• No results found

FUTURE  TREATMENT  OF  NSCLC  PATIENTS  WITH  NEW  EGFR  TARGETING  DRUGS

N/A
N/A
Protected

Academic year: 2021

Share "FUTURE  TREATMENT  OF  NSCLC  PATIENTS  WITH  NEW  EGFR  TARGETING  DRUGS"

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

FUTURE  TREATMENT  OF  NSCLC  PATIENTS  WITH  NEW  EGFR   TARGETING  DRUGS  

Avoidance  of  EGFR-­‐TKI  resistance  through  inhibition  of  C-­‐MET  and  the  use  of  new  generation   EGFR-­‐TKI’s  

 

 

 

           

                                       

Mutated  EGFR  kinase  complex  in  association  with  gefitinib(Michalczyk  et  al.  2008).  

   

       

Student:  S.    de  Waard  

Supervisor:  Prof.  dr.  F.A.E.  Kruyt,  Department  of  Medical  Oncology,  UMCG                                                                                                                                                                                                     Date:  20-­‐06-­‐201  

(2)

TABLE OF CONTENT  

     

ABSTRACT  ...  3    

INTRODUCTION  ...  3    

NSCLC  IN  RELATION  WITH  EGFR  ...  3    

HOW  DID  THEY  TREAT  NSCLC  IN  THE  PAST?  ...  4    

RESISTANCE  OF  EGFR-­‐TKIS  ...  5    

ALK/ROS1-­‐RECEPTOR  ...  6    

DIAGNOSTICS  OF  NSCLC  ...  6    

EGFR-­‐TKI  RESISCTANC:  NEW  APPROACH  ...  7    

PROTO-­‐ONCOGENE  TYROSINE  KINASE:  SRC  ...  8    

EFFICACY  OF  THE  DUAL  TREATMENT  OF  NEW  GENERATION  EGFR-­‐TKI  AND  CRIZOTINIB..8    

TOXICITY  ...  8    

DISCUSSION    ...  12    

REFERENCES  ...  10    

                   

(3)

ABSTRACT  

The   treatment   of   non-­‐small   cell   lung   carcinoma   (NSCLC)   patients   with   epidermal   growth   factor   receptor  tyrosine  kinase  inhibitors  (EGFR-­‐TKI’s),  such  as  gefitinib  and  erlotinib,  was  proven  to  be   effective   in   a   subset   of   patients   with   a   mutated   constitutive   active   EGFR.   However,   during   treatment  the  cancer  cells  evolve  and  develop  resistance  against  these  EGFR-­‐TKI’s,  causing  a  major   hurdle  for  successful  treatment.  A  number  of  mechanisms  were  identified  responsible  for  this  type   of   EGFR-­‐TKI   resistance;   the   most   common   are   the   gatekeeper   EGFR-­‐T790M   mutation   and   C-­‐Met   amplification.   Some   patients   have   NSCLC   due   to   a   ROS1   or   anaplastic   lymphoma   kinase   (ALK)   chromosomal  rearrangement  while  they  have  the  same  pathology.  The  most  efficient  methods  for   this  identification  are  fluorescent  in  situ  hybridization’  (FISH)  and  immuno-­‐  histochemistry  (IHC).  To   overcome   resistance,   new   drugs   like   crizotinib   were   used   to   target   the   C-­‐Met   receptor.  

Furthermore  new  generation  EGFR-­‐TKI’s  including  afatinib  and  WZ4002,  have  been  developed.  The   efficacy  of  these  new  drugs  was  tested  in  different  type  of  NSCLC  cells,  in  various  in  vitro  and  in   vivo  models.  The  combination  of  WZ4002  with  crizotinib  showed  the  most  dramatic  effect  against   the  mutated  cells,  while  the  side  effects  and  toxicity  were  marginal  compared  to  the  afatinib  and   crizotinib  combination.  Thus,  the  use  of  crizotinib  and  WZ4002  can  overcome  EGFR-­‐TKI  resistance     the  case  of  a  mutated  EGFR.  

   

INTRODUCTION  

Lung  cancer  is  the  most  lethal  form  of  cancer   throughout   the   world,   28%   of   the   male   and   26%   of   all   woman   cancer   deaths   are   due   to   lung  cancer  (Siegel  et  al.  2014).  85%  of  these   patients  have  NSCLC.  Often  these  patients  are   non-­‐smokers,  while  other  types  of  lung  cancer   like   small   cell   lung   carcinoma   (SCLC)   are   usually   more   correlated   with   smoking   (Selinger  et  al.  2013).  NSCLC  is  a  large  group  of   epithelial   lung   cancer   types   like   large   cell   carcinoma,   adenocarcinoma   and   squamous   cell   carcinoma.   Histologically   these   cancer   types   have   larger   cells   compared   to   SCLC.  

Unfortunately,   NSCLC   is   quite   insensitive   to   chemotherapy   and   this   type   of   cancer   easily   metastasizes   throughout   the   body.   Patients   without  a  metastasis  are  usually  treated  with   surgery   and   radiation.   Although   NSCLC   is   insensitive  for  chemo-­‐therapy  the  old  fashion   way   to   treat   this   type   of   cancer   was   with   conventional  cytotoxic  chemicals,  especially  if   the   tumor   metastasizes.   These   chemicals   induce  DNA  damage,  inhibit  DNA  synthesis  or   the   uptake   of   nutrients   and   therefore   proliferation.   Since   these   processes   are   obviously   essential   to   all   dividing   cells   in   the   body,  these  drugs  generally  cause  severe  side   effects  (Ciarimboli  2014).  Even  if  this  approach   is  combined  with  surgery  and  radiation,  it  is  in   most   cases   not   enough   to   eradicate   the   disease  (Zhang  et  al.  2007).  This  is  why  there  is   a   lot   of   research   nowadays   to   identify   and  

develop   alternative   drugs   to   effectively   treat   NSCLC   patients.   Because   the   tumor   is   often   depending   on   specific   pathways   that   drive   proliferation,   these   drugs   are   targeted   on   specific   components   of   those   pathways.   The   RAS  and  Akt  pathways  for  instance,  which  can   be  activated  with  the  EGFR,  can  lead  to  NSCLC   pathology   (Figure   1).   In   the   case   of   EGFR   related   NSCLC   a   new   approach   is   used   to   effectively   inhibit   the   receptor   with   either   antibodies   or   tyrosine   kinase   inhibitors   (TKI),   this   essay   will   primarily   focus   on   the   latter   one.   One   of   those   drugs   are   first   generation   EGFR-­‐TKI’s   like   gefitinib   and   erlotinib.  

Although  these  drugs  work  quite  well  against   NSCLC,   resistance   is   becoming   a   major   problem.   So   the   main   question   of   this   thesis   is:   What   is   the   cause   of   EGFR-­‐TKI   resistance     and  how  can  it  be  prevented?  

NSCLC  IN  RELATION  WITH  EGFR  

About   15%   of   the   Caucasian   and   30-­‐60%   of   the   Asian   NSCLC   patients   have   a   mutation   in   the  EGFR  (Selinger  et  al.  2013).  The  EGFR  is  a   member   of   the   ErbB   cell   surface   receptors,   which  are  all  receptor  tyrosine  kinases  (RTKs).  

In  1959  researchers  tried  to  find  an  oncogene   that   causes   neuroblastoma,   this   gene   was   identified   as   neu   (Schechter   et   al.   1984).  The   neu  oncogene  is  homological  comparable  to  v-­‐

erbB,   this   is   a   viral   oncogene   which   can   be  

(4)

isolated   from   an   erythroblastosis   retrovirus,   this   virus   actually   encodes   a   fragment   of   the   chicken   EGFR.   If   a   bird   is   infected   with   this   virus,   it   can   cause   cancer   (Schechter   et   al.  

1984).   Because   of   this   phenomenon   the   researchers   thought   that   a   mutated   EGFR   could   cause   cancer.   Later   in   1965   Cohen   and   colleagues   discovered   the   epidermal   growth   factor  (EGF)  and  the  role  of  its  receptor,  which   is   to   activate   gene   transcription   and   control   the  cell  cycle  progression  (Cohen  1965).  

 

Figure  1:  Downstream  signaling  pathways  in  NSCLC.    

This   picture   summarizes   the   most   important   signaling   pathways   leading   to   NSCLC.   This   picture   was   modified   from    (Janku,  Stewart  &  Kurzrock  2010).  

 

The   EGFR   receptor   consist   of   an   intra-­‐   and   extracellular   domain;   the   active   receptor   can   communicate   through   complex   pathways   in   the   cytoplasm.   The   EGFR   and   other   ErbB   receptors   can   form   dimers,   this   is   a   state   in   which   the   receptor   is   normally   active   (Zhang   et  al.  2007).  The  dimerization  process  requires   a   ligand-­‐receptor   interaction,   after   the   dimerization   the   intrinsic   protein-­‐tyrosine   kinase   domain   of   the   receptor   is   stimulated.  

Because  of  this  ATP  can  bind  the  lysine  residue   of   the   tyrosine   kinase   domain   and   therefore   provides   an   organic   phosphate   group.   This   is   followed   by   an   auto   phosphorylation   process   of   several   other   tyrosine   kinase   domains   on   the   intracellular   part   of   the   receptor.   This   process   will   induce   the   RAS,   AKT   and   other     transduction   pathways   (see   also   Figure   1)   (Dawson   et   al.   2005).   The   above-­‐mentioned   pathways   are   responsible   for   several   key   regulatory   cell   processes,   for   instance   angiogenesis,   inhibition   of   apoptosis,   cell   proliferation   and   migration/invasion  

properties  (Oda  et  al.  2005).    Most  of  the  time   the   mutations   in   the   EGFR   of   NSCLC   patients   are   heterozygous,   furthermore   the   mutant   allele   can   be   overexpressed   because   of   gene   amplification.  The  EGFR  L858R  point  mutation   in   exon   21   and   the   deletion   of   exon   19   are   both   in   the   intracellular   catalytic   domain   of   the   EGFR   receptor.   These   mutations   are   the   most  common  and  can  cause  activation  of  the   receptor  (Soh  et  al.  2009).  

HOW  DID  THEY  TREAT  NSCLC  IN  THE  PAST?  

The   way   NSCLC   patients   are   treated   is   depending   on   the   tumor   stage   and   patient   condition.   Stage   I,   II   and   IIIA   patients   are   treated   with   radiation,   cytotoxic   chemotherapy   and   surgery   (Bulzebruck   et   al.  

1992).   Unfortunately   this   approach   is   in   a   lot   of  cases  not  enough  to  eradicate  the  tumor  in   advanced   NSCLC.   Small   molecule   EGFR-­‐TKI’s   like  erlotinib  (Tarceva®)  and  gefitinib  (Iressa®)   are   common   drugs   for   patients   with   a   mutated   overactive   EGFR.   These   drugs   can   compete  with  ATP  for  the  binding  sites  on  the   tyrosine  kinase  domain  of  the  receptor  (Figure   2A).   As   a   consequence   the   phosphorylation   and   activation   of   the   downstream   signaling   pathways  of  the  EGFR  are  disrupted.  A  double-­‐

blinded   phase   III   trial   experiment   between   a   placebo   and   both   erlotinib   and   gefitinib   proved  that  these  drugs  have  a  positive  effect   on  the  survival  of  Asian  and  Caucasian  NSCLC   patients,   because   these   groups   of   patients   usually  have  the  proper  EGFR  mutation  (Chang   et   al.   2006,   Sheikh,   Chambers   2013).  

Moreover,   compared   to   classical   cisplatin-­‐

based   chemotherapy   both   drugs   have   a   significant   higher   efficacy,   an   extended   progression   free   survival   (PFS)   from   8.4   to   13.1  months  and  a  better  quality  of  life  (Zhou   et   al.   2011).   These   two   drugs   are   most   commonly  used  in  the  case  of  the  L858R  point   mutation  in  exon  21  or  the  deletion  of  exon  19.  

Despite   the   fact   that   these   drugs   seem   to   be   quite   effective,   only   a   selected   group   of   patients  have  high  response  rates.  

(5)

Figure  2:  Mechanism  of  EGFR-­‐TKI  resistance.    

Figure  A  shows  a  computer  simulation  of  the  crystallo-­‐  

graphically  determined  binding  of  erlotinib  to  the  EGFR.  Figure   B  shows  the  steric  hindrance  due  to  the  bulkier  methionine   residue  (orange)  caused  by  the  T790M  mutation.  In  figure  C  the   steric  hindrance  of  gefitinib  and  the  T790M  mutated  EGFR  is   shown,  figure  D  shows  a  the  steric  hindrance  of  an  irreversible   EGFR-­‐TKI  with  the  mutated  EGFR  (Kobayashi  et  al.  2005).  

 

This  is  for  instance  the  case  with  East  Asians,   non-­‐smokers  and  female  patients.  In  a  normal   population   the   response   rate   is   just   about   10%.   Additionally,   studies   have   shown   that   there   are   many   other   important   factors   that   can   influence   EGFR-­‐TKI’s   sensitivity   (Fukuoka   et  al.  2003,  Miller  et  al.  2004).    

 

RESISTANCE  OF  EGFR-­‐TKIs  

EGFR-­‐TKI   Resistance   is   a   major   problem   for   NSCLC   patients.   If   some   pathways   are   inhibited  by  a  drug,  other  pathways  can  simply   take   it   over.   There   are   several   important   mutations   for   an   NSCLC   cell   to   develop   resistance   for   EGFR-­‐TKI’s.   The   most   common   is  the  T790M  mutation,  this  mutation  replaces   threonine  residue  at  location  790  with  a  bulky   methionine   residue   (T790M).   Because   of   this   substitution,   the   EGFR-­‐tyrosine   kinase   pocket   has   higher   affinity   for   ATP,   resulting   in   a   decreased   affinity   for   erlotinib   and   gefitinib   (Figure  2B,  2C).  The  T790M  mutation  occurs  in   half   of   the   tumors   that   were   treated   with   EGFR-­‐TKI’s,   the   mutation   is   usually   already   present  without  EGFR-­‐TKI  treatment,  only  the   cells   with   the   mutation   survive   because   of   clonal   selection.   However,   some   studies  

suggest  this  mutation  can  originate  because  of   the   treatment   (Kobayashi   et   al.   2005).   To   come  up  with  a  solution  researchers  came  up   with   irreversible   EGFR-­‐TKI’s,   these   small   molecules   can   bind   covalently   to   a   cysteine   residue   of   the   EGFR-­‐tyrosine   kinase   pocket.  

Unfortunately   most   irreversible   EGFR-­‐TKI’s   have   many   severe   side   effects   like   skin   rash,   stomatitis,   nail   loss   and   diarrhea.   Afatinib   (Giotrif®)   is   the   most   promising   irreversible   EGFR-­‐TKI’s   while   the   side   effects   are   less   compared   to   other   experimental   irreversible   EGFR-­‐TKI’s  which  seem  to  be  less  specific  and   influence   other   tyrosine   kinase   receptors   as   well    (Tao  et  al.  2014).    

   

   

Figure   3:   The   loss   of   tumor   suppressor   gene   PTEN.  

Figure   A   demonstrates   the   continuously   activated   PI3K/Akt   pathway,   which   leads   to   Cell   survival.   EGFR-­‐

TKI’s  are  able  to  inhibit  the  receptor  and  as  a  result  the   PI3P/Akt  pathway  (Figure  B).  C  shows  loss  of  PTEN:  PIP3   levels  stay  elevated  which  promotes  the  activation  of  the   PI3K/Akt  pathway.  This  mechanism  can  cause  EGFR-­‐TKI’s   resistance  (Yamamoto  et  al.  2010).  

 

Secondly,   the   resistance   against   first   and   second   generation   EGFR-­‐TKI’s   can   be   bypassed   because   of   c-­‐Met   (MET)   amplification,   both   the   MET   and   EGF-­‐

(6)

receptors   play   an   important   role   in   the   activation   of   the   RAS-­‐Erk1/2   pathway.  

Hepatocyte   growth   factor   (HGF)   is   the   ligand   of   MET   and   it   can   activate   the   receptor   through   an   adaptor   protein   (Gab1).   This   triggers  resistance  to  reversible  EGFR-­‐TKI’s  like   erlotinib   and   irreversible   EGFR-­‐TKI’s   like   afatinib.   Because   the   EGFR   downstream   signaling   pathway   is   bypassed   through   the   MET  pathway  (Turke  et  al.  2010,  Yamada  et  al.  

2010,   Yano   et   al.   2008).   In   a   Japanese   study   with   mutant   EGFR   patient’s   researchers   observed  that  HGF  was  overexpressed  in  61%  

of   the   tumors   with   acquired   resistance.   This   indicates   that   HGF   can   be   a   useful   target   in   combination   with   EGFR-­‐TKI’s   to   prevent   resistance  (Yano  et  al.  2011).  

Thirdly,   activation   AKT   downstream   pathway  is  possible  because  of  the  loss  of  the   tumor   suppressor   gene   PTEN.   Normally   this   gene  is  responsible  for  the  conversion  of  PIP3   to   PIP2.   However   if   PIP3   levels   stay   elevated,   Akt   can   be   activated   without   EGFR   activity.  

This  will  result  in  cell  growth  and  inhibition  of   apoptosis  (Figure  3)  (Yamamoto  et  al.  2010).  

   

ALK/ROS1-­‐RECEPTOR.  

Anaplastic   Lymphoma   Kinase   (ALK)   is   a   tyrosine  kinase  receptor  of  the  insulin  family,   it   is   an   important   receptor   in   the   central   nervous   system   where   its   expression   levels   are   low   (Iwahara   et   al.   1997).   Through   the   RAS,  PLCγ  and  STAT  pathways  ALK  is  involved   in  cell  division  and  cell  proliferation  (Figure  1).  

Changes   in   ALK   can   give   rise   to   a   permanent   active   ALK   complex.   In   3-­‐4%   of   the   cases   NSCLC   is   caused   by   a   chromosomal   translocation   of   ALK   and   the   echinoderm   microtubule-­‐associated   protein-­‐like   4   (EML4);    

a   protein   necessary   for   the   formation   of   microtubules.   This   translocation   will   fuse   the   3’   kinase   domain   of   ALK   with   ELM4   and   its   promoter,   as   a   result   the     translocation   generates  an  ELM4-­‐ALK  fusion  protein,  which   leads  to  ALK  activation    (Selinger  et  al.  2013).  

Therefore  ALK  will  be  present  in  relative  high   concentrations  in  all  kinds  of  tissues,  while  it  is   generally   only   present   in   the   central   nervous   system   (Jiang   et   al.   2013).   Furthermore,   because   the   fusion   disturbs   the   coiled   coil   domain   of   the   receptor,   ELM4-­‐ALK   is   able   to  

dimerize   without   the   ligand   of   ALK.   This   process   can   lead   to   a   signal   independent   kinase  activity,  which  can  inhibit  apoptosis  or   stimulate   cell   proliferation   and   division.   The   above-­‐mentioned   mechanism   is   the   most   common   type   of   ALK   activation   in   NSCLC   patients   (Selinger   et   al.   2013).   Although   the   cause   of   the   underlying   mechanism   is   completely   different,   both   the   ALK   mutation   and  EGFR  mutation  have  the  same  pathology.  

For  this  reason  it  is  not  possible  to  identify  the   cause   of   NSCLC   just   with   the   clinical   picture.  

Because  there  are  two  groups  of  patients  with   different   targets   it   is   important   to   have   a   thorough  test  to  decide  whether  a  patient  has   ELM4-­‐ALK  or  EGFR  related  NSCLC,  more  about   this  in  the  diagnostic  section.    

Another   receptor   that   can   play   a   role   in   NSCLC   is   the   ROS1   receptor.   Like   the   ALK   receptor  ROS1  is  a  tyrosine  kinase  insulin-­‐like   receptor,   which   can   form   fusion   proteins   as   well.  Approximately  1.6%  of  the  patients  have   NSCLC   due   to   a   fusion   in   ROS1.   There   are   14   different  genes  for  the  fusion  with  the  ROS1-­‐

terosine   kinase   domain   that   can   lead   to   NSCLC.   The   most   common   is   the   SDC4-­‐ROS1   fusion,   SDC4   is   generally   a   trans-­‐   membrane   structure  that  is  involved  in  the  attachment  of   extracellular   structures   (Stumpfova,   Janne   2012).  Like  the  EML4-­‐ALK  fusion  ROS1  fusions   are   oncogenic   because   the   receptor   can   dimerize   without   ligand.   Moreover,   some   fusions   deliver   a   stronger   promoter,   that   can   lead   to   a   higher   transcription  rate.   This   can   result  in  high  receptor  concentrations  in  both   ALK  and  ROS1.  

DIAGNOSTICS  OF  NSCLC  

For   an   effective   NSCLC   treatment   it   is   important   that   the   molecular   background   of   the   patient   is   thoroughly   examined.   This   is   because   ALK   related   NSCLC   has   the   same   pathology  compared  to  EGFR  related  NSCLC.  If,   for   example,   a   patient   has   a   mutated   EGFR   receptor,   an   ALK-­‐TKI   drug   will   obviously   not   work.   An   effective   method   to   test   for   AKL-­‐

translocation  is  ‘break  apart  fluorescent  in  situ   hybridization’   (FISH).   Both   genes   are   positioned   on   the   short   arm   (p)   of   chromosome  2:  EML4  is  located  on  2p21  and   ALK   is   located   on   locus   2p23   (Figure   4).   This  

(7)

technique  uses  two  locus  specific  probes  (LSP)   with  different  colors.  A  red  probe  binds  to  the   last   (3’   end)   part   of   the   ALK   gene,   the   green   probe   covers   a   piece   of   the   enhancer-­‐

promoter  region  of  the  EML4  gene  (Shaw  et  al.  

2009).   If   a   NSCLC   patient   has   an   EML4-­‐ALK   fusion   gene   because   of   break   resulting   in   a   translocation   or   inversion,   it   is   easily   recognized   with   a   fluorescent   microscope.  

This  will  be  visible  as  separate  red  and  green   dots.   If   the   probes   are   close   together,   it   is   often   visible   as   a   yellow   dot   (Figure   4E).   If   more   than   50%   of   the   cells   have   a   chromosomal   translocation   pattern,   the   patient  is  EML4-­‐ALK  positive.  If,  however,  less   that  10%  of  the  cells  are  negative,  the  patient   is  considered  EML4-­‐ALK  negative.    

Figure  4:  Translocation  leading  to  ELM4-­‐ALK.    

4A:  In  the  wild  type  chromosome  the  FISH  probes  are  close   together,  after  the  translocation  the  probes  are  separated.  Wild   type  cells  are  shown  in  4B  and  4D,  the  mutated  cells  are  shown   in  figure  4C  and  4E  analyzed  with  immunohistochemistry  and   FISH  respectively.  This  picture  is  modified  from  (Selinger  et  al.  

2013).  

     

When   the   results   of   the   positive   cells   are  

>10%   and   <50%,   another   50   cells   are   scored.  

When   15%   of   these   cells   shows   a   chromosomal   translocation,   the   test   is   considered   positive   (Teixidó   2014).   Similarly,   ROS1   translocations   can   be   identified   with   break   apart   FISH   as   well.   Because   of   this   arbitrary   cutoff   of   15%   some   patients   are   classified  as  EML4-­‐ALK  or  SDC4-­‐ROS1  negative.  

In   the   past   a   patient   with   13%   positive   cells   was   regarded   as   EML4-­‐ALK   negative   while   being   EML4-­‐ALK   positive.   In   addition,   if   an   inversion  involves  a  small  locus  it  could  result   in  a  false  negative  as  well  (Soda  et  al.  2007).    

A  second  technique  is  the  use  of  IHC,   there   are   several   antibody’s   (ALK1,   5A4   and   D5F3)  on  the  market  with  the  same  specificity   compared  to  a  break  apart  FISH  test  (Figure  4B,   4C)   (Selinger   et   al.   2013).   Although   it   is   a   promising  and  easy  technique,  the  use  of  IHC   is  unfortunately  not  commercially  available  in   a  lot  of  countries  like  the  US  because  it  is  not   approved  by  the  food  and  drug  administration   (FDA).   It   is   also   possible   to   screen   NSCLC   patients  with  RT-­‐PCR,  this  is  a  rapid  and  cheap   identification   method   for   each   unique   known   variant.   The   problem   with   this   technique   however   is   that   a   specific   probe   is   required.  

For   this   reason   unknown   variants   will   not   be   detected   (Fu   et   al.   2014).   The   the   most   effective   method   for   the   screening   of   a   translocation   seems   to   be   IHC,   especially   when   it   is   commercially   available   in   all   countries.    

EGFR-­‐TKI  RESISCTANC:  NEW  APPROACH   To  overcome  the  resistance  against  EGFR-­‐TKI’s   and  researchers  came  up  with  new  generation   of  promising  EGFR-­‐TKI’s  like  crizotinib  (Xalori®),   afatinib   and   WZ4002.   Crizotinib   is   capable   of   inhibiting   the   ALK,   ROS1   and   MET   receptors.  

Like   other   TKI’s   crizotinib   competes   with   ATP   for   the   binding   sites   on   the   tyrosine   kinase   domain   of   these   receptors.   This   drug   is   already  been  used  for  the  treatment  of  EML4-­‐

ALK   NSCLC   patients   and   is   approved   by   the   FDA  since  august  2011  (Ou  et  al.  2012,  Rodig,   Shapiro   2010).   WZ4002   is   a   third   generation   mutant-­‐selective  irreversible  EGFR-­‐TKI.    

(8)

PROTO-­‐ONCOGENE  TYROSINE-­‐KINASE:  SRC   Recent   studies   showed   that   the   previous   mentioned  mutations  like  the  gatekeeper  and   MET   amplification   are   not   the   only   ways   a   NSCLC   tumor   can   acquire   resistance   to   gefitinib  and  afatinib.  There  are  several  other   alternative   kinases   that   can   activate   the   downstream   signaling   pathways.   The   Proto-­‐

oncogene   SRC   for   instance   is   a   non-­‐receptor   tyrosine   kinase   that   is   capable   of   phosphorylating   many   other   proteins   (Wheeler,   Iida   &   Dunn   2009).   One   of   the   proteins   that   can   be   activated   by   Src   is   the   intracellular   part   of   the   MET-­‐receptor.  

Therefore   HGF-­‐independent   activation   of   the   MET   receptor   is   possible   through   Scr   activation,   this   is   commonly   seen   in   erlotinib   resistant  cells  (Stabile  et  al.  2013).  In  addition,   Src   is   capable   of   activating   the   AKT,   RAS   and   STAT   pathways.   To   block   these   downstream   signaling  pathways  a  Src  inhibitor  can  be  used.  

Moreover,   Src   can   inhibit   Anoikis.   This   is   a   form  of  programmed  cell  death  like  apoptosis,   it’s   normally   mediated   through   the   detachment   of   the   cell   and   the   extracellular   matrix   in   anchorage-­‐dependent   cells.   This   process   can   inhibited   by   Src.   Because   of   Src   activation   the   lung   tumor   can   become   resistant   to   anoiksis   (Sakuma   et   al.   2010).   A   Japanese  study  showed  that  WZ4002  is  able  to   block   the   Scr   pathway   more   efficiently   compared   to   Src   inhibitors   in   lung   adenocarcinomas   and   other   types   of   NSCLC.  

This  was  tested  with  the  HCC827  (del  747-­‐750)   and   the   H1975   (double   mutation:  

T790M/L858R)  cell  lines  (Sakuma  et  al.  2012).    

EFFICACY  OF  THE  NEW  GENERATION  EGFR-­‐

TKI  AND  CRIZOTINIB  DUAL  TREATMENT     To  compare  the  effect  of  crizotinib  alone  or  in   combination   with   afatinib   and   WZ4002,   Japanese   researchers   used   different   NSCLC   cell  types  (Nanjo  et  al.  2013).  The  first  cell  line   is  an  EGFR  mutant  with  a  deletion  in  exon  19   resulting   in   a   high   expression   of   the   EGFR   receptor.   Secondly,   MET   amplification   cells   were   used,   these   cells   have   the   same   deletions  with  a  MET  gene  amplification  (Suda   et   al.   2010).   Thirdly,   the   researchers   used   NSCLC   cells   with   the   T790M   mutation.   The   cells   were   exposed   to   increasing  

concentrations   of   EGFR-­‐TKI’s:     afatinib   and   WZ4002.   At   the   same   time   the   cells   were   exposed   to   crizotinib   (ALK,   ROS1   and   MET   inhibitor),   HGF   and   the   combination   of   crizotinib  and  HGF  while  the  cell  proliferation   was  monitored.  In  both  the  cell  lines  crizotinib   and   afatinib   reduced   proliferation.   However,   the   external   added   HGF   generated   EGFR-­‐TKI   resistance,   this   process   could   be   reduced   by   the  use  of  an  EGFR-­‐TKI  and  crizotinib.  Another   experiment   showed   that   the   gefitinib     resistant   cells   were   sensitive   to   afatinib   and   WZ4002.   Although   HGF   was   exogenously   added,   crizotinib   still   sensitized   those   cells.  

Furthermore,   the   combination   of   crizotinib   and   a   new   generation   EGFR-­‐TKI   reduced   cell   proliferation   significantly   in   the   MET   amplificated   cells   even   with   exogenously   added  HGF.    

These   experiments   indicate   that   the   combination   of   crizotinib   plus   WZ4002   or   afatinib   can   prevent   EGFR-­‐TKI   resistance   in   NSCLC   cells   with   MET   receptor   amplification,   HGF  overexpression  and  the  T790M  mutation   (Nanjo  et  al.  2013).  Secondly  WZ4002  is  about   30  -­‐  100  times  more  potent  compared  to  the   currently   used   EGFR-­‐TKI’s   like   afatinib   and   erlotinib,   especially   against   the   T790M   EGFR   mutant  cell  lines  (Sakuma  et  al.  2012)              

To   examine   the   efficacy   of   crizotinib   and   the   new   generation   EGFR-­‐TKI’s   (afatinib,   WZ4002)  in  vivo,  mouse  models  were  used  in   another   experiment.   NSCLC   cells   with   the   T790M   mutation   and   the   same   cells   with   a   HGF   gene   transfection   were   injected   in   immunodeficiency  (SCID)  mice.  As  a  result  the   mice   developed   tumors.   The   most   successful   treatment  of  the  T790M  HGF  transfected  cells   was   observed   with   the   combination   of   crizotinib   and   WZ4002   or   afatinib.   A   treatment   with   just   crizotinib,   afatinib   or   WZ4002   alone   was   not   effective   with   these   cells.   The   administration   of   just   afatinib   or   WZ4002   inhibited   growth   significantly   in   the   cells   with   just   the   T790M   mutation,   however   the   administration   of   only   crizotinib   was   not   effective.   This   strongly   suggests   that   the   resistance   against   EGFR-­‐TKI   is   induced   by   the   expression  of  HGF  in  vivo  (Nanjo  et  al.  2013).  

(9)

TOXICITY  

The  above  results  show  that  both  afatinib  and   WZ4002   are   quite   effective   in   combination   with   crizotinib.   However,   a   lot   of   EGFR-­‐TKI’s   can   induce   severe   side   effects.   This   is   especially  the  case  in  high  concentrations  or  in   combination   with   other   drugs.   Afatinib   for   instance   can   causes   diarrhea   and   acneiforn   (acne  like  skin  condition)  in  more  than  30%  of   the   patients.   Some   side   effects   of   EGFR-­‐TKI’s   like   deceased   appetite,   itching,   weight   loss   and  nose  bleeds  are  less  common,  they  occur   in  about  10-­‐29%  (Tao  et  al.  2014).  To  test  the  

toxicity   of   a   dual   treatment   of   afatinib   or   WZ4002   with   crizotinib   during   the   in   vivo   experiment,  Najo  and  his  group  measured  the   mice   body   weight.   The   intestinal   mucosal   damage   was   analyzed   as   well.    

      The   treatment   of   the   three   agents   alone   and   the   combination   of   WZ4002   and   crizotinib   had   a   minor   effect   of   intestinal   damage   or   bodyweight.   However,   the   combination  of  afatinib  and  crizotinib  cause  a   massive   drop   in   bodyweight.   Furthermore,   this   combination   induced   severe   intestinal   mucosal  damage  (Nanjo  et  al.  2013).  

 

DISCUSSION  

The  use  of  crizotinib  is  already  successful  with  EML4-­‐ALK  NSCLC  patients.  In  addition,  mouse  models   and  cell  culture  experiments  show  that  the  combination  of  a  new  generation  EGFR-­‐TKI’s  (afatinib  or   WZ4002)  with  crizotinib  can  overcome  resistance  to  reversible  EGFR-­‐TKI’s  like  erlotinib  and  gefitinib.  

These   results   suggest   that   the   blockage   of   both   the   mutant   EGFR   and   MET   eceptors   by   the   dual   treatment   of   crizotinib,   and   new   the   generation   EGFR-­‐TKI’s   can   be   quite   promising.    

Because  the  combination  of  afatinib  and  crizotinib  can  induce  severe  side  effects  the  combination  of   crizotinib  and  WZ4002,  which  is  less  toxic,  is  more  favorable.  Furthermore  the  Src  pathway  that  is   blocked   by   WZ4002   can   actually   play   an   important   role   as   well.   In   the   future   proper   clinical   experiments   are   needed   to   test   this   combination   in   humans.   The   personal   approach   to   treat   different  types  of  NSCLC  can  only  be  performed  if  the  molecular  characteristics  are  fully  known.  This   can  be  accomplished  through  the  use  of  IHC  or  a  ‘brake  apart  FISH‘  analysis.    

                   

(10)

REFERENCES  

 Bulzebruck,  H.,  Bopp,  R.,  Drings,  P.,  Bauer,  E.,  Krysa,  S.,  Probst,  G.,  van  Kaick,  G.,  Muller,  K.M.  &  Vogt-­‐

Moykopf,  I.  1992,  "New  aspects  in  the  staging  of  lung  cancer.  Prospective  validation  of  the   International  Union  Against  Cancer  TNM  classification",  Cancer,  vol.  70,  no.  5,  pp.  1102-­‐1110.  

Chang,  A.,  Parikh,  P.,  Thongprasert,  S.,  Tan,  E.H.,  Perng,  R.P.,  Ganzon,  D.,  Yang,  C.H.,  Tsao,  C.J.,  

Watkins,  C.,  Botwood,  N.  &  Thatcher,  N.  2006,  "Gefitinib  (IRESSA)  in  patients  of  Asian  origin  with   refractory  advanced  non-­‐small  cell  lung  cancer:  subset  analysis  from  the  ISEL  study",  Journal  of   thoracic  oncology  :  official  publication  of  the  International  Association  for  the  Study  of  Lung   Cancer,  vol.  1,  no.  8,  pp.  847-­‐855.  

Ciarimboli,  G.  2014,  "Membrane  transporters  as  mediators  of  cisplatin  side-­‐effects",  Anticancer   Research,  vol.  34,  no.  1,  pp.  547-­‐550.  

Cohen,  S.  1965,  "The  stimulation  of  epidermal  proliferation  by  a  specific  protein  (EGF)",   Developmental  biology,  vol.  12,  no.  3,  pp.  394-­‐407.  

Dawson,  J.P.,  Berger,  M.B.,  Lin,  C.C.,  Schlessinger,  J.,  Lemmon,  M.A.  &  Ferguson,  K.M.  2005,  

"Epidermal  growth  factor  receptor  dimerization  and  activation  require  ligand-­‐induced  

conformational  changes  in  the  dimer  interface",  Molecular  and  cellular  biology,  vol.  25,  no.  17,   pp.  7734-­‐7742.  

Fu,  S.,  Wang,  F.,  Shao,  Q.,  Zhang,  X.,  Duan,  L.P.,  Zhang,  X.,  Zhang,  L.  &  Shao,  J.Y.  2014,  "Detection  of   EML4-­‐ALK  Fusion  Gene  in  Chinese  Non-­‐Small  Cell  Lung  Cancer  by  Using  a  Sensitive  Quantitative   Real-­‐Time  Reverse  Transcriptase  PCR  Technique",  Diagnostic  molecular  pathology  :  the  

American  journal  of  surgical  pathology,  part  B,  .  

Fukuoka,  M.,  Yano,  S.,  Giaccone,  G.,  Tamura,  T.,  Nakagawa,  K.,  Douillard,  J.Y.,  Nishiwaki,  Y.,  

Vansteenkiste,  J.,  Kudoh,  S.,  Rischin,  D.,  Eek,  R.,  Horai,  T.,  Noda,  K.,  Takata,  I.,  Smit,  E.,  Averbuch,   S.,  Macleod,  A.,  Feyereislova,  A.,  Dong,  R.P.  &  Baselga,  J.  2003,  "Multi-­‐institutional  randomized   phase  II  trial  of  gefitinib  for  previously  treated  patients  with  advanced  non-­‐small-­‐cell  lung   cancer  (The  IDEAL  1  Trial)  [corrected",  Journal  of  clinical  oncology  :  official  journal  of  the   American  Society  of  Clinical  Oncology,  vol.  21,  no.  12,  pp.  2237-­‐2246.  

Iwahara,  T.,  Fujimoto,  J.,  Wen,  D.,  Cupples,  R.,  Bucay,  N.,  Arakawa,  T.,  Mori,  S.,  Ratzkin,  B.  &  

Yamamoto,  T.  1997,  "Molecular  characterization  of  ALK,  a  receptor  tyrosine  kinase  expressed   specifically  in  the  nervous  system",  Oncogene,  vol.  14,  no.  4,  pp.  439-­‐449.  

Janku,  F.,  Stewart,  D.J.  &  Kurzrock,  R.  2010,  "Targeted  therapy  in  non-­‐small-­‐cell  lung  cancer-­‐-­‐is  it   becoming  a  reality?",  Nature  reviews.Clinical  oncology,  vol.  7,  no.  7,  pp.  401-­‐414.  

Jiang,  K.,  Brownstein,  S.,  Sekhon,  H.S.,  Laurie,  S.A.,  Lam,  K.,  Gilberg,  S.  &  Britton,  W.  2013,  "Ocular   metastasis  of  lung  adenocarcinoma  with  ELM4-­‐ALK  translocation:  A  case  report  with  a  review  of   the  literature",  Saudi  journal  of  ophthalmology  :  official  journal  of  the  Saudi  Ophthalmological   Society,  vol.  27,  no.  3,  pp.  187-­‐192.  

Kobayashi,  S.,  Boggon,  T.J.,  Dayaram,  T.,  Janne,  P.A.,  Kocher,  O.,  Meyerson,  M.,  Johnson,  B.E.,  Eck,   M.J.,  Tenen,  D.G.  &  Halmos,  B.  2005,  "EGFR  mutation  and  resistance  of  non-­‐small-­‐cell  lung   cancer  to  gefitinib",  The  New  England  journal  of  medicine,  vol.  352,  no.  8,  pp.  786-­‐792.  

(11)

Michalczyk,  A.,  Kluter,  S.,  Rode,  H.B.,  Simard,  J.R.,  Grutter,  C.,  Rabiller,  M.  &  Rauh,  D.  2008,  

"Structural  insights  into  how  irreversible  inhibitors  can  overcome  drug  resistance  in  EGFR",   Bioorganic  &  medicinal  chemistry,  vol.  16,  no.  7,  pp.  3482-­‐3488.  

Miller,  V.A.,  Kris,  M.G.,  Shah,  N.,  Patel,  J.,  Azzoli,  C.,  Gomez,  J.,  Krug,  L.M.,  Pao,  W.,  Rizvi,  N.,  Pizzo,  B.,   Tyson,  L.,  Venkatraman,  E.,  Ben-­‐Porat,  L.,  Memoli,  N.,  Zakowski,  M.,  Rusch,  V.  &  Heelan,  R.T.  

2004,  "Bronchioloalveolar  pathologic  subtype  and  smoking  history  predict  sensitivity  to  gefitinib   in  advanced  non-­‐small-­‐cell  lung  cancer",  Journal  of  clinical  oncology  :  official  journal  of  the   American  Society  of  Clinical  Oncology,  vol.  22,  no.  6,  pp.  1103-­‐1109.  

Nanjo,  S.,  Yamada,  T.,  Nishihara,  H.,  Takeuchi,  S.,  Sano,  T.,  Nakagawa,  T.,  Ishikawa,  D.,  Zhao,  L.,  Ebi,   H.,  Yasumoto,  K.,  Matsumoto,  K.  &  Yano,  S.  2013,  "Ability  of  the  Met  kinase  inhibitor  crizotinib   and  new  generation  EGFR  inhibitors  to  overcome  resistance  to  EGFR  inhibitors",  PloS  one,  vol.  8,   no.  12,  pp.  e84700.  

Oda,  K.,  Matsuoka,  Y.,  Funahashi,  A.  &  Kitano,  H.  2005,  "A  comprehensive  pathway  map  of  epidermal   growth  factor  receptor  signaling",  Molecular  systems  biology,  vol.  1,  pp.  2005.0010.  

Ou,  S.H.,  Bartlett,  C.H.,  Mino-­‐Kenudson,  M.,  Cui,  J.  &  Iafrate,  A.J.  2012,  "Crizotinib  for  the  treatment   of  ALK-­‐rearranged  non-­‐small  cell  lung  cancer:  a  success  story  to  usher  in  the  second  decade  of   molecular  targeted  therapy  in  oncology",  The  oncologist,  vol.  17,  no.  11,  pp.  1351-­‐1375.  

Rodig,  S.J.  &  Shapiro,  G.I.  2010,  "Crizotinib,  a  small-­‐molecule  dual  inhibitor  of  the  c-­‐Met  and  ALK   receptor  tyrosine  kinases",  Current  opinion  in  investigational  drugs  (London,  England  :  2000),   vol.  11,  no.  12,  pp.  1477-­‐1490.  

Sakuma,  Y.,  Takeuchi,  T.,  Nakamura,  Y.,  Yoshihara,  M.,  Matsukuma,  S.,  Nakayama,  H.,  Ohgane,  N.,   Yokose,  T.,  Kameda,  Y.,  Tsuchiya,  E.  &  Miyagi,  Y.  2010,  "Lung  adenocarcinoma  cells  floating  in   lymphatic  vessels  resist  anoikis  by  expressing  phosphorylated  Src",  The  Journal  of  pathology,   vol.  220,  no.  5,  pp.  574-­‐585.  

Sakuma,  Y.,  Yamazaki,  Y.,  Nakamura,  Y.,  Yoshihara,  M.,  Matsukuma,  S.,  Nakayama,  H.,  Yokose,  T.,   Kameda,  Y.,  Koizume,  S.  &  Miyagi,  Y.  2012,  "WZ4002,  a  third-­‐generation  EGFR  inhibitor,  can   overcome  anoikis  resistance  in  EGFR-­‐mutant  lung  adenocarcinomas  more  efficiently  than  Src   inhibitors",  Laboratory  investigation;  a  journal  of  technical  methods  and  pathology,  vol.  92,  no.  

3,  pp.  371-­‐383.  

Schechter,  A.L.,  Stern,  D.F.,  Vaidyanathan,  L.,  Decker,  S.J.,  Drebin,  J.A.,  Greene,  M.I.  &  Weinberg,  R.A.  

1984,  "The  neu  oncogene:  an  erb-­‐B-­‐related  gene  encoding  a  185,000-­‐Mr  tumour  antigen",   Nature,  vol.  312,  no.  5994,  pp.  513-­‐516.  

Selinger,  C.I.,  Rogers,  T.M.,  Russell,  P.A.,  O'Toole,  S.,  Yip,  P.,  Wright,  G.M.,  Wainer,  Z.,  Horvath,  L.G.,   Boyer,  M.,  McCaughan,  B.,  Kohonen-­‐Corish,  M.R.,  Fox,  S.,  Cooper,  W.A.  &  Solomon,  B.  2013,  

"Testing  for  ALK  rearrangement  in  lung  adenocarcinoma:  a  multicenter  comparison  of   immunohistochemistry  and  fluorescent  in  situ  hybridization",  Modern  pathology  :  an  official   journal  of  the  United  States  and  Canadian  Academy  of  Pathology,  Inc,  vol.  26,  no.  12,  pp.  1545-­‐

1553.  

Shaw,  A.T.,  Yeap,  B.Y.,  Mino-­‐Kenudson,  M.,  Digumarthy,  S.R.,  Costa,  D.B.,  Heist,  R.S.,  Solomon,  B.,   Stubbs,  H.,  Admane,  S.,  McDermott,  U.,  Settleman,  J.,  Kobayashi,  S.,  Mark,  E.J.,  Rodig,  S.J.,   Chirieac,  L.R.,  Kwak,  E.L.,  Lynch,  T.J.  &  Iafrate,  A.J.  2009,  "Clinical  features  and  outcome  of  

(12)

patients  with  non-­‐small-­‐cell  lung  cancer  who  harbor  EML4-­‐ALK",  Journal  of  clinical  oncology  :   official  journal  of  the  American  Society  of  Clinical  Oncology,  vol.  27,  no.  26,  pp.  4247-­‐4253.  

Sheikh,  N.  &  Chambers,  C.R.  2013,  "Efficacy  vs.  effectiveness:  erlotinib  in  previously  treated  non-­‐

small-­‐cell  lung  cancer",  Journal  of  oncology  pharmacy  practice  :  official  publication  of  the   International  Society  of  Oncology  Pharmacy  Practitioners,  vol.  19,  no.  3,  pp.  228-­‐236.  

Siegel,  R.,  Ma,  J.,  Zou,  Z.  &  Jemal,  A.  2014,  "Cancer  statistics,  2014",  CA:  a  cancer  journal  for   clinicians,  vol.  64,  no.  1,  pp.  9-­‐29.  

Soda,  M.,  Choi,  Y.L.,  Enomoto,  M.,  Takada,  S.,  Yamashita,  Y.,  Ishikawa,  S.,  Fujiwara,  S.,  Watanabe,  H.,   Kurashina,  K.,  Hatanaka,  H.,  Bando,  M.,  Ohno,  S.,  Ishikawa,  Y.,  Aburatani,  H.,  Niki,  T.,  Sohara,  Y.,   Sugiyama,  Y.  &  Mano,  H.  2007,  "Identification  of  the  transforming  EML4-­‐ALK  fusion  gene  in  non-­‐

small-­‐cell  lung  cancer",  Nature,  vol.  448,  no.  7153,  pp.  561-­‐566.  

Soh,  J.,  Okumura,  N.,  Lockwood,  W.W.,  Yamamoto,  H.,  Shigematsu,  H.,  Zhang,  W.,  Chari,  R.,  Shames,   D.S.,  Tang,  X.,  MacAulay,  C.,  Varella-­‐Garcia,  M.,  Vooder,  T.,  Wistuba,  I.I.,  Lam,  S.,  Brekken,  R.,   Toyooka,  S.,  Minna,  J.D.,  Lam,  W.L.  &  Gazdar,  A.F.  2009,  "Oncogene  mutations,  copy  number   gains  and  mutant  allele  specific  imbalance  (MASI)  frequently  occur  together  in  tumor  cells",  PloS   one,  vol.  4,  no.  10,  pp.  e7464.  

Stabile,  L.P.,  He,  G.,  Lui,  V.W.,  Thomas,  S.,  Henry,  C.,  Gubish,  C.T.,  Joyce,  S.,  Quesnelle,  K.M.,  Siegfried,   J.M.  &  Grandis,  J.R.  2013,  "c-­‐Src  activation  mediates  erlotinib  resistance  in  head  and  neck  cancer   by  stimulating  c-­‐Met",  Clinical  cancer  research  :  an  official  journal  of  the  American  Association   for  Cancer  Research,  vol.  19,  no.  2,  pp.  380-­‐392.  

Stumpfova,  M.  &  Janne,  P.A.  2012,  "Zeroing  in  on  ROS1  rearrangements  in  non-­‐small  cell  lung   cancer",  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for  Cancer   Research,  vol.  18,  no.  16,  pp.  4222-­‐4224.  

Suda,  K.,  Murakami,  I.,  Katayama,  T.,  Tomizawa,  K.,  Osada,  H.,  Sekido,  Y.,  Maehara,  Y.,  Yatabe,  Y.  &  

Mitsudomi,  T.  2010,  "Reciprocal  and  complementary  role  of  MET  amplification  and  EGFR  T790M   mutation  in  acquired  resistance  to  kinase  inhibitors  in  lung  cancer",  Clinical  cancer  research  :  an   official  journal  of  the  American  Association  for  Cancer  Research,  vol.  16,  no.  22,  pp.  5489-­‐5498.  

Tao,  H.,  Guo,  L.,  Tang,  J.,  Zhu,  Y.,  Xu,  L.,  Meng,  Q.,  Wu,  W.,  Li,  M.,  Wu,  W.,  Tong,  L.,  Wu,  H.,  Shi,  L.  &  

Liu,  Z.  2014,  "Adverse  Events  of  Afatinib  as  First-­‐line  Treatment  for  Five  Cases  of  AdvancedLung   Adenocarcinoma  and  Review  of  Literature",  Zhongguo  fei  ai  za  zhi  =  Chinese  journal  of  lung   cancer,  vol.  17,  no.  4,  pp.  342-­‐346.  

Teixidó,  C.  2014,  "Concordance  of  IHC,  FISH  and  RT-­‐PCR  for  EML4-­‐ALK  rearrangements",   Translational  Lung  Cancer  Research,  vol.  3,  no.  2.  

Turke,  A.B.,  Zejnullahu,  K.,  Wu,  Y.L.,  Song,  Y.,  Dias-­‐Santagata,  D.,  Lifshits,  E.,  Toschi,  L.,  Rogers,  A.,   Mok,  T.,  Sequist,  L.,  Lindeman,  N.I.,  Murphy,  C.,  Akhavanfard,  S.,  Yeap,  B.Y.,  Xiao,  Y.,  Capelletti,   M.,  Iafrate,  A.J.,  Lee,  C.,  Christensen,  J.G.,  Engelman,  J.A.  &  Janne,  P.A.  2010,  "Preexistence  and   clonal  selection  of  MET  amplification  in  EGFR  mutant  NSCLC",  Cancer  cell,  vol.  17,  no.  1,  pp.  77-­‐

88.  

Wheeler,  D.L.,  Iida,  M.  &  Dunn,  E.F.  2009,  "The  role  of  Src  in  solid  tumors",  The  oncologist,  vol.  14,   no.  7,  pp.  667-­‐678.  

(13)

Yamada,  T.,  Matsumoto,  K.,  Wang,  W.,  Li,  Q.,  Nishioka,  Y.,  Sekido,  Y.,  Sone,  S.  &  Yano,  S.  2010,  

"Hepatocyte  growth  factor  reduces  susceptibility  to  an  irreversible  epidermal  growth  factor   receptor  inhibitor  in  EGFR-­‐T790M  mutant  lung  cancer",  Clinical  cancer  research  :  an  official   journal  of  the  American  Association  for  Cancer  Research,  vol.  16,  no.  1,  pp.  174-­‐183.  

Yamamoto,  C.,  Basaki,  Y.,  Kawahara,  A.,  Nakashima,  K.,  Kage,  M.,  Izumi,  H.,  Kohno,  K.,  Uramoto,  H.,   Yasumoto,  K.,  Kuwano,  M.  &  Ono,  M.  2010,  "Loss  of  PTEN  expression  by  blocking  nuclear   translocation  of  EGR1  in  gefitinib-­‐resistant  lung  cancer  cells  harboring  epidermal  growth  factor   receptor-­‐activating  mutations",  Cancer  research,  vol.  70,  no.  21,  pp.  8715-­‐8725.  

Yano,  S.,  Wang,  W.,  Li,  Q.,  Matsumoto,  K.,  Sakurama,  H.,  Nakamura,  T.,  Ogino,  H.,  Kakiuchi,  S.,  

Hanibuchi,  M.,  Nishioka,  Y.,  Uehara,  H.,  Mitsudomi,  T.,  Yatabe,  Y.,  Nakamura,  T.  &  Sone,  S.  2008,  

"Hepatocyte  growth  factor  induces  gefitinib  resistance  of  lung  adenocarcinoma  with  epidermal   growth  factor  receptor-­‐activating  mutations",  Cancer  research,  vol.  68,  no.  22,  pp.  9479-­‐9487.  

Yano,  S.,  Yamada,  T.,  Takeuchi,  S.,  Tachibana,  K.,  Minami,  Y.,  Yatabe,  Y.,  Mitsudomi,  T.,  Tanaka,  H.,   Kimura,  T.,  Kudoh,  S.,  Nokihara,  H.,  Ohe,  Y.,  Yokota,  J.,  Uramoto,  H.,  Yasumoto,  K.,  Kiura,  K.,   Higashiyama,  M.,  Oda,  M.,  Saito,  H.,  Yoshida,  J.,  Kondoh,  K.  &  Noguchi,  M.  2011,  "Hepatocyte   growth  factor  expression  in  EGFR  mutant  lung  cancer  with  intrinsic  and  acquired  resistance  to   tyrosine  kinase  inhibitors  in  a  Japanese  cohort",  Journal  of  thoracic  oncology  :  official  

publication  of  the  International  Association  for  the  Study  of  Lung  Cancer,  vol.  6,  no.  12,  pp.  

2011-­‐2017.  

Zhang,  H.,  Berezov,  A.,  Wang,  Q.,  Zhang,  G.,  Drebin,  J.,  Murali,  R.  &  Greene,  M.I.  2007,  "ErbB   receptors:  from  oncogenes  to  targeted  cancer  therapies",  The  Journal  of  clinical  investigation,   vol.  117,  no.  8,  pp.  2051-­‐2058.  

Zhou,  C.,  Wu,  Y.L.,  Chen,  G.,  Feng,  J.,  Liu,  X.Q.,  Wang,  C.,  Zhang,  S.,  Wang,  J.,  Zhou,  S.,  Ren,  S.,  Lu,  S.,   Zhang,  L.,  Hu,  C.,  Hu,  C.,  Luo,  Y.,  Chen,  L.,  Ye,  M.,  Huang,  J.,  Zhi,  X.,  Zhang,  Y.,  Xiu,  Q.,  Ma,  J.,   Zhang,  L.  &  You,  C.  2011,  "Erlotinib  versus  chemotherapy  as  first-­‐line  treatment  for  patients   with  advanced  EGFR  mutation-­‐positive  non-­‐small-­‐cell  lung  cancer  (OPTIMAL,  CTONG-­‐0802):  a   multicentre,  open-­‐label,  randomised,  phase  3  study",  The  lancet  oncology,  vol.  12,  no.  8,  pp.  

735-­‐742.  

   

   

Referenties

GERELATEERDE DOCUMENTEN

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden. Downloaded

Chapter 4 Residual inflammation after rituximab treatment is 65 associated with sustained synovial plasma cell. infiltration and enhanced

Currently, rheumatoid factor (RF) and anti-cyclic citrullinated protein antibodies (ACPA) are the most specific for RA, respectively 80% and 95% 31. Both autoantibodies can

In 2001, based on the premise that autoantibodies derived from B-cell-derived antibody-secreting cells were closely associated with disease pathogenesis, the first study was

Importantly, positivity for circulating ACPA-IgM, in combination with a high infiltration of CD79a+ B-cells in the synovium, but not of CD138+ plasma cells, was a predictor

The present study demonstrated that a low disease activity state following ri- tuximab was associated with reduced infiltration of CD79a+ CD20- plasma cells in synovium and

To investigate the distribution of lymphocytes, notably B-cells, in peripheral blood (PB) and bone marrow (BM) of RA patients as compared to healthy con- trols, and to analyze

The present study compared the efficacy and safety of two B-cell depleting strategies in refractory RA patients, namely fixed retreatment (FR) versus on- demand retreatment (ODR)