• No results found

Magnetic resonance imaging in neonatal hypoxic-ischemic brain injury Liauw, L.

N/A
N/A
Protected

Academic year: 2021

Share "Magnetic resonance imaging in neonatal hypoxic-ischemic brain injury Liauw, L."

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Magnetic resonance imaging in neonatal hypoxic-ischemic brain injury

Liauw, L.

Citation

Liauw, L. (2009, March 19). Magnetic resonance imaging in neonatal hypoxic-ischemic brain injury. Retrieved from

https://hdl.handle.net/1887/13690

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13690

Note: To cite this publication please use the final published version (if

applicable).

(2)

References in alphabetical order

1. Ajayi-Obe M, Saeed N, Cowan FM, Rutherford MA, Edwards AD. Reduced development of cerebral cortex in extremely preterm infants. Lancet 2000;356:1162-1163.

2. Arthur R, Ramenghi LA. Imaging the neonatal brain. In: Levene MI, Chervenak FA, Whittle M, eds.

Fetal and neonatal neurology and neurosurgery. 3rd ed. London: Churchill Livingstone 2001:57- 85.

3. Baenziger O, Martin E, Steinlin M, et al. Early pattern recognition in severe perinatal asphyxia: a prospective MRI study. Neuroradiology 1993;35:437-442.

4. Baker LL, Stevenson DK, Enzmann DR. End-stage periventricular leukomalacia: MR evaluation.

Radiology 1988;168:809-815.

5. Ball WS, Jr, Franz DN. Neonatal brain injury. In: Ball WS, Jr, ed. Pediatric Neuroradiology.

Philadelphia, PA: Lippincott-Raven 1997;239-262.

6. Barkovich AJ, Kjos BO, Jackson DE, Jr, Norman D. Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 1988;166:173-180.

7. Barkovich AJ, Truwit CL. Brain damage from perinatal asphyxia: correlation of MR findings with gestational age. AJNR 1990;11:1087-1096.

8. Barkovich AJ. MR and CT evaluation of profound neonatal and infantile asphyxia. AJNR 1992;13:959-972.

9. Barkovich AJ, Westmark K, Partridge C, Sola A, Ferriero DM. Perinatal asphyxia: MR findings in the first 10 days. AJNR 1995;16:427-438.

10. Barkovich AJ, Sargent SK. Profound asphyxia in the premature infant: imaging findings. AJNR 1995;16:1837-1846.

11. Barkovich AJ, Hajnal BL, Vigneron D, et al. Prediction of neuromotor outcome in perinatal asphyxia:

evaluation of MR scoring systems. AJNR 1998;19:143-149.

12. Barkovich AJ, Baranski K, Vigneron D, et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR 1999;20:1399-1405.

13. Barkovich AJ, Westmark KD, Bedi HS, Partridge JC, Ferriero DM, Vigneron DB. Proton spectroscopy and diffusion imaging on the first day of life after perinatal asphyxia: preliminary report. AJNR 2001;22:1786-1794.

14. Barkovich AJ. Techniques and methods in pediatric neuroimaging. In: Barkovich AJ, ed. Pediatric neuroimaging. 4th ed. Philadelphia: Lippincott, Williams & Wilkins 2005;1-16.

15. Barkovich AJ. Normal development of the neonatal and infant brain, skull, and spine. In: Barkovich AJ, ed. Pediatric Neuroimaging. 4th ed. Philadelphia, PA: Lippincott, Williams & Wilkins 2005;17- 75.

16. Barkovich AJ. Brain and spine injuries in infancy and childhood. In: Barkovich AJ, ed. Pediatric Neuroimaging. 4th ed. Philadelphia, PA: Lippincott, Williams & Wilkins 2005;190-290.

17. Barkovich AJ, Miller SP, Bartha A, et al. MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR 2006;27:533-547.

18. Barnett A, Mercuri E, Rutherford M, et al. Neurological and perceptual-motor outcome at 5 - 6 years of age in children with neonatal encephalopathy: relationship with neonatal brain MRI.

Neuropediatrics 2002;33:242-248.

19. Battin M, Rutherford MA. Magnetic resonance imaging of the brain in preterm infants: 24 weeks’

gestation to term. In: Rutherford MA, ed. MRI of the neonatal brain. London: W.B. Saunders 2002:25-49.

20. Bayley N. Bayley scales of infant’s development, 2nd ed. San Antonio, TX: Psychological Corporation 1993.

21. Bell AH, Greisen G, Pryds O. Comparison of the effects of phenobarbitone and morphine administration on EEG activity in preterm babies. Acta Paediatr 1993;82:35-39.

22. Van den Bergh R, Van der Eecken H. Anatomy and embryology of the cerebral circulation. Prog Brain Res 1968;30:1-26.

23. Van den Bergh R. Centrifugal elements in the vascular pattern of the deep intracerebral blood supply. Angiology 1969;20:88-94.

24. Biagioni E, Mercuri E, Rutherford M, et al. Combined use of electroencephalogram and magnetic resonance imaging in full-term neonates with acute encephalopathy. Pediatrics 2001;107:461- 468.

(3)

25. Bird CR, Hedberg M, Drayer BP, Keller PJ, Flom RA, Hodak JA. MR assessment of myelination in infants and children: usefulness of marker sites. AJNR 1989;10:731-740.

26. Blankenberg FG, Loh NN, Bracci P, et al. Sonography, CT, and MR imaging: a prospective comparison of neonates with suspected intracranial ischemia and hemorrhage. AJNR 2000;21:213-218.

27. Boichot C, Walker PM, Durand C, et al. Term neonate prognoses after perinatal asphyxia:

contributions of MR imaging, MR spectroscopy, relaxation times, and apparent diffusion coefficients.

Radiology 2006;239:839-848.

28. Boxma A, Lequin M, Ramenghi LA, Kros M, Govaert P. Sonographic detection of the optic radiation.

Acta Paediatr 2005;94:1455-1461.

29. Bozzao A, di Paolo A, Mazzoleni C, et al. Diffusion-weighted MR imaging in the early diagnosis of periventricular leukomalacia. Eur Radiol 2003;13:1571-1576.

30. Brouwers-de Jong EA, Burgmeijer RJF, Laurent de Angulo MS. Ontwikkelingsonderzoek op het consultatiebureau. Handboek bij het vernieuwde Van Wiechenonderzoek. Assen, the Netherlands:

Van Gorcum 1996 (in Dutch).

31. van Buchem MA. Magnetization transfer: applications in neuroradiology. J Comput Assist Tomogr 1999;23 Suppl 1:S9-18.

32. van Buchem MA, Tofts PS. Magnetization transfer imaging. Neuroimaging Clin N Am 2000;10:771- 788.

33. van Buchem MA, Steens SC, Vrooman HA, et al. Global estimation of myelination in the developing brain on the basis of magnetization transfer imaging: a preliminary study. AJNR 2001;22:762- 766.

34. Burdette JH, Ricci PE, Petitti N, Elster AD. Cerebral infarction: time course of signal intensity changes on diffusion-weighted MR images. AJR1998;171:791-795.

35. Byrne P, Welch R, Johnson MA, Darrah J, Piper M. Serial magnetic resonance imaging in neonatal hypoxic-ischemic encephalopathy. J Pediatr 1990;117:694-700.

36. Cha S. Dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in pediatric patients. Neuroimaging Clin N Am 2006;16:137-147,ix.

37. Chao CP, Zaleski CG, Patton AC. Neonatal hypoxic-ischemic encephalopathy: multimodality imaging findings. Radiographics 2006;26 Suppl 1:S159-172.

38. Childs AM, Cornette L, Ramenghi LA, et al. Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants. Clin Radiol 2001;56:647-655.

39. Christophe C, Clercx A, Blum D, Hasaerts D, Segebarth C, Perlmutter N. Early MR detection of cortical and subcortical hypoxic-ischemic encephalopathy in full-term-infants. Pediatr Radiol 1994;24:581-584.

40. Clancy RR, Legido A. The exact ictal and interictal duration of electroencephalographic neonatal seizures. Epilepsia 1987;28:537-541.

41. Counsell SJ, Allsop JM, Harrison MC, et al. Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 2003;112:1-7.

42. Counsell SJ, Rutherford MA, Cowan FM, Edwards AD. Magnetic resonance imaging of preterm brain injury. Arch Dis Child Fetal Neonatal Ed 2003;88:F269-274.

43. Counsell SJ, Shen Y, Boardman JP, et al. Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 2006;117:376-386.

44. Cowan FM, Pennock JM, Hanrahan JD, Manji KP, Edwards AD. Early detection of cerebral infarction and hypoxic ischemic encephalopathy in neonates using diffusion-weighted magnetic resonance imaging. Neuropediatrics 1994;25:172-175.

45. Cowan F. Outcome after intrapartum asphyxia in term infants. Semin Neonatol 2000;5:127-140.

46. Cowan FM. Magnetic resonance imaging of the normal infant brain: term to 2 years. In: Rutherford MA, ed. MRI of the neonatal brain. London: W.B. Saunders 2002;51-81.

47. Cowan F, Rutherford M, Groenendaal F, et al. Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 2003;361:736-742.

48. Cowan FM, de Vries LS. The internal capsule in neonatal imaging. Semin Fetal Neonatal Med 2005;10:461-474.

49. Cowan FM, Rutherford M. Recent advances in imaging the fetus and newborn. Semin Fetal Neonatal Med 2005;10:401-402.

50. Daneman A, Epelman M, Blaser S, Jarrin JR. Imaging of the brain in full-term neonates: does sonography still play a role? Pediatr Radiol 2006;36:636-646.

Chapter 9

(4)

51. Debillon T, N’Guyen S, Muet A, Quere MP, Moussaly F, Roze JC. Limitations of ultrasonography for diagnosing white matter damage in preterm infants. Arch Dis Child Fetal Neonatal Ed 2003;88:F275-F279.

52. Dietrich RB, Bradley WG, Zaragoza EJ, et al. MR evaluation of early myelination patterns in normal and developmentally delayed infants. AJR 1988;150:889-896.

53. Dietrich RB. Magnetic resonance imaging of normal brain maturation. Semin Perinatol 1990;14:201- 211.

54. Dilenge ME, Majnemer A, Shevell MI. Long-term developmental outcome of asphyxiated term neonates. J Child Neurol 2001;16:781-792.

55. Domizio S, Barbante E, Puglielli C, et al. Excessively high magnetic resonance signal in preterm infants and neuropsychobehavioural follow-up at 2 years. Int J Immunopathol Pharmacol 2005;18:365-375.

56. ten Donkelaar HJ, van der Vliet T. Overview of the development of the human brain and spinal cord. In: ten Donkelaar HJ, Lammens M, Hori A, eds. Clinical neuroembryology. Berlin, Heidelberg:

Springer-Verlag 2006:1-45.

57. Dubowitz LM, Bydder GM. Magnetic resonance imaging of the brain in neonates. Semin Perinatol 1990;14:212-223.

58. Dyet LE, Kennea N, Counsell SJ, et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment.

Pediatrics 2006;118:536-548.

59. Edwards AD, Azzopardi DV. Perinatal hypoxia-ischemia and brain injury. Pediatr Res 2000;47:431- 432.

60. Eken P, Jansen GH, Groenendaal F, Rademaker KJ, de Vries LS. Intracranial lesions in the full term infant with hypoxic ischaemic encephalopathy: ultrasound and autopsy correlation. Neuropediatrics 1994;25:301-307.

61. Eken P, Toet MC, Groenendaal F, de Vries LS. Predictive value of early neuroimaging, pulsed Doppler and neurophysiology in full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 1995;73:F75-F80.

62. El-Ayouty M, Abdel-Hady H, El-Mogy S, Zaghlol H, El-Beltagy M, Aly H. Relationship between electroencephalography and magnetic resonance imaging findings after hypoxic-ischemic encephalopathy at term. Am J Perinatol 2007;24:467-473.

63. Engelbrecht V, Rassek M, Preiss S, Wald C, Modder U. Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain. AJNR 1998;19:1923-1929.

64. Ferriero DM. Neonatal brain injury. N. Engl J Med 2004;351:1985-1995.

65. Finer NN, Robertson CM, Richards RT, Pinnell LE, Peters KL. Hypoxic-ischemic encephalopathy in term neonates: perinatal factors and outcome. J Pediatr 1981;98:112-117.

66. Finer NN, Robertson CM, Peters KL, Coward JH. Factors affecting outcome in hypoxic-ischemic encephalopathy in term infants. Am J Dis Child 1983;137:21-25.

67. Fleiss JL. In: Statistical methods for rates and proportion. 2nd ed. New York, N.Y.: Wiley 1981:218.

68. Flodmark O, Lupton B, Li D, et al. MR imaging of periventricular leukomalacia in childhood. AJR 1989;152:583-590.

69. Forbes KP, Pipe JG, Bird R. Neonatal hypoxic-ischemic encephalopathy: detection with diffusion- weighted MR imaging. AJNR 2000;21:1490-1496.

70. Ganesan V, Prengler M, McShane MA, Wade AM, Kirkham FJ. Investigation of risk factors in children with arterial ischemic stroke. Ann Neurol 2003;53:167-173.

71. Gesell A, Amatruda CS. Developmental diagnosis: normal and abnormal child development.

In: Knobloch H, Pasamanick B, Hagerstown MD, eds. Developmental diagnosis: the evaluation and management of normal and abnormal neuropsychologic development in infancy and early childhood. 3rd ed. New York: Harper and Row 1974.

72. Groenendaal F, Veenhoven RH, van der Grond J, Jansen GH, Witkamp TD, de Vries LS. Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res 1994;35:148-151.

73. Groenendaal F, Roelants-van Rijn AM, van der Grond J, Toet MC, de Vries LS. Glutamate in cerebral tissue of asphyxiated neonates during the first week of life demonstrated in vivo using proton magnetic resonance spectroscopy. Biol Neonate 2001;79:254-257.

(5)

74. Groenendaal F, Benders MJ, de Vries LS. Pre-wallerian degeneration in the neonatal brain following perinatal cerebral hypoxia-ischemia demonstrated with MRI. Semin Perinatol 2006;30:146-150.

75. Haataja L, Mercuri E, Guzzetta A, et al. Neurologic examination in infants with hypoxic-ischemic encephalopathy at age 9 to 14 months: use of optimality scores and correlation with magnetic resonance imaging findings. J Pediatr 2001;138:332-337.

76. Hagberg G, Hagberg G, Olow I. The changing panorama of cerebral palsy in Sweden 1954-1970.

II. Analysis of the various syndromes. Acta Paediatr Scand 1975;64:193-200.

77. Hamrick SE, Miller SP, Leonard C, et al. Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 2004;145:593-599.

78. Hanrahan JD, Sargentoni J, Azzopardi D, et al. Cerebral metabolism within 18 hours of birth asphyxia: a proton magnetic resonance spectroscopy study. Pediatr Res 1996;39:584-590.

79. Hanrahan JD, Cox IJ, Azzopardi D, et al. Relation between proton magnetic resonance spectroscopy within 18 hours of birth asphyxia and neurodevelopment at 1 year of age. Dev Med Child Neurol 1999;41:76-82.

80. Helenius J, Soinne L, Perkio J, et al. Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR 2002;23:194-199.

81. Hempel MS. Neurological development during toddling age in normal children and children at risk of developmental disorders. Early Hum Dev 1993;34:47-57.

82. Holland BA, Haas DK, Norman D, Brant-Zawadzki M, Newton TH. MRI of normal brain maturation.

AJNR 1986;7:201-208.

83. Holmes G, Rowe J, Hafford J, Schmidt R, Testa M, Zimmerman A. Prognostic value of the electroencephalogram in neonatal asphyxia. Electroencephalogr Clin Neurophysiol 1982;53:60- 72.

84. Holmes GL, Lombroso CT. Prognostic value of background patterns in the neonatal EEG. J Clin Neurophysiol 1993;10:323-352.

85. Holshouser BA, Ashwal S, Luh GY, et al. Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children. Radiology 1997;202:487- 496.

86. Hunt RW, Neil JJ, Coleman LT, Kean MJ, Inder TE. Apparent diffusion coefficient in the posterior limb of the internal capsule predicts outcome after perinatal asphyxia. Pediatrics 2004;114:999- 1003.

87. Huppi PS, Warfield S, Kikinis R, et al. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 1998;43:224-235.

88. Huppi PS, Murphy B, Maier SE, et al. Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 2001;107:455-460.

89. Inder TE, Huppi PS, Warfield S, et al. Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 1999;46:755- 760.

90. Inder T, Huppi PS, Zientara GP, et al. Early detection of periventricular leukomalacia by diffusion- weighted magnetic resonance imaging techniques. J Pediatr 1999;134:631-634.

91. Inder TE, Anderson NJ, Spencer C, Wells S, Volpe JJ. White matter injury in the premature infant:

a comparison between serial cranial sonographic and MR findings at term. AJNR 2003;24:805- 809.

92. Inder TE, Warfield SK, Wang H, Huppi PS, Volpe JJ. Abnormal cerebral structure is present at term in premature infants. Pediatrics 2005;115:286-294.

93. Iwata O, Iwata S, Tamura M, et al. Periventricular low intensities on fluid attenuated inversion recovery imaging in the newborn infant: Relationships to chronic white matter lesions. Pediatr Int 2004;46:141-149.

94. Johnson MA, Pennock JM, Bydder GM, Dubowitz LM, Thomas DJ, Young IR. Serial MR imaging in neonatal cerebral injury. AJNR 1987;8:83-92.

95. Jongmans M, Henderson S, de Vries L, Dubowitz L. Duration of periventricular densities in preterm infants and neurological outcome at 6 years of age. Arch Dis Child 1993;69:9-13.

96. Jouvet P, Cowan FM, Cox P, et al. Reproducibility and accuracy of MR imaging of the brain after severe birth asphyxia. AJNR 1999;20:1343-1348.

Chapter 9

(6)

97. Jyoti R, O’Neil R. Predicting outcome in term neonates with hypoxic-ischaemic encephalopathy using simplified MR criteria. Pediatr Radiol 2006;36:38-42.

98. Kadri M, Shu S, Holshouser B, et al. Proton magnetic resonance spectroscopy improves outcome prediction in perinatal CNS insults. J Perinatol 2003;23:181-185.

99. Keeney SE, Adcock EW, McArdle CB. Prospective observations of 100 high-risk neonates by high- field (1.5 Tesla) magnetic resonance imaging of the central nervous system. II. Lesions associated with hypoxic-ischemic encephalopathy. Pediatrics 1991;87:431-438.

100. van der Knaap MS, Valk J. Myelination and retarded myelination. In: van der Knaap MS, Valk J, eds. Magnetic resonance of myelin, myelination, and myelin disorders. Berlin, Heidelberg:

Springer-Verlag 1989:26-29.

101. van der Knaap MS, Smit LS, Nauta JJ, Lafeber HN, Valk J. Cortical laminar abnormalities-occurrence and clinical significance. Neuropediatrics 1993;24:143-148.

102. van der Knaap MS, van Wezel-Meijler G, Barth PG, Barkhof F, Ader HJ, Valk J. Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology 1996;200:389- 396.

103. van der Knaap MS, Valk J. Myelin and white matter. Magnetic resonance of myelination and myelin disorders. 3rd ed. Berlin, Heidelberg: Springer-Verlag 2005:1-19.

104. van der Knaap MS, Valk J. Myelination and retarded myelination. Magnetic resonance of myelination and myelin disorders. 3rd ed. Berlin, Heidelberg: Springer-Verlag 2005:37-65.

105. Krageloh-Mann I, Helber A, Mader I, et al. Bilateral lesions of thalamus and basal ganglia: origin and outcome. Dev Med Child Neurol 2002;44:477-484.

106. Kreis R, Ernst T, Ross BD. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 1993;30:424- 437.

107. Kuban KC, Gilles FH. Human telencephalic angiogenesis. Ann Neurol 1985;17:539-548.

108. Kuker W, Mohrle S, Mader I, Schoning M, Nagele T. MRI for the management of neonatal cerebral infarctions: importance of timing. Childs Nerv Syst 2004;20:742-748.

109. Kutschera J, Tomaselli J, Maurer U, Pichler G, Schwantzer G, Urlesberger B. Minor neurological dysfunction, cognitive development and somatic development at the age of 3 to 11 years in very- low-birthweight infants with transient periventricular echodensities. Acta Paediatr 2006;95:1577- 1581.

110. L’Abee C, de Vries LS, van der Grond J, Groenendaal F. Early diffusion-weighted MRI and 1H- Magnetic Resonance Spectroscopy in asphyxiated full-term neonates. Biol Neonate 2005;88:306- 312.

111. Leth H, Toft PB, Pryds O, Peitersen B, Lou HC, Henriksen O. Brain lactate in preterm and growth- retarded neonates. Acta Paediatr 1995;84:495-499.

112. Levene MI, Sands C, Grindulis H, Moore JR. Comparison of two methods of predicting outcome in perinatal asphyxia. Lancet 1986;1:67-69.

113. Levene MI, de Vries LS. Neonatal intracranial hemorrhage. In Levene MI, Chervenak FA, Whittle M, eds. Fetal and neonatal neurology and neurosurgery. 3rd ed. London: Churchill Livingstone 2001:339-371.

114. Levene MI. The asphyxiated newborn infant. In: Levene MI, Chervenak FA, Whittle M, eds. Fetal and neonatal neurology and neurosurgery. 3rd ed. London: Churchill Livingstone 2001:471-504.

115. Leijser LM, Klein RH, Veen S, Liauw L, van Wezel-Meijler G. Hyperechogenicity of the thalamus and basal ganglia in very preterm infants: radiological findings and short-term neurological outcome.

Neuropediatrics 2004;35:283-289.

116. Leijser LM, Vein AA, Liauw L, Strauss T, Veen S, van Wezel-Meijler G. Prediction of short-term neurological outcome in full-term neonates with hypoxic-ischaemic encephalopathy based on combined use of electroencephalogram and neuro-imaging. Neuropediatrics 2007;38:219-227.

117. Leijser LM, Liauw L, Veen S, de Boer I, Walther F, van Wezel-Meijler G. Comparing brain white matter on sequential cranial ultrasound and MRI in very preterm infants. Neuroradiology 2008;50:799-811.

118. Liauw L, Palm-Meinders IH, van der Grond J, et al. Differentiating Normal Myelination from Hypoxic- Ischemic Encephalopathy on T1-Weighted MR Images: A New Approach. AJNR 2007;28:660- 665.

119. Liauw L, van der Grond J, van den Berg-Huysmans AA, Palm-Meinders IH, van Buchem MA, van Wezel-Meijler G. Hypoxic-ischemic encephalopathy: diagnostic value of conventional MR imaging pulse sequences in term-born neonates. Radiology 2008;247:204-212.

(7)

120. Liu AY, Zimmerman RA, Haselgrove JC, Bilaniuk LT, Hunter JV. Diffusion-weighted imaging in the evaluation of watershed hypoxic-ischemic brain injury in pediatric patients. Neuroradiology 2001;43:918-926.

121. Lovblad KO, Schneider J, Ruoss K, Steinlin M, Fusch C, Schroth G. Isotropic apparent diffusion coefficient mapping of postnatal cerebral development. Neuroradiology 2003;45:400-403.

122. Maalouf EF, Duggan PJ, Rutherford MA, et al. Magnetic resonance imaging of the brain in a cohort of extremely preterm infants. J Pediatr 1999;135:351-357.

123. Maalouf EF, Duggan PJ, Counsell SJ, et al. Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 2001;107:719-727.

124. Maalouf EF, Counsell SJ. Imaging the preterm infant: practical issues. In: Rutherford MA, ed. MRI of the neonatal brain. London: W.B. Saunders 2002:17-21.

125. Mader I, Schoning M, Klose U, Kuker W. Neonatal cerebral infarction diagnosed by diffusion- weighted MRI: pseudonormalization occurs early. Stroke 2002;33:1142-1145.

126. Maneru C, Junque C, Bargallo N, et al. (1)H-MR spectroscopy is sensitive to subtle effects of perinatal asphyxia. Neurology 2001;57:1115-1118.

127. Marlow N. Neurocognitive outcome after very preterm birth. Arch Dis Child Fetal Neonatal Ed 2004;89:F224-F228.

128. Martin E, Kikinis R, Zuerrer M, et al. Developmental stages of human brain: an MR study. J Comput Assist Tomogr 1988;12:917-922.

129. McArdle CB, Richardson CJ, Hayden CK, Nicholas DA, Amparo EG. Abnormalities of the neonatal brain: MR imaging. Part II. Hypoxic-ischemic brain injury. Radiology 1987;163:395-403.

130. Melhem ER. Time-course of apparent diffusion coefficient in neonatal brain injury: the first piece of the puzzle. Neurology 2002;59:798-799.

131. Ment LR, Bada HS, Barnes P, et al. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2002;58:1726-1738.

132. Mercuri E, Cowan F. Cerebral infarction in the newborn infant: review of the literature and personal experience. Eur J Paediatr Neurol 1999;3:255-263.

133. Mercuri E, Rutherford M, Cowan F, et al. Early prognostic indicators of outcome in infants with neonatal cerebral infarction: a clinical, electroencephalogram, and magnetic resonance imaging study. Pediatrics 1999;103:39-46.

134. Mercuri E, Ricci D, Cowan FM, et al. Head growth in infants with hypoxic-ischemic encephalopathy:

correlation with neonatal magnetic resonance imaging. Pediatrics 2000;106:235-243.

135. Mercuri E. Early diagnostic and prognostic indicators in full term infants with neonatal cerebral infarction: an integrated clinical, neuroradiological and EEG approach. Minerva Pediatr 2001;53:305-311.

136. Mercuri E, Dubowitz LM, Rutherford MA. Cerebral infarction in the full-term infant. In: Rutherford MA, ed. MRI of the neonatal brain. London: W.B. Saunders 2002:129-154.

137. Mercuri E, Barnett AL. Neonatal brain MRI and motor outcome at school age in children with neonatal encephalopathy: a review of personal experience. Neural Plast 2003;10:51-57.

138. Mercuri E, Barnett A, Rutherford M, et al. Neonatal cerebral infarction and neuromotor outcome at school age. Pediatrics 2004;113:95-100.

139. Miller SP, Cozzio CC, Goldstein RB, et al. Comparing the diagnosis of white matter injury in premature newborns with serial MR imaging and transfontanel ultrasonography findings. AJNR 2003;24:1661-1669.

140. Miller SP, Ramaswamy V, Michelson D, et al. Patterns of brain injury in term neonatal encephalopathy.

J Pediatr 2005;146:453-460.

141. Mirmiran M, Barnes PD, Keller K, et al. Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants. Pediatrics 2004;114:992-998.

142. Naganawa S, Sato K, Katagiri T, Mimura T, Ishigaki T. Regional ADC values of the normal brain:

differences due to age, gender, and laterality. Eur Radiol 2003;13:6-11.

143. Neil JJ, Shiran SI, McKinstry RC, et al. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 1998;209:57-66.

144. Neil JJ, Inder TE. Imaging perinatal brain injury in premature infants. Semin Perinatol 2004;28:433- 443.

Chapter 9

(8)

145. Neil JJ. Diffusion imaging concepts for clinicians. J Magn Reson Imaging 2008;27:1-7.

146. Nelson MD, Jr, Gonzalez-Gomez I, Gilles FH. Dyke Award. The search for human telencephalic ventriculofugal arteries. AJNR 1991;12:215-222.

147. Nelson KB, Grether JK. Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. Am J Obstet Gynecol 1998;179:507-513.

148. Ortibus EL, Sum JM, Hahn JS. Predictive value of EEG for outcome and epilepsy following neonatal seizures. Electroencephalogr Clin Neurophysiol 1996;98:175-185.

149. Paneth N, Rudelli R, Monte W, et al. White matter necrosis in very low birth weight infants:

neuropathologic and ultrasonographic findings in infants surviving six days or longer. J Pediatr 1990;116:975-984.

150. Penrice J, Cady EB, Lorek A, et al. Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr Res 1996;40:6-14.

151. Phillips MD, Zimmerman RA. Diffusion imaging in pediatric hypoxic ischemia injury. Neuroimaging Clin N Am 1999;9:41-52.

152. Pressler RM, Boylan GB, Morton M, Binnie CD, Rennie JM. Early serial EEG in hypoxic ischaemic encephalopathy. Clin Neurophysiol 2001;112:31-37.

153. Rademaker KJ, Groenendaal F, Jansen GH, Eken P, de Vries LS. Unilateral haemorrhagic parenchymal lesions in the preterm infant: shape, site and prognosis. Acta Paediatr 1994;83:602- 608.

154. Rademaker KJ, Uiterwaal CS, Beek FJ, et al. Neonatal cranial ultrasound versus MRI and neurodevelopmental outcome at school age in children born preterm. Arch Dis Child Fetal Neonatal Ed 2005;90:F489-F493.

155. Rademakers RP, van der Knaap MS, Verbeeten B, Jr., Barth PG, Valk J. Central cortico-subcortical involvement: a distinct pattern of brain damage caused by perinatal and postnatal asphyxia in term infants. J Comput Assist Tomogr 1995;19:256-263.

156. Resch B, Jammernegg A, Perl E, Riccabona M, Maurer U, Muller WD. Correlation of grading and duration of periventricular echodensities with neurodevelopmental outcome in preterm infants.

Pediatr Radiol 2006;36:810-815.

157. De Reuck J. The human periventricular arterial blood supply and the anatomy of cerebral infarctions. Eur Neurol 1971;5:321-334.

158. De Reuck J, Chatta AS, Richardson EP, Jr. Pathogenesis and evolution of periventricular leukomalacia in infancy. Arch Neurol 1972;27:229-238.

159. De Reuck J. Cerebral angioarchitecture and perinatal brain lesions in premature and full term infants. Acta Neurol Scand 1984;70:391-399.

160. Roelants-van Rijn AM, van der Grond J, de Vries LS, Groenendaal F. Value of (1)H-MRS using different echo times in neonates with cerebral hypoxia-ischemia. Pediatr Res 2001;49:356-362.

161. Roelants-van Rijn AM, Groenendaal F, Beek FJ, Eken P, van Haastert I, de Vries LS. Parenchymal brain injury in the preterm infant: comparison of cranial ultrasound, MRI and neurodevelopmental outcome. Neuropediatrics 2001;32:80-89.

162. Roelants-van Rijn AM, Nikkels PG, Groenendaal F, et al. Neonatal diffusion-weighted MR imaging:

relation with histopathology or follow-up MR examination. Neuropediatrics 2001;32:286-294.

163. Rutherford MA, Pennock JM, Dubowitz LM. Cranial ultrasound and magnetic resonance imaging in hypoxic-ischaemic encephalopathy: a comparison with outcome. Dev Med Child Neurol 1994;36:813-825.

164. Rutherford MA, Pennock JM, Schwieso JE, Cowan FM, Dubowitz LM. Hypoxic ischaemic encephalopathy: early magnetic resonance imaging findings and their evolution. Neuropediatrics 1995;26:183-191.

165. Rutherford M, Pennock J, Schwieso J, Cowan F, Dubowitz L. Hypoxic-ischaemic encephalopathy:

early and late magnetic resonance imaging findings in relation to outcome. Arch Dis Child Fetal Neonatal Ed 1996;75:F145-F151.

166. Rutherford MA, Pennock JM, Counsell SJ, et al. Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy. Pediatrics 1998;102:323-328.

167. Rutherford MA. The asphyxiated term infant. In: Rutherford MA, ed. MRI of the neonatal brain.

London: W.B. Saunders 2002:99-128.

(9)

168. Rutherford M, Counsell S, Allsop J, et al. Diffusion-weighted magnetic resonance imaging in term perinatal brain injury: a comparison with site of lesion and time from birth. Pediatrics 2004;114:1004-1014.

169. Rutherford MA, Ward P, Malamatentiou C. Advanced MR techniques in the term-born neonate with perinatal brain injury. Semin Fetal Neonatal Med 2005;10:445-460.

170. Rutherford MA, Srinivasan L, Dyet L, et al. Magnetic resonance imaging in perinatal brain injury:

clinical presentation, lesions and outcome. Pediatr Radiol 2006;36:582-592.

171. Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol 1976;33:696-705.

172. Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology 2000;217:331-345.

173. van Schie PE, Becher JG, Dallmeijer AJ, Barkhof F, Weissenbruch MM, Vermeulen RJ. Motor outcome at the age of one after perinatal hypoxic-ischemic encephalopathy. Neuropediatrics 2007;38:71-77.

174. Sener RN. Diffusion MRI: apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Comput Med Imaging Graph 2001;25:299- 326.

175. Shankaran S, Laptook AR, Ehrenkranz RA, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005;353:1574-1584.

176. Sie LT, van der Knaap MS, Wezel-Meijler G, Valk J. MRI assessment of myelination of motor and sensory pathways in the brain of preterm and term-born infants. Neuropediatrics 1997;28:97- 105.

177. Sie LT, van der Knaap MS, Wezel-Meijler G, Taets van Amerongen AH, Lafeber HN, Valk J. Early MR features of hypoxic-ischemic brain injury in neonates with periventricular densities on sonograms.

AJNR 2000;21:852-861.

178. Sie LT, Barkhof F, Lafeber HN, Valk J, van der Knaap MS. Value of fluid-attenuated inversion recovery sequences in early MRI of the brain in neonates with a perinatal hypoxic-ischemic encephalopathy. Eur Radiol 2000;10:1594-1601.

179. Squier W. Basic cellular reaction of the immature human brain. In: Rutherford MA, ed. MRI of the neonatal brain. London: W.B. Saunders 2006:85-95.

180. Staudt M, Schropp C, Staudt F, Obletter N, Bise K, Breit A. Myelination of the brain in MRI: a staging system. Pediatr Radiol 1993;23:169-176.

181. Takashima S, Tanaka K. Development of cerebrovascular architecture and its relationship to periventricular leukomalacia. Arch Neurol 1978;35:11-16.

182. Takashima S, Armstrong DL, Becker LE. Subcortical leukomalacia. Relationship to development of the cerebral sulcus and its vascular supply. Arch Neurol 1978;35:470-472.

183. Tanner SF, Ramenghi LA, Ridgway JP, et al. Quantitative comparison of intrabrain diffusion in adults and preterm and term neonates and infants. AJR 2000;174:1643-1649.

184. Toft PB, Leth H, Peitersen B, Lou HC, Thomsen C. The apparent diffusion coefficient of water in gray and white matter of the infant brain. J Comput Assist Tomogr 1996;20:1006-1011.

185. Triulzi F, Parazzini C, Righini A. Patterns of damage in the mature neonatal brain. Pediatr Radiol 2006;36:608-620.

186. Valkama AM, Paakko EL, Vainionpaa LK, Lanning FP, Ilkko EA, Koivisto ME. Magnetic resonance imaging at term and neuromotor outcome in preterm infants. Acta Paediatr 2000;89:348-355.

187. Vermeulen RJ, Fetter WP, Hendrikx L, van Schie PE, van der Knaap MS, Barkhof F. Diffusion- weighted MRI in severe neonatal hypoxic ischaemia: the white cerebrum. Neuropediatrics 2003;34:72-76.

188. Vinck A, Maassen B, Mullaart R, Rotteveel J. Arnold-Chiari-II malformation and cognitive functioning in spina bifida. J Neurol Neurosurg Psychiatry 2006;77:1083-1086.

189. Volpe JJ. Intracranial hemorrhage: germinal matrix-intraventricular hemorrhage of the premature infant. In: Volpe JJ, ed. Neurology of the newborn. Philadelphia: W.B. Saunders 1995:403-463.

190. Volpe JJ. Specialized studies in the neurological evaluation. In: Volpe JJ, ed. Neurology of the newborn. 4th ed. Philadelphia: W.B. Saunders Company 2001:134-177.

191. Volpe JJ. Hypoxic-ischemic encephalopathy: neuropathology and pathogenesis. In: Volpe JJ, ed.

Neurology of the newborn. 4th ed. Philadelphia: W.B. Saunders Company 2001:296-330.

192. Volpe JJ. Hypoxic-ischemic encephalopathy: clinical aspects. In: Volpe JJ, ed. Neurology of the newborn. 4th ed. Philadelphia: W.B. Saunders Company 2001:331-394.

Chapter 9

(10)

193. Volpe JJ. Intracranial hemorrhage: germinal matrix-intraventricular hemorrhage of the premature infant. In: Volpe JJ, ed. Neurology of the newborn. 4th ed. Philadelphia: W.B. Saunders Company 2001:428-493.

194. Volpe JJ. Cerebral white matter injury of the premature infant-more common than you think.

Pediatrics 2003;112:176-180.

195. de Vries LS, Eken P, Dubowitz LM. The spectrum of leukomalacia using cranial ultrasound. Behav Brain Res 1992;49:1-6.

196. de Vries LS. Neurological assessment of the preterm infant. Acta Paediatr 1996;85:765-771.

197. de Vries LS, Levene MI. Cerebral ischemic lesions. In: Levene MI, Chervenak FA, Whittle M, eds.

Fetal and neonatal neurology and neurosurgery. 3rd ed. London: Churchill Livingstone 2001:373- 404.

198. de Vries LS, Groenendaal F, Meiners LC. Ischemic lesions in the preterm brain. In: Rutherford MA, ed. MRI of the neonatal brain. London: W.B. Saunders 2002:155-169.

199. de Vries LS, van Haastert I, Rademaker KJ, Koopman C, Groenendaal F. Ultrasound abnormalities preceding cerebral palsy in high-risk preterm infants. J Pediatr 2004;144:815-820.

200. de Vries LS, van der Grond J, van Haastert IC, Groenendaal F. Prediction of outcome in new- born infants with arterial ischaemic stroke using diffusion-weighted magnetic resonance imaging.

Neuropediatrics 2005;36:12-20.

201. Wang J, Licht DJ. Pediatric perfusion MR imaging using arterial spin labeling. Neuroimaging Clin N Am 2006;16:149-167, ix.

202. Wertheim D, Mercuri E, Faundez JC, Rutherford M, Acolet D, Dubowitz L. Prognostic value of continuous electroencephalographic recording in full term infants with hypoxic ischaemic encephalopathy. Arch Dis Child 1994;71:F97-102.

203. Westmark KD, Barkovich AJ, Sola A, Ferriero D, Partridge JC. Patterns and implications of MR contrast enhancement in perinatal asphyxia: a preliminary report. AJNR 1995;16:685-692.

204. van Wezel-Meijler G, van der Knaap MS, Sie LT, et al. Magnetic resonance imaging of the brain in premature infants during the neonatal period. Normal phenomena and reflection of mild ultrasound abnormalities. Neuropediatrics 1998;29:89-96.

205. van Wezel-Meijler G, van der Knaap MS, Oosting J, et al. Predictive value of neonatal MRI as compared to ultrasound in premature infants with mild periventricular white matter changes.

Neuropediatrics 1999;30:231-238.

206. van Wezel-Meijler G. Neonatal cranial ultrasonography. Berlin, Heidelberg: Springer-Verlag 2007.

207. Wolf RL, Zimmerman RA, Clancy R, Haselgrove JH. Quantitative apparent diffusion coefficient measurements in term neonates for early detection of hypoxic-ischemic brain injury: initial experience. Radiology 2001;218:825-833.

208. Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 2006;355:685-694.

209. Xydis V, Astrakas L, Drougia A, Gassias D, Andronikou S, Argyropoulou M. Myelination process in preterm subjects with periventricular leucomalacia assessed by magnetization transfer ratio.

Pediatr Radiol 2006;36:934-939.

210. Yudkin PL, Johnson A, Clover LM, Murphy KW. Clustering of perinatal markers of birth asphyxia and outcome at age five years. Br J Obstet Gynaecol 1994;101:774-781.

211. Zarifi MK, Astrakas LG, Poussaint TY, Plessis AA, Zurakowski D, Tzika AA. Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology 2002;225:859-870.

Referenties

GERELATEERDE DOCUMENTEN

For nonpunctate white matter lesions, T2-weighted imaging scored best (moderate agreement; however, there was poor correlation for the group of infants imaged later), while the

The 10 infants who underwent MR imaging at ages of 28 days or older were all controls and all in the category with low probability to have HIE (all these 10 infants had

Very high signal intensity of the peritrigonal areas compared to surrounding white matter on FLAIR images and the absence of local atrophy were best independent predictors

Thus, in the HIE grade 2 group, neonatal MR imaging with comparison of SI between the posterolateral putamen and the posterior limb of the internal capsule proved to be of added

To our knowledge, only one relatively small study in 11 neonates described the predictive value of DWI and ADC measurements for outcome at 24 months of age in children

The combination of abnormal EEG background pattern (EEG groups 3-4) with diffuse white matter and diffuse deep and/or cortical grey matter changes on CUS or MRI (grade 6, 7 or 8)

Our aim was to assess the value of cUS and magnetic resonance imaging (MRI) for evaluating WM changes and the predictive value of cUS and/or MRI findings for neurodevelopmental

6) In infants with hypoxic-ischemic brain injury, abnormal EEG background activity is highly predictive and more predictive than abnormal neuroimaging findings for abnormal outcome