0 225Q.O 23!51..1 24Sl.1

FleQUeflciet [Hz)

fi!!UI'l' 2-31: THD \;llul' IImJ hunllullil' compom'nlllfTV in Ul!(' Ur\uitllg;l' \\jlh B,d 1I1ln1lullk (10 Jl('rn'nt, (I phil! ~hifl)

From the Figure 2-26 to Figure 2-31, it is clear to see that with the increase of harmonic order, the corresponding harmonic current component is increasing from 40% to 70%. There is something

happening at the 25th

harmonic and this needs more research work. Also from the harmonic components

in Figure 2-26 to Figure 2-31, it is clear to see that even if one harmonic is supplied in the voltage, many

(30)

Chapter 3 Combined Measurement

In this chapter, discussion about the device-combined situation is presented. As we know, in a house, usually there are some appliances on simultaneously. Because these devices have different behaviors, so when combined together, they may influence each other and the THO value of the

poe

may change.

In the measurement, one energy saving lamp, one fridge, one TV, one personal computer with monitor and one resistance (52,9 Q) were chosen. Resistance stands for linear household devices in reality (such as cooking element, iron etc.). The THO of the

poe

and all the points connected to the individual appliance is measured. Voltage source supplies different voltage, one is clean voltage and the other is voltage with 5th harmonic with 3% amplitude and 180 degree phase shift. Also, the THO value of the

poe

is measured when single device is connected.

Tnhlt' 3·(: CurrenT THO, IIlu~ rul' PO :lIId t'uch til" i"('

Clean voltage Polluted voltage

Combined measurement POC 19.7% 15.4%

PC 180.4% 148.3%

Energy saving lamp 66.5% 669%

R 5.6% 7.5%

Fridge 16% 16.2%

TV 73.8% 60.9%

Single measurement PC 195.5% 154.2%

Energy saving lam~ 73.9% 77.4%

R 6.4% 6.9%

Flidge 14.2% 16%

TV 88.8% 759%

From Table 3-1, it is easy to see that the THD value for TV has been decrease by more than 10 percent. The reason is that the current harmonic from TV and current from other device canceled each other because they are opposite in phase. As shown in the appendix of fingerprint 'with harmonic order 5, it is clear to see that the harmonic current of energy saving lamp is leading the voltage while the harmonic current of fridge is lagging the voltage, so they can cancel each other and this makes the THO value

smaller ,vhen they are combined together.

There is one thing seems abnomal in the table. It is the current THO value ofR(Resistance). Under clean voltage condition, the THD value should be 0 However, it is more than 5 percent in the table. The error might come from the voltage source and the resistance. On one hand, even if the voltage is measured just after the clean voltage is programmed, it is hard to see a complete clean voltage. There is always some harmonics contained in the voltage. On the other hand, the resistance used in the experment is apparently not a pure resistance. There may some inductance in the resistance. Both of them can result in the unexpected current THO value.

(31)

Chapter 4 Conclusion

For individual device measurement, fridge behaves like an inductor. Current THO value for clean grid is 14.2%. The finger prints are quite linear. The current for inverter is quite sinusiodal and the THO value is very small. For the finger print, it behaves like a negative resistor. PC, TV, energy saving lamp and LEO lamp all have rectifer inside which is AC-OC converter. The converters behave similar, however, there are some differences, and one reason for the difference could be the capacitance value behind the rectifier. The bigger the capacitor value is , the higher the current THO. THD for PC is 195.5% under clean voltage, for TV is 88.8%, while for energy saving lamp is 73.9%. For LEO lamp, it is even lower. And these devices do not have linear finger prints.

When different devices are combined together, some device's THO value may decrease. The reason is that the hannonic current may cancel each other because of the phase shift. So doing more research on the fingerprint of each device and to find out what combination is optimal for the POC is possible.

The measurement for this report considers only odd harmonics(3rd to 25th). Further study is to be done for

even harmonics too. Moreover, more devices are required to be measured to see their influence on each other and overall impacts on current THD value at a POc.

Acknowledgement

My gratitude goes first to Professor Myrzik, for that she helped me find this traineeship. Second, I would like to express my gratitude to Shannistha, who offered me the chance to do my internship and led me into the topic. Last my thanks would go to Glenn. He gave me lots of help during the experiment and analysis. Also he helped me lot in other aspects rather than the academic field. Without his consistent and illuminating help, this report could not have been finished.

References

[1] IEC 61000-3-2 - "Limits for harmonic currents emissions (equipment input current::::; 16A per phase (2000), IEC, Geneva, Switzerland.

[2] IEC 61000-3-12- "Limits for harmonic currents produced by equipment cormected to public low voltage systems with input current> 16A and < 75A per phase (2005)", IEC, Geneva, Switzerland. [3] Bhattacharyya, S., & Heskes, P. (2008). Laboratory Measurement Plan ofKTI - WPIIWP3

[4] Shannistha Bhattacharyya, Johanna Myrzik, and Wil Kling, Sjef Cobben and Jasper van Casteren(2009). Harmonic current interaction at a low voltage customer's installation(abstract accepted by EPQU'09)

(32)

[6) Mohan, Undeland, & Robbins. (2003). Power Electronics Converters, Applications, and Design.

[7] 10han H. R. Enslin, P. J (2004). Harmonic Interaction Between a Large Number of Distributed Power Inverters and the Distribution Network. IEEE TRANSACTIONS ON POWER fi"LECTRONICS, 1587.

Appendix

ApPt'ntJh I: Specifications of devices

Devices

Manu factor Tvpe

Specifications

Others

Energy Saving Lam~ PHILIPS GENIE 11 W 220~240V,50--60HZ

Refrigerator Whirlpool ARC 5754/2 Energy Consumption per

Year in kWh: 270

TV

PHILIPS 32PFL5403DI12 32",8Icm LCD

LED LEMNIS E27 230 V,50HZ,3.4 W

Personal Computer Retailer(aragorn)+Dell Moniter l703FPt NIA

moniter

Inverter SMA Sunny Boy SWR [IOOE Nominal output 1000W

(33)

Appendix A

HArmonic Voltage for N = 3

2S - - .. - - - -, -- - • --- -1- - -.- - -1- - - • I I .. I n __ ~ __ l __ ~~ __ ~. __ l ______ ~ __ ! • , , I I I I t 1 I I 1 1.. I I I I 15 - - r - --1 -- -, - -.. -,--- r --1 - -'jo- - -, - - -," - - 1 I ' f .1 ' I I I • I I , ,. , .. I I I 10 - - r - -i - --I - - t .... - - r - -T : - -, - - - , -- -,-; - - 1 I • ,I I' " I, I I . ' I 5 - - r -~ ~ -: ' ... -... :- .: - ~ ... -' ~ ... ~.-~ ~:---:~ ... 1 1. I I I " . ' ' • • I • • 1 I i! ~ 0 -' - ~ -' .... ~ .: .... ~! -,- :- - ,-' ~ ~-~ ... ~ ... -

-!

- - -

.

...

~ ~ '01 I ' t '. ' . J .' • I • ·1· • ,- • • • I ~ ~ ' " • • , • ' . '. ' I , , E -5 ... - ,. - - ., - ~ ... - - -r-'" -"t-... .,. -.-~ ... - -,_ ... - t '- ... 1 I I. ' I I " ' ! ., I . . . I I 1 I .1 t" I I , ·1(1 - -.,. ... -f ... - -1-... °-1- ... _0 t-... T ... -t - ~ -1- ... 1-~ ... , J I I t i l I .. I I I r.. ,I 1 .. I -15 _ _ Iw ... -I - _ ..."I ... - I - -... ~ - ... I-_0 ... ~ ... _ 1_ ... _I. _ ... .. I .. t .. I I I .. I .. I -20 ... - J. ... .J ... ~ ...J .. _ _ 1_ ... L ... J. ... ..J ... _ _ 1 _ _ ... ~ _ ... J I .. , I i I I

.

,

-2~2!-;-'---:.2::-0 --.-:,,:--.~,,:--.. -!--~--!----:,':-o ---,!,':-, -~20:-~25 Harmonic Current lor N· 3 0.25 • I

.

'

,

~ I I I I 0.2 - - - -1-- __ ~ _ _ _ _ _ ___ I ... - _ ... ,J _ _ _ : 1- - - - -I I . I I I · , I I I •• , I I " I I I 0.1:5 - - - -1-- -- ... - - - - ... - .: --j - - - - -4 -" - - - I-- - - - \ ! • I I" , " I I • , , • • I l I I ° l o r I 0.1 -·---1 .. -~-'1----~-·---,-.!.-.-'1·--"--t"----, ", • • }. . I" I , , .,. I I 0.0' _ - .: -___ ~ __ .,. _ ~ _ .: _ ~: . . . . ~ • .: ,--.-.- ! ~ - -.. - -: I • • -r • • I ", '" 1 I. "I . " ' I

-

---

:

---

-4

-

-

"-~. ~

-

-

~

+

-:

--

~

-

!. :--

r

-

--

-

l

, • I I I , . , . , , .0.03 ___ , - - --".! - - - -~ - -- _,_ - , _ ..! - I I : " : : .. ' . : . - -I - - - -. I r , I . I , .0.1 - - - _1-___ j ____ LO _ _ _ _ 1 ___ ... J ___ _ L ____ I , 1 r I , I I I -0.15 -0.' ·o.o~ 0 O.O~ 0.' 0.1:1 Real par1 .\ppentlh: A- 1 " , 20 - -

+

- -

-:

-

- -

~-

'-,

-

~

...

-

~

..

,.

-

:

-

--:-

-

-

+

- -

1- -

-

:

I I I I \ I I I I ' 4 I I . I I 15 - - -. -., - - r---. r - --. -- -,- --I .- . T - - - .... J .1 I J I I. I I I . I I 10 - - r - - ""1 - T -1- - - ,..' - - ., - - • I - -'- r-- - T - - ""i - - - I I -, I . I ' I I I . I " to I . I I _ j. _ _ ...J _ __ 1 _ _ ._ '-__ ...! _ _ •. ' _&.. _.~ \.. _ _ ...,.J - - -1 ".. I I I " . ,' . • I I ~ i . '\ . . I . ' • • • • • • I ' • ~ r I a ~ 0 - ~ .. - ~ - - -:- -'- ~ -~

t

-

!

-

~

-

.

-

;

,

-

.

-

-

1. - - ~ - - -:

i

_

t

t I I ' "' • • I • '* ... I 1 I . , ' 1 ' .1 . :. I I · I 1" --~-r-t---f·--I--· I j- --I- - -' .s I. 'j ', " I I I I I • I I I I .10 - I - - , - - - , -. - - r - -"'1 - - .-,- - -,-... - T - -., -.... , 1 ' . I I • I • r i I -15 - - T - - , - -'-1--- r--- - , - --, .. - - r-- - T - '--, - - -I I I I I ' I . I I " I • I 20 -1- - ~ ... -...,.--~-~-'_ _ _ I. _ _ .... - _ _ 1

. I

I I I f ' I .,.L--L.-....L- ----,!,'--...J''--...JI'-- ...L.- ----'- - . l l - - . . . l'- ---' ·25 -20 -15 .10 .6 0 10 15 20 25 Real part

Ha,.mon k: C unent fo,. N = 5

0.15 -, ' . I I 0.1 ·----,---r---'---r---' • r .1 I ,. I I ' I. " , I 0.05 _____ J __ ;-__ ,_ _ __ " __ I _ _ _ _ __ j , I • I o - - -- - ~ -- ~ .: -" ~~. -" ~ ~ ,,- .... ~ -:--.-.: -:- - -- - ~ " • " • J . . . "".",

"!." "

..JJ.05 -<>.1 -0.15 ..

.

,.

-" . 1 ,

..

~

- -

-

;.

:

-

~-

- -

~

;-

- - - -

-:-

- - -

-

- 1

.

,

,

I

.

,

I _ - _ - - •• - - -

.

-"- -

I

1- - - -

·

.1 - - - -

,

t-- - -

-,

,

I I I

-

----

,

---

-

--r

-

----

'

-

-

---

-r

----

-I ..JJ.05 o 0_05 Real part 0.1 0.15

(34)

Hannonlc votrage ror N :; 7 Harmonic CurrMt fOt'N. 7 25r i - -1---1--' - --r--j'---j---,--j--- 0..,. - -- - --. - -1 - --, -- • i --~ - - -.-- -I -- -,---i ,

,

,

.,

.

, 20 --r -- -1- - - r - -r - --T - - -1-

-,

.' I I I I I I _ _ .J _ _ _ '--_ :. 1. _ _ _ 1 __ .! L _ _ .J _ _ '. I. _ _ ..! _ _ _ 1 _ __ J OA. , , , ,

.

,

,

I ! "I

,

,

,

.

15 - - .1 _ ~ _1 __ . L __ ---.I. _ _ ... _ !. .1 ___ 1 _ _ .... L __ .J _ __ I " , l , ,. I I I I I I

,

,'---'---.,-'--'---1 , ,I , I 0.04 --.,

,

. - r - - ~I-- - r-- ~ ' I " • I I . I I W --~-- ·--f--~---~--T- - -1--

,

1

,

-,

,

I , I 1 ' " , , ° I r , 1° .1 , ,_ • O.Ol - - ·1 ... - -,-... -0 ~ - - - , - . - - I" -,-1 - -;-,--- i' • I· I· I I . 1 ' I : ,0 0' 0 :: 0 • t o , I I 1 , -'-1-- -1-- -1 - J- - .-r-. - - o t- -1- -.- ... -°- -1---1 i : I ' : • • : ' . ';" • • : . :" I I : ~ ~ 0 __ 1 __ 1 ___ L ___ I·_....!_t ._J. ___ I ___ ~ __ J ___ 1 ~ - --- --:-- -- ,- • ; ~ -" -.:~ -::j'~ . . . ' -.-, 1 : .,--;: -.-.: I ~ -'-:I ~--~ f I I I '. °0 • . . . I • I I.~ i f l . • I 0,0. I

.

,

+.

I I I • -.{).O2 I , " 1 I. 1 , I I ... I. __ 1. _ _ :, _ _ 0 _

*

_0 _ J _ :.. _ , __ _ 1. _ _ _ i _ _ _ J .. , . . , ' . . ' . l I ,. • • , " -5 - ~ :.--; - - -r - --,--.-:-: - T ~ - - - r - - -, -... -, J • I , • • : ':' . ~ I __ I 1 ° I • I ~ .10 --..J.---J--_~· __ -I _ __ I,... _ _ ..L._~_I __ !· - _-I ___ I I I .1 I I I · I I • I ·15 - -~ - - - .• -- ~ - - -: -. - -~-- - + ---~ ---~ ... -,

.

~J)4 --"1- --1-,- -1"-- -'. I ---1!..--t-- -..,-_ ... , I J '

,

*

I ' J I ' : : ' 1 ~. :

0

.

:

I I : ~.o. - -..., - - -,-- - T -~ ·1-- - r.-- ., - --,-- -, - ,--- -1 I 1 , , :. 1 : ' . , I , ,

,

, ·20 - - -: - - -I ~ - - r "-"1"-- - r

,

- --

,

-

.

- -- r--- j -

-,

,

~.08 J ___ L __ ! __ ~ ___ L*_J ___ ~ __ l __ ~ ___ ' I I , , I I I I

,

,

.

·2.,L - - ' -- - . L -- ' - ---'---- - - ' - -...L----'- -....L----'L-_-l ·25 -20 ·1' ·10

..

10

"

20 2.

Real part Re.alpart

Appt·ndh . .0\-J Harmonic Voltage for N = 9 25 - - "T - - -, -- - - , - - -,- - - r - - t - - -r - -T - - -, , I ' , I I , , I' 1 20 - - ...J. - - -1- - - ... - - -\ - - _ 1 ___ '-__ -l __ _ L.. _ _ ...! _ _ _ I I I , I , ,0 , • 1 I I , , ° I , I ~ 15 - _1_ -~:o

--

~

-

-

~.L - -: -- _.~ - - _,_ -

-

.

:

_0-

-

f _

_

_

I I • . , 0' I , 0' , • 10 - - 1" - - - ~ - - - r - -~ - -- r - -i - - - , • j ' . ' I • I , • ~ . I . I , I ~ 5 - - .J0_ .... _1 _ __ I... _ _ ...1. _ _ _ _ _ _ ~ __ ....J _ _ _ L __ .... _I i : 0: . . : . . : . ' . 0: 0; , ~ - : :

!

~ 0 - - ~ - - - : -- - '- - - ~:-

-;0+

~ -~T ~

-

-

;

"

.

-

~

- -

+ -

-

-

:

E

!

"

1 ° -,-' , • • , , , , !l E. , • 01 . ' J • _ ' . 0, , • • 1.. , 1 E -5 -;-~ -- -: - - ~ - ~ -; - -0 - : - . -- : ~ - ~ - - - ; -. . -~ . . - ~: I ' , t , l o t t , , • 10 - - .... - - - , -- - I:. _ _ J _ __ 1 ___ L __ .... ___ L _ _ .1 _ _ I ' I l ' 1 • I I. 1 I , • J, 1 • I I " J , , , I .1 ·15 - - I - -.-,-- -I - -"1---,-- , 1--1- - - I. -1 1 I ~ 1 ,I I , , I I I , , I , , ·20 - - 'T - - -,- - - r - -; - --1- - - t.. - - -, - - -r-- ... 1 - - , t ., J .2~2·~.---,.2!-:0--.,l:.,---.,l:0,---.. ~--',0--~--,!,0:--.l,~:---o'20:---!25 Real pan

Harmonk: Curren( for N = 9

0.08 - - - T - - - ., - - - -, - - - -r - -- I - - 1 - - - ..., - - - -, O~ ---r-

,

--'-~

,

-'--

,

--r---'

. ,

,

,

---,-

,

---, , O.o.t - - - '" - - - ... - - _ .... , - - ... ~ I ... - - - ;.... ~ - - - -I _ _ _ _ L , I . ' L ' I I ,0 t" • I I ,, ' I 0.02 - - - 1 -, _ __ ,_ ~ _ -'r __ 0 _ L __ .. .1 ___ -' ____ t J . , 1 , , I

.,

• " 0 , . , 1 , . 1 . . , . 1 1 o - --

r

--

_

..

+-

~

..

-

:--.

-

:-+-:- -.-

0..

r-~-·-1-·-

--

1

-

---

--I I

.,

....

.

,

I I , t , • I -0.02 - - - r --- _0- --, -:---t" --. - ---- ---~ • I I . . r • I r

t

1 I • -0.04 - - - t . - - '1 - - _ .... , - - - -f-- -- r-0- - - -t - - - -..'" -- -r I • I

t

f : -0.05 - - - ... - - ... - - - """"*-- --I-- -. - ... - - - .. _ _ _ I

,

~·~.~08~--~~~.0~.----~~.~~---~7.~02~---',,---O~.0~2,----70.~~~--~0~.0~.----O~.08 Real part Aplll"mlh A- 4

Referenties

GERELATEERDE DOCUMENTEN

In this paper, harmonic simulation results are analyzed for various combinations of customer’s devices and the total harmonic current pollution at a typical customer’s

Since this park attracts more tourists than any other park in South Africa, the purpose of this article is to determine the reasons (the travel motives) why tourists visit the

The main ones are: low status of women and male dominance in sexual and economic relations; sexual abuse (of particularly young girls); historic and current separation of

Wanneer een MKBA als evaluatie- instrument wordt ingezet, dan is het – om tot een integrale afweging van kosten en baten te kunnen komen – noodzakelijk om de waarde van natuur en

accident rate per km for moped-riders on both sections of road and terminating intersections with cycle paths was high- est as regards collisions with other moped-riders,

De auteurs van twee onlangs verschenen meta-analyses concluderen dat colchicine het risico op ‘ernstige cardiovasculaire complicaties’ (major adverse cardiovascular events (MACE),

Our study in Chapter 6 showed that, for various reasons, teaching self-management support can be considered as a complex matter. One of the reasons was that a shared view

Begrip voor de ander ontwikkelt door je in zijn of haar schoenen (perspectief) te verplaatsen. De ander zijn 'anders-zijn' gunt, ook al is iemand raar, onbegrijpelijk