• No results found

Spectroscopic investigation of sulfur-resistant Pt/K 2 O/ZrO 2 /TiO 2 /Al 2 O 3 NSR/LNT catalysts

N/A
N/A
Protected

Academic year: 2022

Share "Spectroscopic investigation of sulfur-resistant Pt/K 2 O/ZrO 2 /TiO 2 /Al 2 O 3 NSR/LNT catalysts"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Catalysis Today

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

Spectroscopic investigation of sulfur-resistant Pt/K 2 O/ZrO 2 /TiO 2 /Al 2 O 3 NSR/LNT catalysts

Z. Say, M. Tohumeken, E. Ozensoy

DepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

a r t i c l e i n f o

Articlehistory:

Received6October2015 Receivedinrevisedform 25November2015 Accepted4December2015 Availableonline18January2016

Keywords:

NSR/LNT

DeNOxAl2O3/ZrO2/TiO2

FTIR TPD

a b s t r a c t

AnalternativeternarysupportoxidematerialanditsK2OandPtfunctionalizedcounterpartsintheform ofPt/K2O/Al2O3/ZrO2/TiO2withdifferentK2Oloadingsweresynthesized.Structuralandmorphological propertiesofthecatalystswerecharacterizedviaXRDandBETtechniquesincomparisontoaconven- tionalPt/20Ba/AlbenchmarkNSR/LNTcatalyst.Comprehensivein-situFTIRandTPDanalysisrevealed thatincreasingtheK2OloadinginthePt/K2O/AZTsystemleadstoanincreaseinNOxStorageCapacity (NSC)attheexpenseoftheformationofbulk-likesulfatesrequiringhighertemperatureforcomplete sulfureliminationwithH2(g).Observeddelicatetrade-offbetweenNSCandsulfurpoisoningtenden- ciesofthecurrentlyinvestigatedfamilyofAZT-basedNSR/LNTcatalystsimpliesthatPt/5.4K2O/AZTisa promisingcatalystrevealingcomparableNSCwithinthetemperaturerangeof473–673Ktothatofthe conventionalPt/20Ba/Albenchmarkcatalyst,whileexhibitingsuperiorsulfurtoleranceandregeneration characteristics.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

NOx emitted from mobile sources have serious destructive effectsontheatmosphere,globalecosystemandespeciallyonthe humanhealth.AboutonehalfofthetotalNOxemissionsresults frommobilesources[1].Whiletheveryfirstregulationsfordiesel engineemissionswereprimarilyfocusing onparticle emissions, otherhazardouspollutantssuchasCO,SO2,NOxand unburned hydrocarbonsfrommobilesourcesarecurrentlybeingregulated withincreasingly stringentlimitations. Thisleadstoa constant pressureontheglobalautomotiveindustrytodevelopnoveland innovativeaftertreatmenttechnologiesthatcansatisfythecon- tinuously evolvingenvironmentallegislations and to lowerthe exhaustemissionlevels[2–4].Recently,itwasreportedthatNOx emissionsofsomeofthecurrentlyexistingdiesel-enginepassenger carsequippedwithmodernDeNOxaftertreatmentsystemsonthe highwaywereupto20–35timeshigherthanthatoftheallowed emissionlimits[5].Furthermore,averyrecentstudypublishedby theEuropeanEnvironmentAgency(EEA)[6]reportedthatwithout

∗ Correspondingauthor.

E-mailaddress:ozensoy@fen.bilkent.edu.tr(E.Ozensoy).

anyexception,eachEuropeanUnion(EU)memberstateviolates atleastoneormoreoftheexistingannualemissionlimitations associatedwithNOx,SOx,NH3andnon-methanevolatileorganic compounds(NMVOC).AmongtheseEUmemberstates,particularly Germany,AustriaandIrelandwerefoundtofailmeetingannual EuropeanNOxemissionstandardsin2014.Thesestrikingexamples clearlycallforthedesignanddevelopmentofmoreefficient,more stableandmoreaffordableheterogeneouscatalyticarchitectures thatcanbeusedinmodernDeNOxaftertreatmenttechnologies.

Forlean-burnengines,apromisingaftertreatmentmethodfor thecatalyticNOxreductionisthesocalledNOxstorage/reduction (NSR)/LeanNOxTrap(LNT)technology[7,8].AtypicalNSR/LNTcat- alystiscomprisedofbasicoxides(e.g.BaO,K2O),redoxsites(e.g.

Pt,Pdand/orRh)and ahighsurfaceareasupportmaterial(e.g.

-Al2O3)[2,3,9].

The conventional NSR/LNT catalyst, Pt/BaO/␥-Al2O3, exhibits efficientNOxconversionandstorageperformancewithintheoper- ationaltemperaturewindowofthedieselemissiontailpipe(i.e.

473–673K)[10–18].However,recentengineapplicationssuchas thefuel-efficientgasoline directinjection(GDI)engines require catalyticaftertreatmentsolutionswhichshouldbeabletooper- ateattemperaturesabove400C,wheretheconventionalNSR/LNT catalystscannotfunctioneffectively[19].ToyotaMotorCompany http://dx.doi.org/10.1016/j.cattod.2015.12.013

0920-5861/©2016ElsevierB.V.Allrightsreserved.

(2)

reportedthatK2OandBaOaretwoofthemostpromisingNOxstor- agecomponentstobeusedinNSR/LNTcatalysts[20].Amongthese twodifferenttypesofbasicmetaloxides,theuseofK2Oattracted particularinterestduetoitssuperiorNOxstoragecapacity(NSC)at elevatedtemperatures[21].OthernoteworthyadvantagesofK2O domainsareassociatedtotheirstrongerbasicityandthelackof unfavorablesolid-stateinteractionsbetweenK2Oandthe-Al2O3 supportmaterial,unlikethatofBaOwhichmayleadtothefor- mationofundesiredBaAl2O4athightemperatures[22].Luoetal.

investigatedtheeffectofK2Oloading(within2–20wt.%)onthe NSCofthePt/K2O/␥-Al2O3system.Itwasfoundoutthatthecat- alystformulationcontaining10wt.%K2Oresultedinthehighest NSCvalueswithinawidetemperaturewindowof523–823K[22].

InadditiontothepromisingNSCofK2O-functionalizedmate- rialsin high temperature DeNOx applications, sulfur-poisoning tolerances as well as the sulfur regeneration characteristics of such systems should be also taken into consideration. It is knownthatK2Odomainsdispersedona␥-Al2O3 supportmate- rialarehighlypronetosulfurpoisoning,experiencingrapidand ratherirreversiblecatalyticdeactivation.AclassofnovelAl/Ti/Zr mixedoxides hasemerged in recent years with enhanced sur- faceandstructuralpropertiesassupportforK2O-basedNSR/LNT catalysts [23–25]. In recent studies, ZrO2/TiO2, TiO2/Al2O3 and Al2O3/ZrO2/TiO2-supportedNSR/LNTcatalystscanrevealsuperior sulfurregenerationandNOxrecoveryperformancesascomparedto thatof␥-Al2O3-basedsystems(i.e.Pt/BaO/Al2O3vs.Pt/K2O/Al2O3) [26,27].Takashietal.reportedthataZrO2:TiO2supportmaterial withamassratioof70:30(whichalsorevealedthehighestSSA amongtheinvestigatedmaterialstherein)exhibitedthebestper- formanceintermsofsulfurresistance,thermaldurabilityandNOx abatement[28].TheirstudieswhichalsoincludedPt/Rh/Ba/K/AZT catalyst with nano-composite ternary oxide Al2O3/ZrO2/TiO2- supportshowedexcellentNOxstoragecapacity(NSC)comparedto thatof␥-Al2O3/ZrO2/TiO2-support,where␥-Al2O3wasphysically mixedwithZrO2/TiO2[29,30].Inaddition,Zouetal.[27]performed adetailedanalysisontheeffectofAl2O3dopingintotheZrO2/TiO2 matrix,suggestingthattheAl:(Ti+Zr)atomicratioof3:1exhibited thehighestNSCforfreshandsulfur-regeneratedcatalyst.Inamore recentwork,Zouetal.studiedtheeffectofKloadingontheNSCand sulfurregenerationperformanceofPt/K/Al2O3/ZrO2/TiO2catalyst underrealisticflowconditions[31].

However, these aforementioned comprehensive studies includedalimitednumberofspectroscopicinvestigationsonthe interactionsbetweenSOxspeciesandthecorrespondingcatalyst surfaces.Thus, inthecurrent work,we focusonthemolecular levelinvestigationofthefundamentalinteractionsthattakeplace betweenSOxspeciesandK-basednovelNSR/LNTcatalystsurfaces in a qualitative and a semi-quantitative manner. Along these lines, we investigate the SOx adsorption/uptakeas well as the SOxreduction/regeneration/releasepropertiesofAl2O3/ZrO2/TiO2

(AZT)supportedPt/K/AZTcatalystsincomparisontoabenchmark NSR/LNTcatalyst (i.e.Pt/BaO/Al2O3)byutilizing in-situ spectro- scopictechniques.GenerationofS-containingsurfacefunctional groups,theirthermalevolution,reductionandreleasesafunction oftemperatureandK2Oloadingaresystematicallymonitoredby meansofin-situFourierTransformInfraredSpectroscopy(in-situ FTIR)andTemperatureProgrammedDesorption(TPD).Moreover, structuralandmorphologicalpropertiesofthesynthesizedmate- rialsarealsoanalyzedviaX-rayDiffraction(XRD)andBrunauer, Emmettand Teller(BET)surface areaanalysis techniques.Cur- rent resultsprovide valuable molecular level insight regarding the interaction of SOx species withK-based NSR/LNT catalysts supportedonnovelAZT mixed oxidesurfaces and thedelicate trade-offbetweentheNSCandsulfurpoisoningphenomena.

2. Experimental 2.1. Materialsynthesis

2.1.1. SynthesisofPt/Al2O3/ZrO2/TiO2

Al2O3/ZrO2/TiO2 (AZT) supportmaterial was synthesized as describedinoneofourformerpublicationswheretherelativecom- positionoftheternaryoxidesystem(i.e.Al2O3/ZrO2/TiO2)bymass was50:35:15[25].1wt. %platinum-incorporatedternary oxide materials were synthesized by incipient wetness impregnation methodusingasolutionofPt(NH3)2(NO2)2 (Aldrich,diammine- dinitritoplatinum(II),3.4wt.%solutionindiluteNH3(aq)).Priorto thePtaddition,Al2O3/ZrO2/TiO2wasinitiallycalcinedinairat973K for150mininordertoremovetheorganicfunctionalitiesinthe precursor.AfterthePt-incorporation,Pt/AZTmaterialwassubse- quentlycalcinedin airat973Kfor 150minin ordertoremove nitrite/nitrateoriginatingfromthePtprecursorandtostructurally stabilizethecatalystsurface.

2.1.2. SynthesisofPt/K2O/Al2O3/ZrO2/TiO2

K2O-based catalysts were also prepared via wetness impregnation. Pt/K2O/Al2O3/ZrO2/TiO2 catalysts with 2.7, 5.4 and 10.0wt. % K2O loading (i.e. Pt/2.7K2O/Al2O3/ZrO2/TiO2, Pt/5.4K2O/Al2O3/ZrO2/TiO2 and Pt/10K2O/Al2O3/ZrO2/TiO2; respectively)werepreparedviaimpregnationofAl2O3/ZrO2/TiO2

support(initially calcined at 973K for 150min) withan aque- ous solution of potassium nitrate (KNO3·6H2O, >99.0 %, Fluka, France)followedbycalcinationat873Kfor150mininorderto thermallyremovethenitratecontentpresent intheprecursors.

Finally, K2O/Al2O3/ZrO2/TiO2 structure was impregnated with thePt(NH3)2(NO2)2 precursorandcalcined at973Kfor150min under ambient conditions in order to attain 1wt. % nominal preciousmetalloading.Throughoutthecurrenttext,synthesized Pt/K2O/Al2O3/ZrO2/TiO2 catalysts with 2.7, 5.4 and 10.0wt. % K2Oand 1wt.%PtloadingswillbeabbreviatedasPt/2.7K/AZT, Pt/5.4K/AZTandPt/10K/AZT,respectively.

2.1.3. SynthesisofPt/BaO/-Al2O3

For the synthesis of the Pt/20BaO/Al benchmark catalyst,

␥-Al2O3supportmaterial(SASOLPuralox,210m2/g)wasimpreg- natedwithanaqueoussolutionofbariumnitrate(Ba(NO3)2,ACS Reagent,≥99%,Riedel-deHäen,Germany) whichwasfollowed bycalcination at873Kin air for 150min. Finally,20BaO/Al2O3

was impregnated with the Pt(NH3)2(NO2)2 precursor (Aldrich, diamminedinitritoplatinum(II),3.4wt.%solutionindiluteNH3(aq)) toobtain1wt.%nominalpreciousmetalloading,followedbycal- cinationat973Kfor150min.Thiscatalystwillbeabbreviatedas Pt/20Ba/Althroughoutthecurrenttext.

2.2. Experimentalsetup

Comprehensivedescription ofthecustom-made batch-mode in-situ FTIR and TPD spectroscopic setup used in the current measurementscanbefoundelsewhere[10,14,25,32].Briefly,an FTIR spectrometer (Bruker Tensor 27) and a quadruple mass spectrometer(QMS,StanfordResearch Systems,RGA200)were simultaneouslyconnectedtoabatch-typespectroscopicreactor.

FTIRexperimentswereperformedintransmissionmode.TPDpro- fileswereobtainedundervacuumbyusingacomputer-controlled lineartemperaturerampof12K/minwithamaximumsampletem- peratureof1173K.

(3)

2.3. Experimentalprocedures

2.3.1. MonitoringSOxadsorptionviain-situFTIR

Sulfuradsorption/poisoningcharacteristicsofeachmaterialwas investigatedbyexposingthecatalystsurfacestoa2.0TorrSO2+O2

gasmixture (SO2:O2=1:10, v/v) at 323K (SO2 purity>99%, Air Products;O2purity>99.999%,LindeGmbH).Aftertheintroduc- tionofSOxmixtureat323K,sampleswereannealedto373,473, 573and673Kfor5mininthepresenceoftheSOxmixture.FTIR spectraofthesesulfatedsurfaceswereacquiredaftercoolingto 323Kinthepresenceofthegasmixtureandsubsequentevacuation to<10−3Torr. It shouldbenoted that theeffectiveconcentra- tionofSO2usedinthecurrentpoisoningexperimentscorresponds toca.263ppm (inabalancecarriergasunderflow conditions), whichtranslatesintoextremelyseverepoisoningconditionscon- sideringthetypicalsulfurcontent(15ppm) ofUltraLowSulfur Diesel(ULSD)fuel.Thus,thecurrentpoisoningexperimentscanbe assessedasacceleratedandextremesulfurpoisoningexperiments, wherethenovelK-AZTbasedcatalystswereexposedtoparticularly challengingconditions,wheretheycandemonstratetheirultimate sulfur-regenerationcapabilities.

2.3.2. MonitoringSOxdesorptionviain-situFTIR

PriortoSOx desorptionexperiments,materialsweresulfated asdescribed aboveby collectinga series ofin-situFTIR spectra inthepresenceoftheSOxmixtureasafunctionoftemperature until673K.Afterthesaturationofthesurfaceswithsulfurat673K, thereactorwasevacuatedtoapressureof<10−2Torr,followedby theintroductionof15.0TorrofH2(g)(H2purity>99.999%,Linde GmbH) at323K.Next, poisonedcatalystswere annealedunder hydrogenatmosphereat473,673,773,873and973Kfor5min.

In-situFTIRspectrawereobtainedaftereachH2exposureandby coolingthesampleto323KinthepresenceofH2.

2.3.3. SOxdesorptionviaTPD

BeforetheSOx-TPDexperiments,materialsurfaceswereini- tiallyexposedtoa2.0TorrSO2+O2 gasmixture(SO2:O2=1:10) at673Kfor30min.ThentheIRspectroscopicreactorwasevacu- atedtoapressurelowerthan10−3Torrfollowedbyheatingunder vacuumto1173Kwithalinearheatingrateof12K/min.IntheTPD experiments,m/z=32(correspondingtoO2(g)desorptionandS(g) formationduetotheimpactionization-inducedfragmentationof desorbedSO2(g)speciesinQMS)andm/z=64(correspondingto SO2(g)desorption)channelsweremonitoredviaQMS.

3. Resultsanddiscussion 3.1. Materialcharacterization

3.1.1. X-raydiffractionanalysis(XRD)

Fig. 1 illustrates the XRD patterns of Pt/AZT, Pt/2.7K/AZT, Pt/5.4K/AZT,Pt/10K/AZTandPt/20Ba/Al.Apartfromthepresence ofstructurallywell-orderedmetallicplatinum(JCPDS001-1190), Pt/AZTandPt/K/AZTcatalystsgiveninFig.1exhibithighlyamor- phouscharacteristics.On theotherhand,materialwith10.0wt.

% K2O (i.e. Pt/10.0K/AZT) reveals additional poorly discernible diffractionsignalsat2=30.48,50.50,60.91correspondingto tetragonal ZrO2 (JCPDS 80-2155) together with some suppres- sion of Pt diffraction features. XRD analysis of the benchmark Pt/20Ba/AlNSR/LNT catalyst reveals␥-Al2O3 (JCPDS 001-1303), BaAl2O4(JCPDS017-0306)andmetallicPt(JCPDS001-1190)fea- tures.OnthePt/20Ba/Alcatalyst,BaOdomainsinteractwiththe

␥-Al2O3supportatelevatedtemperaturesyieldingtheformation ofundesiredBaAl2O4phaseasaresultofthermalaging[2,3,33].

10 20 30 40 50 60 70 80

Pt/AZT Pt/20Ba/Al

Pt/2.7K/AZT Pt/5.4K/AZT Pt/10K/AZT

XRD Intensity (arb. u.)

2θ(degree)

t-ZrO2 Pt γ-Al2O3 BaAl2O4

Fig.1.XRDpatternscorrespondingtoPt/AZT,Pt/2.7K/AZT,Pt/5.4K/AZT,Pt/10K/AZT andPt/20Ba/Almaterialsuponcalcinationat973K.

Fig.2.BETspecificsurfacearea(SSA)valuesoftheinvestigatedmaterials.

3.1.2. BETspecificsurfacearea(SSA)measurements

Fig.2illustratesSSAvaluesforPt/AZT,Pt/2.7K/AZT,Pt/5.4K/AZT, Pt/10K/AZTandPt/20Ba/Al.SSAvaluesforPt/AZTisslightlyhigher than2.7wt.%K2O-modifiedcounterpart(i.e.Pt/2.7K/AZT).How- ever,increaseintheK2Oloadingfrom2.7wt.%to5.4and10.0wt.

%monotonicallydecreasesSSAvaluesform177m2/gto155and 125m2/g;respectively.ItshouldbenotedthattheSSAvalueofthe catalystwiththehighestK2Oloadingwascomparabletothatofthe benchmarkPt/20Ba/Alcatalyst(134m2/g),whileSSAvaluesofall oftheothercatalystswererelativelyhigher.

3.2. SOxUptake/adsorptionviain-situFTIRspectroscopy

Fig.3representstemperature-dependentadsorbedSOxspecies on Pt/AZT, Pt/2.7K/AZT, Pt/5.4K/AZT and Pt/10K/AZT material surfaces upon exposure to 2.0Torr of SO2+O2 gas mixture (SO2:O2=1:10).Whiletheblack-coloredspectraineachpanelcor- respondtothesurfaceSOxspeciesgeneratedwithinatemperature rangeof323–573K,thetopmostredspectracorrespondtosulfur poisoningat673K.

(4)

1600 1400 1200 1000 1600 1400 1200 1000

1600 1400 1200 1000

1600 1400 1200 1000

Wavenumber (cm

-1

)

A b so rb ance ( ar b . u) 0. 5

0. 5

(b)

(c)

Pt/2.7K/AZT

Pt/5.4K/AZT

673K

673K

323K

323K

1306 1 178 1019 1048 1 105

1281 1 179 1005 1046 1 106 1027

1306 1391 975

(a) Pt/AZT

673K

0. 5

Ab so rb an ce (a rb . u )

323K

Pt/10 K/AZT

Wavenumber (cm

-1

) (d)

0. 5 1238 1 175 1 102 1051

673K

323K

Fig.3. FTIRspectrademonstratingtheSOxuptake/adsorptionpropertiesof(a)Pt/AZT,(b)Pt/2.7K/AZT(c)Pt/5.4K/AZTand(d)Pt/10K/AZTsurfaces.Blacksetofspectra ineachpanelwereacquiredafterSOxexposure(2.0Torr,SO2:O2=1:10)at323K,followedbyannealingat373,473and573KintheSOxgasmixturefor15minand subsequentevacuation.RedspectraineachpanelwererecordedafterSOxexposureat673Kandsubsequentevacuation.Allspectrawererecordedat323Kinvacuum.(For theinterpretationofthereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

Kimetal.reportedthatanincreaseinK2Oloadingfrom2wt.

%to 30wt. % ledto a boost in NSC of Pt/K2O/Al2O3 materials within600–800K[34].Aswillbedemonstratedlatter,although suchextremelyhighK2Oloadingscouldbebeneficialtoenhance NSCintheabsenceofSOx,theymayalsoleadtoirreversiblesulfur poisoninginthepresenceofSOx.Therefore,inthecurrentstudy, welimitedtheK2OloadingoftheAZT-basedNSR/LNTmaterialsto 10wt.%.

Fig.3ashowsthatSOxadsorptiononPt/AZTatrelativelylower temperatures(i.e.323and373K)leadstotwomain vibrational featureslocatedat1027and975cm−1whichcanbeassignedto sulfate(SO42)andsulfite(SO32)functionalgroups,respectively [35–39].Absorbanceintensitiesofthesetwoparticularvibrational frequenciesarecomparableatlowtemperatures,whilethesulfate featurestartstodominatethesulfitefeatureat highertemper- atures.Thermally-triggeredcatalyticoxidation of sulfitespecies tosulfatesonthePt/AZTsurfacecanalsobefollowedinFig.3a

bymonitoringthegrowthoftheantisymmetricstretchingmode ofsurfacesulfategroupslocatedat1391and1306cm−1 [14,40].

Asillustrated inFig. 3b–d,additionof basic K2Odomains onto AZTternaryoxidesystemresultsinalterationofthespectralline shapes.Pt/2.7K/AZT(Fig.3b)presentsfivemajorvibrationalfea- tureslocatedat1306,1178,1105,1048and1019cm−1.WhileIR stretchingsat1306,1105,1048and1019cm−1canbeattributedto thesurfacesulfate(SO42−)groupsonK2Oand/orontheAZTsup- port,vibrationalfeaturelocatedat1178cm−1canbeattributedto bulk-likesulfategroupsonK2O[41,42].Thislatterfeaturebecomes morediscerniblewithanincreaseintheK2Oloading(i.e.5.4wt.% and10wt.%)evidentbytheincreasingrelativeabsorbanceinten- sityof the1178cm−1 signalinFig.3candd.SOxadsorptionon Pt/5.4K/AZTandPt/10K/AZTmaterialsat673Kleadstovibrational featuresat1281and1238cm−1alongwiththeabsenceofanysig- nificantvibrationalbandslocatedatca.>1300cm−1 (Fig.3cand d).Thevibrationalsignalsat1281and1238cm−1canbeassigned

(5)

1600 1400 1200 1000

1600 1400 1200 1000

1600 1400 1200 1000

Wavenu mber (cm

-1

)

A b so rb ance ( ar b . u)

673K 473K 323K

773K

1306 1 178 1019 1048

673K 473K 323K

773K

1275 1 178 10 11 1049

(a)

(c)

Pt/2.7K/AZT

Pt/5.4K/AZT

0. 5

0. 5 1240

1240 1027

1306

1391

673K 473K 323K

773K

(a) Pt/AZT

0. 5 Ab so rb an ce (a rb . u )

1600 1400

120 0

1000

Pt/10 K/AZT

673K 473K 323K

773K 873K

Wavenumber (cm

-1

)

1238 1 175 1 102 1051

Fig.4. FTIRspectraassociatedwithSOxreductionandregenerationof(a)Pt/AZT,(b)Pt/2.7K/AZT(c)Pt/5.4K/AZTand(d)Pt/10K/AZTmaterialsviaH2(g).Catalystswere initiallysulfated(2.0Torr,SO2:O2=1:10for15minat673K)followedbyevacuationandsubsequentexposuretoH2(g)(15.0Torr)at323,473,673,773,873and973Kfor 5min.Allspectrawererecordedat323K.

topredominantlysulfatesonK2Odomains[14,41–43].Itcanbe arguedthatwiththeincreasingK2Oloading,anincreasinglylarger portionof the AZT surface is covered by K2O islands/domains, decreasingtheextentofexposed/uncoveredAZTsurface.Itisalso likelythattheincreaseintheK2Oloadingalsoresultsinthegrowth oftheK2Oparticlesizeandformationof3Dagglomerates,enabling thestorageofSOxintheformofbulk-likesulfatesinthesub-surface ofthese3Dnanoparticles.Thisargumentisalsoingoodagreement withthemeasuredSSAvaluespresentedinFig.2suggestingthat theincreaseintheK2Oloadinginthecatalystformulationleads toamonotonicdecreaseintheSSAasexpectedbysinteringofthe K2Odomainsandparticlesizegrowth.

3.3. SulfurregenerationwithH2(g)viain-situFTIRspectroscopy

Asmentionedabove,SOxreduction/regenerationperformance hasasignificantinfluenceonthecatalystlifetimeandNOxstorage

capacity.Therefore, SOx reductioncharacteristicsofsynthesized materialswerealsostudiedasafunctionoftemperaturebymeans of in-situ FTIR spectroscopy. Fig. 4 illustrates the evolution of theS-containingsurfacefunctionalgroupsonPt/AZT,Pt/2.7K/AZT, Pt/5.4K/AZTandPt/10K/AZTcatalystsurfacesasafunctionoftem- peraturewithin323–773Kinthepresenceofanexternalreducing agent,H2(g).

Inthesesetofexperiments,catalystswereinitiallysaturated witha2.0TorrofSO2+O2gasmixture(SO2:O2=1:10)at673Kfor 5minandthencooledto323Kfollowedbytheevacuationofthe spectroscopicreactor,introductionof15.0TorrH2(g)at323Kand annealinginH2(g)atthegiventemperatureswithin323–773K.

This particularly chosen initialsulfation/poisoning temperature (i.e.673K)isnot onlyrelevant torealisticNSR/LNT operational temperatures,but isalsohighenoughtoactivateSO2 oxidation tosulfitesandsulfatesinacomprehensivemanner.Intheseries ofexperimentsgivenin Fig.4,spectral lineshapesdo nottypi-

(6)

300 400 500 600 700 800 900 1000

O2 SO2

300 400 500 600 700 800 9001000 O2 SO2

300 400 500 600 700 800 9001000

O2 SO2

Pt/2.7K/AZT

Pt/5.4K/AZT

Q M S In te n si ty (a rb . u. )

(a) Pt/AZT

1. 5E -6

(b)

(c)

1. 5E -6

Pt/10K/AZT

1. 5E -6 1. 5E -6

(d)

Q M S In te n si ty (a rb. u .)

Temperature (K) Temperature (K)

820 920 910

975 820 810

880 920 800

300 400 500 600 700 800 9001000 O2 SO2

Fig.5. TPDprofilesfor(a)Pt/AZT,(b)Pt/2.7K/AZT,(c)Pt/5.4K/AZTand(d)Pt/10K/AZTcatalystsafter2.0TorrSOx(2.0TorrSO2+O2,SO2:O2=1:10)adsorptionat673Kfor 30minandsubsequentevacuation.

callychangeinanoteworthymanneratreductiontemperatures

≤473K.However,increasingthereductiontemperatureto673K (grayspectrainFig.4a–c)leadstonoticeablealterationsintheFTIR spectra,wherebulkandsurfacesulfate/sulfitespeciessignificantly attenuateforPt/AZT,Pt/2.7K/AZTandPt/5.4K/AZT.Increasingthe temperatureto773KinthepresenceofH2 leadstothealmost complete elimination of the SOx-related vibrational signatures onPt/AZT, Pt/2.7K/AZTandPt/5.4K/AZTsurfaces(redspectrain Fig.4a–c). It canbe seenin Supporting information Fig.1 that whenPt/20Ba/AlbenchmarkNSR/LNT catalystis exposed toan identicalsetofsulfationandsubsequentreductiontreatments,a significantlygreaterportionofsulfate/sulfitespeciescontinueto existonthePt/20Ba/Alcatalystevenat773Kinthepresenceof 15.0Torr H2(g).This comparativeanalysis clearly suggests that Pt/AZT,Pt/2.7K/AZTandPt/5.4K/AZTcatalystsexhibit asuperior sulfurregenerationperformancethanthatofthePt/20Ba/Alcata-

lyst,asthisformersetofmaterialscanbefullyde-sulfatedat773K inthepresenceofH2.

However, AZT-based catalystswith thehighest K2O loading usedinthecurrentstudy(i.e.Pt/10K/AZT)notonlyshowedunique sulfur uptake characteristics as presented in Fig. 3d which is dominated by bulk-like sulfates, but also revealed a fairly dif- ferent SOx-reductionprofilein thepresence of H2 (Fig. 4d).As can be seen in Fig. 4, at relatively low temperatures (i.e.T ≤ 673K), a significantportion of the SOx species can already be eliminated from Pt/AZT, Pt/2.7K/AZT and Pt/5.4K/AZT surfaces.

However,atT≤673K,almostalloftheS-relatedsurfacefunctional groupsremainintactonPt/10K/AZT.Evenatareductiontemper- atureof773K,althoughPt/AZT,Pt/2.7K/AZTsurfacescanbefully regenerated(Fig.4a–c),Pt/10K/AZTsurfacestillremainspartially blocked/poisonedbysulfur-containingfunctionalgroupsandcom- pletelyeliminatedatonlyat≥873K(Fig.4d).

(7)

3.4. SulfurregenerationundervacuumviaTPDanalysis

TPDexperimentswerealsocarriedoutinvacuuminorderto investigatethethermalregenerationabilityofthesynthesizedcat- alystsaftersulfurpoisoningintheabsenceofareducingagent,as wellastocomparetherelativeadsorptionstrengthsofSOxspecies residingonthepoisoned catalystsurfaces.Prior toTPDexperi- ments,eachcatalystwasexposedto2.0TorrSO2+O2gasmixture (SO2:O2=1:10)at673Kfor30min.

Fig. 5 shows the TPD spectracorresponding to the thermal decomposition of sulfates and sulfites on Pt/AZT, Pt/2.7K/AZT, Pt/5.4K/AZTandPt/10K/AZTcatalystsurfaces.IntheseTPDexper- iments,onlyO2 and SO2 desorptionchannels(correspondingto masstochargeratiosofm/z=32and64;respectively)revealedsig- nificantsignalsandotherSOxorH2Sspecieswerenotdetectable.As inthecaseoftheBaO-basedconventionalNSR/LNTcatalyst(Sup- portinginformationFig.2),SOx-relatedspeciesadsorbedonPt/AZT anditsK2O-incorporatedcounterpartsrevealhighthermalstabil- itywhichisevidentbytheappearanceofSOxdesorptionsignalsat T>700K.AnalysisofthegeneralTPDlineshapesgiveninFig.5a–c suggeststhatatleasttwodifferentSOxdesorptionsignalsexistfor Pt/AZT,Pt/2.7K/AZTandPt/5.4K/AZTcatalystsatT<1050K,reveal- ingdesorptionmaximalocatedatca.800–820Kandat900–975K.

Furthermore,SO2desorptiononthesesurfaceswithin700–1050K isaccompaniedbyO2 desorption,suggestingthat sulfate/sulfite decompositionoccursintheformofsimultaneousSO2+O2release.

It should benoted that thecontribution of theSO2 gastothe m/z=32 signalduetoelectron-impactinducedfragmentationof SO2intheQMSionizerchamberislessthan10%,suggestingthat m/z=32signalcanbealmostexclusivelyattributedtotheevolution ofO2(g)fromthecatalystsurfaces.

ItisvisibleinFig.5a–cthattheTPDdesorptionmaximatendto shifttowardshighertemperatureswithincreasingK2Oloadingin thecatalystformulation.Itcanalsobenoticedthatwithincreas- ingK2Oloadingto5.4wt.%(seeFig.5c),relativeintensityofthe 820KdesorptionfeaturewhichcanbemostlyassociatedwithSOx speciesonAZTsurfaceissuppressed,alongwiththegenerationof ahigh-temperaturedesorptionshoulderat975K.Thisisinperfect agreementwiththein-situFTIRresultspresentedinFig.3suggest- ingthatwithincreasingK2Osurfacecoverage,extentofexposed (uncovered)AZTsurfacedecreasesalongwithanincreaseinthe K2Oparticlesize,facilitatingtheformationofbulk-likesulfatesthat arealsothermallymorestablethanthatofthesulfatesonAZT.

ItisalsoimportanttonotethattheSOxdesorptionisnotcom- pleteinFig.5b–devenat1050K(i.e.thehighestexperimentally attainabletemperature inthecurrent TPDsetup)as evidentby thepresenceof adesorptiontailatT=1050Kwhichispresum- ablyextendingwell-beyondthistemperature(assupportedbythe in-situFTIRresultsthatwillbeprovided later inthetext).This observationimpliesthatwhilesurfacesulfates/sulfitespresenton AZTsupportandK2Odomainsfullydecomposeattemperatures below920K,bulk-like potassium sulfate species requirehigher desorptiontemperaturesforcompletethermaldecompositionand desorption.Inotherwords,presenceofbasicK2Odomainsyields strongbindingsitesforSO2,leadingtotheformationofthermally stablesurfaceandbulk-likeSOxspecies.

On theotherhand,a furtherincrease in theK2Oloadingto 10wt.%illustratesratherdifferentSOxdesorptioncharacteristics (Fig.5d).ItisevidentthattheSOxdesorptionfeaturesatT<1050K are suppressedto a great extent, leading toa relatively minor desorptionfeaturelocatedat910Kwithashoulderatca.810K.

ConsideringthesignificantSOxuptakeofthePt/10K/AZTcatalyst surfacedemonstratedbythein-situFTIRdatagiveninFig.3d,itis clearthatmostofthesulfate/sulfitespeciesonPt/10K/AZTremain intactevenaftervacuumannealingupto1050K.Thisisalsoquan- titativelypresentedinFig.6,whichpresentstheintegratedSO2TPD

Fig.6.AnalysisofrelativeSOxreleasefrominvestigatedcatalystscalculatedvia integratedTPDsignalsgiveninFig.5.

desorptionsignalsfortheinvestigatedAZT-basedcatalystswithin 323–1050K.Fig.6illustratesthattheintegratedSOxdesorption signalofPt/AZTisroughlytwicegreaterthanthatofPt/2.7K/AZT and Pt/5.4K/AZTand alsoaboutfourtimes greaterthan thatof Pt/10K/AZT.

Figs.3,5and6,suggestthatafterthesulfationoftheAZT-based catalystsat673Kandasubsequentvacuumannealingupto1050K duringtheTPDexperiments,asignificantfractionofthesulfateand sulfitespeciesremainintactontheK-containingsamplesurfaces.

Thus,itiscrucialtoinvestigatetheresidualSOxspeciesremaining ontheK-containingAZTsystemsaftertheTPDruns.Fig.7shows suchin-situFTIRexperimentscorrespondingtoalloftheinvesti- gatedsulfurpoisonedAZT-basedcatalystsbefore(blackspectra) andafter(redspectra)TPDexperiments.Fig.7aclearlyindicates thatintheabsenceofK2O,sulfur-poisonedPt/AZTcatalystcanbe almostfullyregeneratedviavacuumannealingupto1050Kdur- ingtheTPDexperiments.Ontheotherhand,Pt/2.7K/AZTcatalyst which releasesabout%50lesser amountof SOx speciesduring TPD(Fig.6),stillrevealsaminor,yetreadilydetectablequantityof SOx(Fig.7b).Ontheotherhand,Pt/5.4K/AZTcatalystwhichhasa comparableintegratedSOxdesorptionsignaltothatofPt/2.7K/AZT (Fig.6),revealsastrongerresidualSOxsignalintheFTIRspectrum obtainedaftertheTPDrungiveninFig.7c.Thisobservationisin linewiththefactthat Pt/5.4K/AZTsurfacestores asignificantly greateramountofSOxspecies(whicharealsothermallymoresta- ble)as compared tothatof Pt/2.7K/AZT.Finally, residualsulfur analysisofthePt/10K/AZTsurface(Fig.7d)indicatesthatalmost alloftheSOxspeciesgeneratedduringinitialpoisoningprocess remainintactaftertheTPDrunandvacuumannealingat1050K.

Thus,itisapparentthattheminoramountofSOxreleaseduringthe TPDexperimentforPt/10K/AZT(Fig.6)correspondstoatinyfrac- tionoftheoverallsulfurthatisstoredonthissurface.Thislatter resulthassomeresemblancetotheTPDdatacorrespondingtothat ofthePt/20Ba/AlbenchmarkcatalystgiveninSupportinginforma- tionFigs.2and3andalsoinFig.6whichalsorevealanincomplete thermalregenerationuponvacuumannealingupto1050Kduring theTPDrun.

WealsoperformedacomprehensiveinvestigationoftheNOx storage,releaseandreductioncharacteristicsofPt/K/AZTsystems viain-situFTIR,TPDaswellasquantitativeflow-reactorexperi- ments[44].Adetailedaccountoftheseadditionalexperimentswill

(8)

1450 1250 1050

1450 1250 1050

1450 1250 1050

Wavenu mber (cm -1 )

A b sorb an ce (a rb . u) 0. 5

0. 5

(b)

(c)

Pt/2.7K/AZT

Pt/5.4K/AZT

1308 1 178 1019 1052

1238

1277 1 175 1049 1012

1225 111 5

A b sorb an ce (a rb . u)

(a)

1306

1391

Pt/AZT

1027

1450 1250 1050

Pt/10 K/AZT

Wavenumber (cm -1 )

0. 5

0. 5 1238 1 181 1 147 11 15 1051

(d)

Fig.7.FTIRspectracorrespondingtoSOxcontentof(a)Pt/AZT,(b)Pt/2.7K/AZT,(c)Pt/5.4K/AZTand(d)Pt/10K/AZTcatalystsbefore(black)andafter(red)SOx-TPDruns.(For interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

bediscussedthoroughlyinaforthcomingreport.Nevertheless,itis instructivetopresentrelativeintegratedTPDNOxdesorptionsig- nalsobtainedaftersaturationofthefreshlypreparedAZT-based catalystswithNO2(5.0TorrNO2at323Kfor10min)intheabsence ofsulfurascomparedtothatofthePt/20Ba/Albenchmarkcata- lyst(Fig.8).AscanbeseeninFig.8,relativeNOxstorageamounts oftheAZT-basedcatalystsincreasemonotonicallywithincreasing K2Oloadinguntil5.4wt.%K2O,afterwhichitconvergestoavalue thatiscomparabletothatofthePt/20Ba/Albenchmarkcatalyst.

ItisworthmentioningthatNSCofthesynthesizedmaterialswere investigatedinaflow-modetubularreactorwheretheinletgasfeed wascomposedof500ppmNO,v.%5O2,v.%5CO2andv.%5H2O balancedwithAr(g),revealingsimilarNSCvaluesforPt/5.4K/AZT (0.165mmol/gcat)andconventionalPt/20Ba/Al(0.171mmol/gcat) at573K[44].

Acombinedanalysisofthestructuralcharacterizationresults aswellas thespectroscopicprobe moleculeadsorptionexperi- mentsgiveninthecurrentstudyallowsustoshedlightonsulfur poisoning,regeneration and NOxstorage characteristicsofAZT- basedNSR/LNTcatalystsfunctionalizedwithK2O.Intheabsence oftheK2O,Pt/AZTsystemrevealshighSSA(191m2/g)andrela- tivelyweaklyboundsulfates/sulfiteswhichcanreadilyberemoved fromthesurfaceina completefashioneitherbyreductionwith H2(g)at 773Kor simplybythermalregeneration invacuumat ca.950K.However,duetolackofbasicK2Odomains,Pt/AZTsuf- fersfromrelativelylow NSC.IncreasingtheK2Oloadingto2.7, 5.4and10.0wt.%leadstoaprogressivelyincreasingNOxadsorp- tionwhereNSCseemstobeconvergingtoavaluesimilartothat ofPt/20Ba/AlbenchmarkcatalystforPt/5.4K/AZTandPt/10K/AZT.

Furthermore,Pt/5.4K/AZTsampleallowscompleteremovalofSOx viaH2(g)at773KunliketheconventionalPt/20Ba/Albenchmark

(9)

Fig.8.RelativeintegratedNOxdesorptionsignalsobtainedfromNOx-TPDexperi- ments.

catalystwhosecompleteregenerationrequiresmuchhighertem- peratures(i.e.973K)underidenticalreducingconditions.Although increasingtheK2Oloadingfrom5.4to10.0wt.%doesnotseem tohaveatremendousenhancementinNOxadsorptionproperties ofthePt/K/AZTsystem,itdoesresultinunfavorableSOxuptake, releaseandregenerationcharacteristics.TPDandFTIRdatasug- gestthatK2OdomainstendtoagglomeratewithincreasingK2O loadingand form 3D clusterswith growingK2O particle sizes.

Thesephenomena alsoexpeditetheformation of bulk-likesul- fatefunctionalitiesinthesubsurfaceofK2Odomainswithmuch higherthermalstabilityandmuchstrongerresistanceagainstther- maldecompositionandreductionwithhydrogen.Consequently, Pt/5.4K/AZTsystemappearsasapromisingalternativewhichcan alsobeusedinconjunctionwithconventionalPt/20Ba/AlNSR/LNT catalysts.

4. Conclusion

Inthecurrentstudy,advancedternaryandquaternarymixed oxidematerialsintheformofPt/K2O/Al2O3/ZrO2/TiO2weresyn- thesizedwithdifferentK2Oloadings.Synthesizedmaterialswere structurallycharacterizedviaXRDandBETincomparisontoacon- ventionalPt/20Ba/AlbenchmarkNSR/LNTcatalyst.Interactionof thesecatalystsurfaceswithSOx(i.e.SO2+O2)mixtureweremoni- toredspectroscopicallyusingin-situFTIRandTPD.Ourfindingscan besummarizedasfollows:

• BesidesthepresenceoforderedmetallicPt,Pt/AZT,Pt/2.7K/AZT and Pt/5.4K/AZT materialsrevealed disordered structures. On theotherhand,Pt/10K/AZTexhibitedadditionaldiffractionsig- nals corresponding to tetragonal ZrO2 domains. Unlike the AZT-supported materials,conventional Pt/20Ba/Albenchmark catalystwascomposedoforderedphasesincluding␥-Al2O3and BaAl2O4.

• Increasein K2Oloadingfrom2.7 to5.4and10.0wt.%mono- tonicallydecreasestheSSA values from177m2/gto 155and 125m2/g,respectively.ApartfromthePt/10K/AZTcatalyst,SSA valuesofthecorrespondingPt/K/AZTcatalystsarehigherthan thatofthebenchmarkPt/20Ba/Alcatalyst(134m2/g).

• IncreasingtheK2OloadinginthePt/K/AZTsystemleadstothe growthoftheK2Odomainsize(i.e.sintering),covering ofthe AZTsurface withK2Oand anincreasein thebulk-likesulfate functionalgroups requiringhigher temperaturesfor complete sulfurelimination viathermal decompositionorviareduction withH2(g).

• Increasein K2Oloadingin thePt/K/AZTformulationincreases theNOxadsorptionupto5.4wt.%ofK2O.HoweverK2Oloadings higherthanthisvaluedonothaveasignificantpositiveinfluence onNOxadsorption.

• Thereis a delicate trade-offbetweenNSC and sulfur adsorp- tion/release/regenerationcharacteristics.NSCandSOxtolerance ofAZTbasedNSR/LNTcatalystscanbeoptimizedsimultaneously bycarefullyfine-tuningtheK2Oloading.

• Among the investigated catalysts, Pt/5.4K/AZT was found to revealsuperiorsulfurregenerationperformancethanthatofthe conventionalPt/20Ba/Albenchmarkcatalystalongwithacom- parableNSC(0.165vs.0.171mmol/gcat,repsectively).

Acknowledgements

AuthorsacknowledgethefinancialsupportfromtheScientific andTechnologicalResearchCouncilofTurkey(TUBITAK)(Project Code:111M780).AuthorsalsoacknowledgeProf.LouiseOlssonand OanaMihai(ChalmersUniversityofTechnology)forquantitative flow-modeNSCmeasurements.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.cattod.2015.12.

013.

References

[1]F.Klingstedt,K.Arve,K.Eränen,D.Y.Murzin,Acc.Chem.Res.39(2006) 273–282.

[2]W.S.Epling,L.E.Campbell,A.Yezerets,N.W.Currier,J.E.Parks,Catal.Rev.Eng.

46(2004)163–245.

[3]S.Matsumoto,CATTECH4(2000)102–109.

[4]A.Fritz,V.Pitchon,Appl.Catal.BEnviron.13(1997)1–25.

[5]Q.Schiermeier,ThesciencebehindtheVolkswagenemissionsscandal,in:

Nat.News,2015.

[6]<http://www.eea.europa.eu/publications/nec-directive-status-report-2014>.

[7]K.Kato,H.Nohira,K.Nakanishi,S.Iguchi,T.Kihara,H.Muraki,EuroPatent application0,573,672A1,1993.

[8]N.Myioshi,S.Matsumoto,K.Katoh,T.Tanaka,K.Harada,N.Takahashi,K.

Yokota,M.Sugiura,K.Kasahara,SAETechnicalPapersSeriesNo.950809, 1995.

[9]S.Roy,A.Baiker,Chem.Rev.109(2009)4054–4091.

[10]Z.Say,E.I.Vovk,V.I.Bukhtiyarov,E.Ozensoy,Appl.Catal.BEnviron.142–143 (2013)89–100.

[11]W.S.Epling,D.Kisinger,C.Everest,Catal.Today136(2008)156–163.

[12]D.H.Kim,Y.Chin,G.G.Muntean,A.Yezeretz,N.W.Currier,W.S.Epling,H.

Chen,H.Hess,C.H.F.Peden,Ind.Eng.Chem.Res.45(2006)8815–8821.

[13]S.M.Andonova,G.S.ent ¨urk,E.Kayhan,E.Ozensoy,J.Phys.Chem.C113 (2009)11026.

[14]Z.Say,E.I.Vovk,V.I.Bukhtiyarov,E.Ozensoy,Top.Catal.56(2013)950–957.

[15]T.Szailer,J.H.Kwak,D.H.Kim,J.C.Hanson,C.H.F.Peden,J.Szanyi,J.Catal.239 (2006)51–64.

[16]I.S.Pieta,M.García-Diéguez,C.Herrera,M.a.Larrubia,L.J.Alemany,J.Catal.

270(2010)256–267.

[17]K.S.Kabin,P.Khanna,R.L.Muncrief,V.Medhekar,M.P.Harold,Catal.Today 114(2006)72–85.

[18]S.Morandi,F.Prinetto,G.Ghiotti,L.Castoldi,L.Lietti,P.Forzatti,M.Daturi,V.

Blasin-Aubé,Catal.Today231(2014)116–124.

[19]D.H.Kim,K.Mudiyanselage,J.Szányi,H.Zhu,J.H.Kwak,C.H.F.Peden,Catal.

Today184(2012)2–7.

[20]M.Takeuchi,S.Matsumoto,Top.Catal.28(2004)151–156.

[21]T.J.Toops,D.B.Smith,W.P.Partridge,Catal.Today114(2006)112–124.

[22]J.Luo,F.Gao,D.H.Kim,C.H.F.Peden,Catal.Today231(2014)164–172.

[23]E.Fridell,H.Persson,L.Olsson,B.Westerberg,A.Amberntsson,M.Skoglundh, Top.Catal.16/17(2001)133.

[24]J.Escobar,J.A.DelosReyes,T.Viveros,Ind.Eng.Chem.Res.39(2000)666.

[25]Z.Say,M.Tohumeken,E.Ozensoy,Catal.Today231(2014)135.

(10)

[26]M.Meng,L.Guo,J.He,Y.Lai,Z.Li,X.Li,Catal.Today175(2011)72.

[27]Z.Q.Zou,M.Meng,X.Y.Zhou,X.G.Li,Y.Q.Zha,Catal.Lett.128(2009)475.

[28]N.Takahashi,A.Suda,I.Hachisuka,M.Sugiura,H.Sobukawa,H.Shinjoh,Appl.

Catal.BEnviron.72(2007)187.

[29]H.Imagawa,T.Tanaka,N.Takahashi,S.Matsunaga,A.Suda,H.Shinjoh,J.

Catal.251(2007)315.

[30]H.Imagawa,N.Takahashi,T.Tanaka,S.Matsunaga,H.Shinjoh,Appl.Catal.B Environ.92(2009)23.

[31]Z.Q.Zou,M.Meng,J.He,Mater.Chem.Phys.124(2010)987.

[32]Z.Say,M.Dogac,E.I.Vovk,Y.E.Kalay,C.H.Kim,W.Li,E.Ozensoy,Appl.Catal.B Environ154–155(2014)51.

[33]L.E.Venegas,N.A.Mazzeo,A.L.P.Rojas,AirQual.Appl.,InTech.,2011,ISBN:

978-953-307-307-1.

[34]D.H.Kim,K.Mudiyanselage,J.Szanyi,J.H.Kwak,H.Zhu,C.H.F.Peden,Appl.

Catal.BEnviron.142–143(2013)472–478.

[35]M.Kantcheva,E.Z.Ciftlikli,J.Phys.Chem.B106(2002)3941–3949.

[36]C.Chang,J.Catal.53(1978)374–385.

[37]M.Waqif,SolidStateIonics95(1997)163–167.

[38]O.Saur,M.Bensitel,A.B.MohammedSaad,J.C.Lavalley,C.P.Tripp,B.A.

Morrow,J.Catal.99(1986)104–110.

[39]H.Yao,H.K.Stepien,H.S.Gandhi,J.Catal.67(1981)231–236.

[40]G.S.entürk,E.I.Vovk,V.I.Zaikovskii,Z.Say,A.M.Soylu,V.I.Bukhtiyarov,E.

Ozensoy,Catal.Today184(2012)54–71.

[41]C.Sedlmair,K.Seshan,A.Jentys,J.Lercher,Catal.Today75(2002)413–419.

[42]Y.Liu,M.Meng,X.G.Li,L.H.Guo,Y.Q.Zha,Chem.Eng.Res.Des.86(2008) 932–940.

[43]H.Abdulhamid,E.Fridell,J.Dawody,M.Skoglundh,J.Catal.241(2006) 200–210.

[44]Z.Say,O.Mihai,M.Tohumeken,L.Olsson,E.Ozensoy,inpreperation.

Referenties

GERELATEERDE DOCUMENTEN

Als het Rijnzoutverdrag wel wordt uitgevoerd kan door twee onthardingsmethoden te combineren drinkwater worden verkregen dat voldoet aan de wettelijke

&#34;-straling heeft het grootste ioniserend vermogen en daardoor ook de

Briefly, upon NO 2 adsorption, the fresh sample surfaces are characterized by adsorption bands due to the presence of the bulk (ionic) Ba-nitrates located at ∼1320, ∼1440 and ∼1480

Recently, we have thoroughly investigated the synthesis, structural properties, NO x oxidation/uptake and NO x reduction behavior of LaMnO 3 , Pd/LaMnO 3 , LaCoO 3 and Pd/LaCoO

The electrocatalytic ORR activity of the prepared sam- ples was analyzed with RDE measurements from 225 to 1225 rpm with the scan rate of 10 mV s −1 in 0.1 M KOH aqueous

De zeven gemeenten in de regio Alkmaar werken op dit moment aan een gezamenlijk Omgevingsbeeld voor de regio. Dit proces is eind 2016 gestart. Eén van de doelen is het

ln deze brief willen we dat nogmaals benadrukken want uit beide ondezoeken kunnen VNG en Divosa alleen maar concluderen dat we te maken hebben met een grote groep

Van de meest voorkomende vissoort, brasem, zijn vooral exemplaren met een lengte tot 11 cm gevangen (voornamelijk eenzomerige exemplaren) en vissen met een lengte van 20 tot 25