• No results found

The role of vegetation in traffic emission dispersion and air quality in urban street canyons

N/A
N/A
Protected

Academic year: 2021

Share "The role of vegetation in traffic emission dispersion and air quality in urban street canyons"

Copied!
49
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The role of vegetation in traffic emission dispersion and air

quality in urban street canyons

Citation for published version (APA):

Gromke, C. B., & Ruck, B. (2010). The role of vegetation in traffic emission dispersion and air quality in urban street canyons. In Proceedings of the International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, (HARMO13) 1-4 June 2010, Paris, France (pp. 678-682).

Document status and date: Published: 01/01/2010 Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

(2)

The Role of Vegetation in Traffic Emission Dispersion

and Air Quality in Urban Street Canyons

13th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

1 - 4 June 2010, Paris, France

Christof Gromke

1,2

and Bodo Ruck

1

1 Institute for Hydromechanics, University of Karlsruhe/KIT, Germany 2WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

(3)

Basics of Flow and Pollutant Dispersion in Street Canyons

Long street canyon (L/H > 7 and 0.7 ≤ W/H ≤ 2.2)

urban street canyon

approaching wind perpendicular to street axis • two dominating large scale vortex structures

- Canyon Vortex - Corner Eddy

• superposition at street canyon ends

idealized street canyon

Corner Eddy Canyon Vortex

Introduction Approach Results Max. Concentration CODASC Summary

(4)

Canyon Vortex

Corner Eddy

numerical simulation with k-

ε turbulence closure scheme

wall A

wall B

Basics of Flow and Pollutant Dispersion in Street Canyons

long street canyon, incident flow

α = 90°

Introduction Approach Results Max. Concentration CODASC Summary

(5)

Urban Street Canyons with Avenue-like Tree Planting

Implications of Trees on Flow and Pollutant Dispersion?

Introduction Approach Results Max. Concentration CODASC Summary

(6)

Approach

Introduction Approach Results Max. Concentration CODASC Summary

(7)

Experimental Investigations in the Boundary Layer Wind Tunnel

W = 18;36 m A B L = 1 8 0 m H = 18 m u(z) a= 0,30 traffic lane model trees concentration measuring taps roughness elements line source z y x

Boundary layer wind tunnel

• closed-circuit BLWT

• vortex generators and roughness elements • adjustable ceiling

• power law profile exponent a = 0.30 • ud= 7 ms-1, u

H = 4.65 ms-1

• Reynolds-No. Re = 37.000

Street Canyon Model and Boundary Layer Wind Tunnel

Street canyon model (scale 1:150)

• isolated long street canyon (L/W = 10, W/H = 1;2 ) • line source at street level

• tracer gas (sulfur hexafluoride SF6) • 126 measurement taps at canyon walls

• traffic induced turbulence

Introduction Approach Results Max. Concentration CODASC Summary

(8)

Wind Tunnel Trees – Modeling Approach

Aerodynamic of trees

is governed by crown porosity

• permeable for wind

• form and skin drag (volume specific surface) • wake characteristics

Characterization of crown porosity/permeability

• pressure loss coefficient λ

[m-1]

integral measure for flow resistance d u ρ 2 1 p p = d p Δp = λ luv 2lee dyn stat

Similarity requirement

[ ]

[ ]

=M d d = λ λ ⇔ d λ = d λ ⇔ p Δp = p Δp field model field model

Introduction Approach Results Max. Concentration CODASC Summary

(9)

Realization of model trees

Modeling of trees/avenue-like tree planting

• crown porosity/permeability

- PVol = 97.5 … 96%

-λmodel= 80 … 250 m-1

• planting density (#trees/unit length) • similarity criterion

Application of similarity criterion

• λ of tree crowns not available

• λ of vegetation shelterbelts (Grunert et al. 1984)

field= 0.4 … 13.4 m-1

• Similarity criterion:

-λmodel= 60 … 2000 m-1

Wind Tunnel Trees – Modeling Approach

+

M = λ

λfield model

Introduction Approach Results Max. Concentration CODASC Summary

(10)

Street Canyon with Model Trees

Introduction Approach Results Max. Concentration CODASC Summary

(11)

Overview: Wind Tunnel Experiments

Parameter study comprising 40 experiments

Variation of

• street width to building height ratio W/H • angle of approaching flow α

• planting density ρb

• crown permeability λ (crown porosity PVol)

• tree rows

(closed or open tree crown canopy)

• traffic situation

www.codasc.de

(Concentration Data of Street Canyons)

Introduction Approach Results Max. Concentration CODASC Summary

(12)

Overview: Wind Tunnel Experiments

Parameter study comprising 40 experiments

Variation of

• street width to building height ratio W/H • angle of approaching flow α

• planting density ρb (#trees/unit length) • crown permeability λ (crown porosity PVol)

• tree rows

(closed or open tree crown canopy)

• traffic situation

www.codasc.de

(Concentration Data of Street Canyons)

Introduction Approach Results Max. Concentration CODASC Summary

(13)

Overview: Wind Tunnel Experiments

Parameter study comprising 40 experiments

Variation of

• street width to building height ratio W/H • angle of approaching flow α

• planting density ρb

• crown permeability λ (crown porosity PVol)

• tree rows

(closed or open tree crown canopy)

• traffic situation

www.codasc.de

(Concentration Data of Street Canyons)

Introduction Approach Results Max. Concentration CODASC Summary

(14)

Measurement Results

Introduction Approach Results Max. Concentration CODASC Summary

(15)

Pollutant Concentrations in narrow Street Canyon (W/H = 1,

α = 90°)

Tree-free street canyon with wind approaching perpendicular

• max. concentrations in central part of wall A close to the ground • concentrations at leeward wall A > windward wall B

(in wall average by 3.6)

• concentration decreases towards street ends

• concentration gradients give evidence for vortex structures

wall A wall B wind normalized concentrations c+[-] -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H wall A 0.5 1 z /H -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H wall B 0.5 1 z /H

Introduction Approach Results Max. Concentration CODASC Summary

(16)

Pollutant Concentrations with Avenue-like Tree Planting (W/H = 1,

α = 90°)

Single-row tree planting

- high planting densityρb= 1.0, high crown porosity λ = 80 m-1(PVol= 97.5%)

in comparison to tree-free street canyon

• increase in concentrations at wall A (wall average: +41%) • decrease in concentrations at wall B (wall average: -38%) • in total: concentration increase

+ ref + ref + tree + c =(c c ) c δ change . rel --5 -4 -3 -2 -1 0 abs. 0.5 1 z /H -5 -4 -3 -2 -1 0 abs. 0.5 1 z /H 1 2 3 4 5 rel. 0.5 1 1 2 3 4 5 rel. 0.5 1 wall A wall B y/H y/H

Introduction Approach Results Max. Concentration CODASC Summary

(17)

Pollutant Concentrations with Avenue-like Tree Planting (W/H = 1,

α = 90°)

-5 -4 -3 -2 -1 0 abs. 0.5 1 z /H 1 2 3 4 5 rel. 0.5 1 wall A y/H -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H wall A 0.5 1 z /H

Influence of decreased crown porosity/permeability

- high planting density ρb= 1.0

tree-free λ = 80m-1 PVol = 97.5% -5 -4 -3 -2 -1 0 abs. 0.5 1 z /H 1 2 3 4 5 rel. 0.5 1 wall A y/H λ = ∞ PVol = 0% -5 -4 -3 -2 -1 0 abs. 0.5 1 z /H 1 2 3 4 5 rel. 0.5 1 wall A y/H λ = 200 m-1 PVol= 96% - PVol + λ

Introduction Approach Results Max. Concentration CODASC Summary

(18)

Parameter Study on the Influence of Crown Permeability

λ

Single-row tree planting (W/H = 1,

α = 90°, high planting density ρ

b

= 1)

• wall A: increase of c+

wall increasing λ, max. change +60%

• wall B: decrease of c+

wall increasing λ, max. change -50%

• asymptotic limit “impermeable” tree crown (λ = ∞) c+ wall average

pressure loss coefficient λ

0

10

20

30

40

0

100

200

300

wall A wall B

Introduction Approach Results Max. Concentration CODASC Summary

(19)

Pollutant Concentrations in Broad Street Canyon (W/H = 2)

Two-row tree planting (W/H = 2,

α = 90 )

- high planting densityρb= 1.0, low crown porosity λ = 200 m-1(PVol= 96.0 %)

in comparison to tree-free street canyon (W/H = 2)

• increase in concentrations at wall A (wall average: +41 %)

- max. increases in the canyon center

• decrease in concentrations at wall B (wall average: -32 %)  implications analog to narrow street canyon (W/H = 1)

-5 -4 -3 -2 -1 0 abs. 0.5 1 z /H -5 -4 -3 -2 -1 0 abs. 0.5 1 z /H 1 2 3 4 5 rel. 0.5 1 1 2 3 4 5 rel. 0.5 1 wall A wall B y/H y/H

Introduction Approach Results Max. Concentration CODASC Summary

(20)

Pollutant Concentrations for Inclined Approaching Flow (W/H = 2,

α = 45°)

Two-row tree planting (W/H = 2,

α = 45 )

- high planting densityρb= 1.0, low crown porosity λ = 200 m-1(PVol= 96.0 %)

norm. concentrations c+[-] rel. changes δc+[-] -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H wall A 0.5 1 z /H -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H wall A 0.5 1 z /H

• increases/decreases of concentrations at wall A (average: +88 %)

• increases in concentration at wall B

• accumulative traffic pollutant transport along street canyon axis • max. pollutant concentrations at canyon end

• max. rel. changes in concentration for inclined approaching flow

Introduction Approach Results Max. Concentration CODASC Summary

(21)

Maximum Pollutant Concentration

Introduction Approach Results Max. Concentration CODASC Summary

(22)

Maximum Pollutant Concentration at Canyon Wall

)

α

,

H

W

(

f

a

e

a

a

c

max

a ρb(100 PVol ) i

2 1 3 a1 a2 a3 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60 70 80 W/H = 1.0 W/H = 1.5 W/H = 2.0

Estimate for maximum traffic pollutant concentration c+

max was derived based on • 40 wind tunnel experiments

• dimensional analysis

)

,

,

,

(

max

b

P

Vol

a

H

W

f

c

Introduction Approach Results Max. Concentration CODASC Summary ○

(23)

Introduction Approach Results Max. Concentration CODASC Summary

(24)

CODASC

Introduction Approach Results Max. Concentration CODASC Summary

CODASC - Concentration Data of Street Canyons

- Internet data base

- collection of wind tunnel concentration data

- comprises more than 40 street canyon/tree planting configurations

- contains also information on

approaching flow characteristics

• street canyon geometry

• vegetation/tree modeling approach

(25)
(26)
(27)

CODASC

Co

ncentration

Da

ta of

S

treet

C

anyons

CODASC

www.codasc.de

(28)

Summary and Conclusions

(29)

Summary and Conclusion

• Vegetation/Tree modeling approach for wind tunnel studies

- accounts for the porosity/permeability of tree crowns/vegetation - is based on similarity criterion

- proofed to give reasonable results in wind tunnel dispersion studies

• Tree planting and traffic pollutant concentrations

- tree planting resulted in higher/lower concentrations at the leeward/windward wall - overall increase in traffic pollutant concentrations

- max. concentrations for flow approaching inclined

• Maximum pollutant concentration

- for regulatory purposes in dispersion modeling

- can be used by town planers to estimate the implications of trees on pollutant concentrations

Introduction Approach Results Max. Concentration CODASC Summary

• CODASC – Concentration Data of Street Canyons

- comprises more than 40 wind tunnel experiments

(30)
(31)

Related Journal Papers

Buccolieri, R., Gromke, C., Di Sabatino, S., Ruck, B. (2009) Aerodynamic effects of trees on pollutant concentration in street canyons, Science of the Total Environment, Vol. 407, No. 19, pp. 5247-5256.

Gromke, C., Ruck, B., (2009) Effects of trees on the dilution of vehicle exhaust emissions in urban street canyons, International Journal of Environment and Waste Management, Vol. 4, No. 1/2, pp. 225-242.

Balczó, M., Gromke, C., Ruck, B. (2009) Numerical modeling of flow and pollutant dispersion in street canyons with tree planting, Meteorologische Zeitschrift, Vol. 18, pp. 197-206.

Gromke, C., Ruck, B. (2009) On the impact of trees on dispersion processes of traffic emissions in street canyons, Boundary-Layer Meteorology, Vol.131, pp. 19-34.

Gromke, C., Buccolieri, R., Di Sabatino, S., Ruck, B. (2008) Dispersion modeling study in a street canyon with tree planting by means of wind tunnel and numerical investigations - Evaluation of CFD data with experimental data, Atmospheric Environment, Vol. 42, pp. 8640-8650.

Gromke, C., Ruck, B. (2008) Aerodynamic modeling of trees for small scale wind tunnel studies, Special Issue on Wind and Trees in Forestry, Vol. 81, No. 3, pp. 243-258.

Gromke, C., Ruck, B. (2007) Influence of trees on the dispersion of pollutants in an urban street canyon – experimental investigation of the flow and concentration field, Atmospheric Environment, Vol. 41, pp. 3387-3302.

Under Review

Gromke, C., Ruck, B. () Wind-tunnel study and dimensional analysis on traffic pollutant concentrations in urban street canyons with trees, submitted to Boundary-Layer Meteorology.

Buccolieri, R., Di Sabatino, S., Salim, M. S., Ielpo, P., Gennaro de, G., Piacentino, C. M., Chan, A., Gromke, C. () Influence of tree planting on flow and pollutant dispersion in urban street canyons in Bari (Italy), submitted to Atmospheric Environment.

(32)

Measurement Instrumentation

Concentration Measurements

• Electron Capture Detector (ECD) model Meltron LH 108

• measurement of mean tracer gas

concentrations (sulfur hexafluoride SF6) • determination of dimensionless concentrations c+ according to l Q L u c c T ref ref m = +

Velocity Measurements

• Laser Doppler Velocimetry (LDV) • 4 W Argon-Ion Laser • 2-component LDV-system • Bragg-cells 40 MHz • backscatter system • sampling frequency 50 Hz cm measured concentration

uref reference velocity

Lref reference length

(33)

kinematic

Dimensional Analytical Considerations

) Q , ν , α , u , P , , , z , x , W , L , B , B , H ( f cmax1 A B lsi, lsi, xk,j Kj Vol,j H l

- H, BA, BB building length scales

- L, W street length scales

- xls,i, zls,i source positions

- xK,j, Kj, tree positions and length scales

- PVol,j crown porosity

- uH char. velocity

- α angle of approaching flow

- ν kinematic viscosity

- Ql source strength

14 parameters

geometric

(34)

Elimination of parameters

• which have not been varied for the wind tunnel study

- BA, BBbuilding width

- L street canyon length

• are considered not to vary strongly in typical urban street canyons

- xLq,i, zLq,i source positions

- xK,j, Kjpositions and length scales of trees • Buckingham π theorem

- elimination of 2 more parameters -dimensionless π parameters ) H u Q , e R , α , P , ρ , H W ( f c H l Vol b 2 max  (6 parameters)

(35)

Further considerations

• π5Reynolds No. Re = uHH/ν

- sharp-edged geometries → critical Reynolds number similarity Recrit> 10.000 - experimental evidence

=> cmaxcan be considered to be independent of Re • π6dimensionless source strength Ql/(uHH)

- cmax~ Ql (twofold source strength → twofold concentration)

=> cmaxis linear in Ql/(uHH)

Dimensional Analytical Considerations

)

α

,

P

,

ρ

,

H

W

(

f

=

c

+max 3 b Vol (4 parameters)

) H u Q , e R , α , P , ρ , H W ( f c H l Vol b 2 max  (6 parameters)

(36)

• ρb planting density

• PVol crown porosity describe the avenue-like tree planting

Idea: combination of ρb und PVolto a single "alley parameter" AP

which is a measure for the amount of vegetation (solid crown material)

Dimensional Analytical Considerations

[ ]

%

)

c

>

0

P

-100

(

)

ρ

(

=

AP

b c1 Vol c2 i General approach:

• AP increases with increasing vegetation

• determination/choice of values for c1 and c2remains (moist obvious choice: c1 = c2=1)

)

α

,

P

,

ρ

,

H

W

(

f

=

c

+max 3 b Vol (4 parameters)

)

α

,

AP

,

H

W

(

f

=

c

+max 4 (“3” parameters)

(37)

Relationship

=> exponential relationship between c

+

max

und AP

(W/H, α)

c

+

max

from experimental results for c

1

= c

2

= 1 =>

AP

=

(

ρ

b

)

(

100

-

P

Vol

[ ]

%

)

1 10 100 0 1 2 3 4 5 AP c + m ax 1, 90° 1, 45° 1, 0° 2, 90° 2, 45° 2, 0°

(38)

)

α

,

H

W

(

f

=

a

,

0

>

a

)

AP

a

-exp(

a

-a

=

c

+max 1 2 3 i i

Requirements to the relationship between c+

max and AP • exponential dependency

• asymptotically approach c+

max for AP → ∞

Meaning of ai

• a1 largest possible maximum concentration (AP → ∞) • a2 range of maximum concentrations (tree-free – AP → ∞) • a3 stretching factor

• determination of ai by regression analyses in dependency of W/H and α

Relationship

(39)

Dimensional Analytical Considerations

[

]

{

}

,

α

)

H

W

(

f

=

a

[%])

P

100

(

ρ

a

exp

a

a

=

c

+max 1 2 3 b Vol i

• determination of ai by regression analyses in dependency of W/H and α

a1 a2 a3 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0 22.5 45 67.5 90 a 0 5 10 15 20 25 30 35 40 0 22.5 45 67.5 90 a 0 10 20 30 40 50 60 70 80 0 22.5 45 67.5 90 a W/H = 1.0 W/H = 1.5 W/H = 2.0

Functional relationship for c+ max

(40)

Konzentrationen in "breiter" Straßenschlucht (B/H = 2,

α = 90°)

-5 -4 -3 -2 -1 0 1 2 3 4 5 y/H Wand A 0.5 1 z /H -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H Wand B 0.5 1 z /H

Baumfreie Straßenschlucht (Referenzfall)

"enge" Straßenschlucht

(B/H = 1)

im Vergleich zur engen Straßenschlucht (B/H = 1)

• geringere Konzentrationen an der leeseitigen Wand A

(im Wandmittel: -24 %)

• ähnliche Maximalbelastung an Wand B

• vergleichbare Verteilung der Konzentrationen

(41)

Konzentrationen bei Schräganströmung (B/H = 1,

α = 45° )

Baumfreie Straßenschlucht (Referenzfall) bei Schräganströmung

-5 -4 -3 -2 -1 0 1 2 3 4 5 y/H Wand A 0.5 1 z /H -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H Wand B 0.5 1 z /H Wand A Wand B Wind

bei schräger Anströmung

• Konzentrationen an Wand A deutlich höher als an Wand B

• helixartige Wirbelstruktur (Überlagerung von Canyon Vortex und Paralleldurchströmung) • Totwassergebiet an Einströmseite von Wand A

• max. Konzentrationen am Straßenschluchtende

• akkumulativer Schadstofftransport entlang der Straßenlängsachse • kritisch bei längeren Straßenschluchten (L/H > 10)

(42)

norm. concentrations c+[-]

rel. changes δc+[-]

• increases and decreases of concentrations at wall A (wall average: +91 %)

• decreases in concentration at wall B (wall average: -49 %)

• accumulative traffic pollutant transport along street canyon axis • max. rel. changes in concentration for inclined approaching flow • max. pollutant concentrations at canyon end

wall A wall B

Pollutant Concentrations for Inclined Approaching Flow (W/H = 1,

α = 45°)

Single-row tree planting

- high planting densityρb= 1.0, high crown porosity λ = 80 m-1(P

Vol= 97.5%) -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H wall A 0.5 1 z /H -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H wall A 0.5 1 z /H

(43)

-0.4 -0.2 0 0.2 0.4 0 0.2 0.4 0.6 0.8 1 1.2 z /H impermeable crown (9 m x 12 m) LDV Measurement

Comparison of impermeable and permeable tree crown

• continuous block-shaped permeable crown (97 % pore volume, l= 250 Pa Pa-1m-1

)

w+ = w/u ref [-] -0.4 -0.2 0 0.2 0.4 0 0.2 0.4 0.6 0.8 1 1.2 z /H permeable crown (9 m x 12 m) LDV Measurement w+ = w/u ref [-] impermeable - permeable • vertical velocities are similar • volume flux at z/H = 0.7 differs only by 8 % • no significant influence of crown permeability on flow field

(44)

Traffic induced Turbulence

W

P

T

P

P

T

H 3 u f c W P   d

H

W

3

T

u

T

F

T

n

D

c

T

P

Turbulence production ratio T

P

turbulence production by moving traffic assumption (total kin. energy of traffic is transformed into TKE )

turbulence production by interaction of building environment with atmospheric wind Similarity is given when:

(45)

Konzentrationen bei Berücksichtigung Verkehrsinduzierter Turbulenz

Referenzfall: Baumfreie Straßenschlucht B/H = 1 bei senkrechter Anströmung

• Gegenverkehr, uv = 40 km/h • Verkehrsstärke nv= 37 Kfz/km • cf = 0.02 (cf= ρu*2/(0.5 ρU δ2)) • Turbulenzproduktion PW ≈ 10 PT • Konzentrationsabnahmen - Wand A: 2 % - Wand B: 31 % Wand A Wand B Wind -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H Wand A 0.5 1 z /H -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H Wand B 0.5 1 z /H -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H Wand A 0.5 1 z /H -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H Wand B 0.5 1 z /H mi t V er keh r o h n e V er keh r

(46)

-5 -4 -3 -2 -1 0 1 2 3 4 5 y/H Wand A 0.5 1 z /H -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H Wand B 0.5 1 z /H

Konzentrationen bei Berücksichtigung Verkehrsinduzierter Turbulenz

Straßenschlucht mit impermeabler Baumpflanzung (B/H = 1,

α = 90 )

mi t V er keh r o h n e V er keh r • Gegenverkehr, uv = 40 km/h • Verkehrsstärke nv= 37 Kfz/km • cf = 0.02 (cf= ρu*2/(0.5 ρU δ2)) • Konzentrationsänderungen - Wand A: -23 % - Wand B: +19 % -5 -4 -3 -2 -1 0 1 2 3 4 5 y/H Wand A 0.5 1 z /H -5 -4 -3 -2 -1 0 1 2 3 4 5 Wand B 0.5 1 z /H

(47)

Dimensionsanalytische Betrachtung

Elimination der Basisgröße Länge [L] durch Einflussgröße Gebäudehöhe H

c H B ρb PVol uH α ν Ql x y z L 0 1 1 0 0 1 0 2 2 1 1 1 T 0 0 0 0 0 -1 0 -1 -1 0 0 0 c B/H ρb PVol uH/H α ν/H2 Ql/H2 x/H y/H z/H L 0 0 0 0 0 0 0 0 0 0 0 T 0 0 0 0 -1 0 -1 -1 0 0 0 π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

c B/H ρb PVol α ν/(uHH) Ql/(uHH) x/H y/H z/H

L 0 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0 0

Aufstellen der Dimensionsmatrix

(48)

Funktionaler Zusammenhang

Regressionsanalysen zur Bestimmung der Parameter a

i

2.) Beschreibung der Parameter ai in Abhängigkeit der

π

Gruppen B/H und α mittels gemischt quadratischer Polynomansatz für funktionalen Zusammenhang ai= f(B/H,α)

2 2 8 2 7 2 6 5 2 4 2 3 2 1 0 a a a a a  a                                             H B c H B c H B c H B c c H B c c H B c c ai i i i i i i i i i j j j j j j H B i c H B c a

a

a

          2 0 , 2 0 , /

3.) Regressionsanalyse zur Bestimmung der Parameter ci

ci0 ci1 ci2 ci3 ci4 ci5 ci6 ci7 ci8 i = 1 55.3 -23.8 94.2 0.0 -48.7 -15.5 0.0 10.7 0.0

i = 2 14.1 -5.3 41.0 0.0 -17.6 6.4 0.0 -6.0 0.0

(49)

Funktionaler Zusammenhang

a1 a2 a3 0 100 0 22.5 45 67.5 90 B/H = 1 (Tab. 9.1) B/H = 2 (Tab. 9.1) B/H = 1 (Gl. 9.13) B/H = 2 (Gl. 9.13) B/H = 1.5 (Gl. 9.13) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0 22.5 45 67.5 90 a 0 5 10 15 20 25 30 35 40 0 22.5 45 67.5 90 a 0 10 20 30 40 50 60 70 80 0 22.5 45 67.5 90 a

Gegenüberstellung berechneter und aus Windkanalversuchen resultierenden Parametern a

i

• 1.0 < B/H < 2.0 Zwischenwerte liegen im physikalischen sinnvollen Bereich (B/H = 1.5) • höchst mögliche Maximalkonzentrationen bei schräger Anströmung (α ≈ 50 … 55 )

Referenties

GERELATEERDE DOCUMENTEN

Total ion chromatograms of the secretion of the supplementary sacculi (buccal secretion ) of the dwarf hamster, Phodopus sungorus sungorus: (A) Analysis of unprocessed secretion on

Values of the various permeabilities (B, B* and Bo) and the column resistance factor q~, calculated according to the equations given in Table I are presented in

- Voor waardevolle archeologische die bedreigd worden door de geplande ruimtelijke ontwikkeling en die niet in situ bewaard kunnen blijven:..  Wat is de ruimtelijke

reported their results of 21 consecutive patients with complex tibial pilon fractures that were treated using percutaneous reduction and fixation with Ilizarov circular

In this paper the effect of input band width on column efficiency and minimum detectable concentration is studied for two sampling systems suitable for high speed

We demonstrated performance of pBRIT both at the level of the information-theoretic model, by evaluating TF-IDF and SVD as feature extraction approaches, and by contrasting