• No results found

Sex effects on development of brain structure and executive functions: Greater variance than mean effects

N/A
N/A
Protected

Academic year: 2021

Share "Sex effects on development of brain structure and executive functions: Greater variance than mean effects"

Copied!
57
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

This paper has been accepted for publication in Journal of Cognitive Neuroscience.

Please cite: Wierenga, L. M., Bos, M. G. N., van Rossenberg, F., & Crone, E. A.(in press). Sex Effects on Development of Brain Structure and Executive Functions: Greater Variance than Mean Effects. Journal of Cognitive Neuroscience. DOI: 10.1162/jocn_a_01375

(2)

Sex effects on development of brain structure and

executive functions: greater variance than mean effects

(3)
(4)

structures compared to females but these were not related to EF. The sex differences observed in EF were not related to brain development, possibly suggesting that these are related to experiences and strategies rather than biological development.

(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)

denote !"# of the individual $ at time point &. Each cognitive measure is modelled as a smooth function of !"# plus a random person effect 'i plus error:

(ij = *++ -. !"#ij + 'i + #//0/ij (model 1) (ij = *++ *. 1#2i + -. !"#ij + 'i + #//0/ij (model 2) (ij = *++ *. 1#2i + -. !"#ij + -3 !"#ij 1#2 + 'i + #//0/ij (model 3) here -. is the essential arbitrary smooth functions, where the linear combination of piecewise cubic 4-spline functions 5 is set to 4. In addition, *+ denotes the random interecepts and *. denotes the parameter estimate of sex. In model 3 we tested whether there was an effect of sex by age, where -6 allows to test whether the smooth functions for males and females differ. These three models were compared using the Bayesian Information Criterion (BIC), the model with the smallest BIC value was selected as the best-fit model. 2.4.3 Computation of Subject-based Cortical Maturation index For each subject that had data of three time points (N = 168) for each region of interest 789: (max $ = 68), we defined the maturational index (;9:) as the average slope values for that 789: between time points <

. and <3 and between time points <3 and <=. In brief, this

holds the following steps:

Let us consider cortical thickness values between time points <. and <3 for 789:. The slope

for the straight line joining cortical thickness values for 789: between time points <

. and <3

is computed as

->0?#.3: = @ℎ$B53: − @ℎ$B5.:

(16)

where @ℎ$B5.: and @ℎ$B5

3: correspond to the average cortical thickness for 789: for time

points <. and <3 respectively.

We repeat the above procedure for time points <3 and <= to obtain ->0?#3=: . And next

compute ;9: of 789: as the average of the two slopes

;9: = ->0?#.3: + ->0?#3=: 2 2.4.5 Variance ratio To test for sex differences in variance ratio, behavioural measures were averaged across all time points. Also, mean brain measures (cortical thickness and surface area) were averaged across three time points. Next, measures were age adjusted for mean age, using random forest regression modelling, see Bremen (2001) and Wierenga et al., (2017). Note that maturation Index measures were not adjusted for age.

The differences in variance between males and females was examined where letting

denote the observed outcome observation number i and its predicted outcome, the residuals were then formed:

.

The standard deviations and were computed separately for males and

(17)

For each outcome, a permutation test of the hypothesis that the sex specific standard deviations were equal was performed. This was done by random permutation of the sex variable among the residuals. Using B permutations, the p-value for the k-th outcome was computed as

,

where is an indicator function that is 1 when , and 0 otherwise. Thus, the

(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)

research. Our study provides a novel perspective in order to better understand brain-behavioural differences between males and females and how these develop.

(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)

Table 3a. Generalized additive mixed-effects models examing sex and age effects on cortical surface area measures

Sex Age spline Age x Sex spline

(44)

For the age spline and the age-by-group splines, the estimated degrees of freedom (EDF), F-value, and P-values are reported. **P-Table 3b. Generalized additive mixed-effects models examing sex and age effects on cortical thickenss measures

Sex Age spline Age x Sex spline

Measure Model Estimatep-value EDF Fp-value EDF Fp-value T

(45)

Table 4. Mean absolute error model comparison

Models mean MAE sd MAE

(46)

Table 5A. Generalized additive mixed-effects models examing sex and age effects on task based EF

Sex Age spline Age x Sex spline

Measure Model Estimate p -value EDF F p -value EDF F p -value

Reading Comprehension model 2 -7.032 ** 2.964 665.858 **

Reading Fluency model 1 2.703 32.535 **

Working Memmory model 2 0.016 * 2.381 35.864 **

(47)

Table 5B. Generalized additive mixed-effects models examing sex and age effects on parent report BRIEF data

Sex Age spline Age x Sex spline

Measure Model Estimate p -value EDF F p -value EDF F p -value

Inhibition model1 1 16.011 ** Shifting model 1 1 0.143 0.706 Emotional control model 1 1 16.367 ** Initiate model 2 1.3 ** 1.865 1.729 0.163 Working memory model 2 0.986 ** 1.231 0.081 0.769 Planning and organization model 2 1.598 ** 1 1.512 0.219 Organization of materials model 1 1 5.714 0.017 Index behavioral regulation model 1 1 11.557 ** Index metacognition model 2 4.959 ** 1.635 1.236 0.362

(48)

Table 5C. Generalized additive mixed-effects models examing sex and age effects on self report BRIEF data

Sex Age spline Age x Sex spline

Measure Model Estimate p -value EDF F p -value EDF F p -value

Inhibition model 1 0.839 0.014 1 1.81 0.18 Shifting model 1 1 0.308 0.58 Emotional control model 2 -1.175 0.003 1 1.991 0.16 Initiate model 2 1.121 ** 1 1.026 0.312 Working memory model 1 1 2.407 0.123 Planning and organization model 2 1.146 0.002 1 2.424 0.121 Organization of materials model 1 1 0.56 0.455 Index behavioral regulation model 1 1 0.082 0.775 Index metacognition model 2 4.102 0.004 1 5.765 0.017

(49)

Table 6A. Variance effects and Bayes factor on task based EF

Measure Mean F Mean M p Cohen's D BF VR p-value VR

Reading Comprehension 0.229 -0.212 ** 0.669 539090.8 0.053 n.s.

Reading Fluency 0.109 -0.098 n.s. 0.207 0.5 -0.104 n.s.

Working memory -0.123 0.153 ** 0.328 5.7 -0.329 n.s.

(50)

Table 6B. Variance effects and Bayes factors of parent report BRIEF measures

Measure Mean F Mean M p Cohen's D BF VR p-value VR

(51)

Table 6C. Variance effects and Bayes factors of self report BRIEF measures

Measure Mean F Mean M p Cohen's D BF VR p-value VR

(52)

1050 1100 1150 1200 1250 1300 1350 10 15 20 25 Age

Left banks superior temporal sulcus surface area model 3

mm

3

Figure 1: Age by sex e↵ects on the left banks superior temporal gyrus surface area estimated using gamm modelling. Steeper declines in surface area were observed for boys than girls.

(53)

*** *** *** *** *** *** lh_parsorbitalis_area rh_superiorparietal_area rh_caudalmiddlefrontal_area rh_frontalpole_area lh_precuneus_area lh_rostralanteriorcingulate_area lh_parsopercularis_area rh_lateraloccipital_area rh_medialorbitofrontal_area rh_superiortemporal_area lh_caudalmiddlefrontal_area rh_inferiortemporal_area rh_precuneus_area lh_postcentral_area rh_superiorfrontal_area lh_medialorbitofrontal_area rh_fusiform_area rh_rostralmiddlefrontal_area rh_postcentral_area rh_supramarginal_area lh_superiorparietal_area lh_rostralmiddlefrontal_area lh_lateralorbitofrontal_area rh_transversetemporal_area rh_precentral_area rh_paracentral_area lh_entorhinal_area rh_isthmuscingulate_area lh_fusiform_area lh_lateraloccipital_area lh_lingual_area lh_superiorfrontal_area rh_cuneus_area lh_pericalcarine_area rh_pericalcarine_area lh_isthmuscingulate_area rh_lateralorbitofrontal_area rh_parahippocampal_area lh_insula_area lh_superiortemporal_area rh_temporalpole_area rh_parsorbitalis_area rh_parstriangularis_area rh_insula_area rh_middletemporal_area lh_frontalpole_area lh_inferiortemporal_area lh_temporalpole_area rh_parsopercularis_area lh_posteriorcingulate_area lh_transversetemporal_area lh_cuneus_area rh_lingual_area lh_paracentral_area lh_parstriangularis_area rh_rostralanteriorcingulate_area lh_parahippocampal_area rh_inferiorparietal_area rh_entorhinal_area lh_middletemporal_area lh_bankssts_area lh_caudalanteriorcingulate_area lh_inferiorparietal_area rh_posteriorcingulate_area rh_bankssts_area lh_supramarginal_area lh_precentral_area rh_caudalanteriorcingulate_area −0.5 0.0 0.5 1.0 variance ratio *** *** *** *** *** *** *** *** *** rh_precentral_thickness rh_rostralmiddlefrontal_thickness lh_lateraloccipital_thickness lh_precentral_thickness rh_middletemporal_thickness rh_superiorparietal_thickness rh_cuneus_thickness lh_pericalcarine_thickness rh_lateraloccipital_thickness lh_bankssts_thickness lh_supramarginal_thickness lh_caudalanteriorcingulate_thickness lh_postcentral_thickness lh_fusiform_thickness rh_postcentral_thickness rh_pericalcarine_thickness rh_caudalanteriorcingulate_thickness lh_paracentral_thickness lh_caudalmiddlefrontal_thickness rh_inferiortemporal_thickness lh_entorhinal_thickness lh_cuneus_thickness rh_parstriangularis_thickness lh_transversetemporal_thickness lh_parsorbitalis_thickness lh_inferiorparietal_thickness lh_isthmuscingulate_thickness rh_lingual_thickness lh_medialorbitofrontal_thickness rh_transversetemporal_thickness rh_superiortemporal_thickness rh_paracentral_thickness rh_supramarginal_thickness rh_frontalpole_thickness rh_fusiform_thickness lh_posteriorcingulate_thickness rh_precuneus_thickness rh_medialorbitofrontal_thickness lh_superiorparietal_thickness lh_parstriangularis_thickness rh_parahippocampal_thickness lh_rostralmiddlefrontal_thickness rh_bankssts_thickness lh_middletemporal_thickness rh_entorhinal_thickness lh_parahippocampal_thickness lh_rostralanteriorcingulate_thickness lh_inferiortemporal_thickness lh_lingual_thickness lh_precuneus_thickness rh_parsopercularis_thickness rh_rostralanteriorcingulate_thickness rh_caudalmiddlefrontal_thickness rh_lateralorbitofrontal_thickness rh_superiorfrontal_thickness rh_inferiorparietal_thickness lh_superiortemporal_thickness lh_lateralorbitofrontal_thickness lh_temporalpole_thickness lh_parsopercularis_thickness rh_posteriorcingulate_thickness lh_frontalpole_thickness rh_insula_thickness rh_parsorbitalis_thickness rh_isthmuscingulate_thickness lh_insula_thickness lh_superiorfrontal_thickness rh_temporalpole_thickness −0.5 0.0 0.5 1.0 variance ratio

Figure 2: Variance ratios favouring males (green) and females (yellow). A) showing mean surface area estimates of 68 cortical regions. B) showing mean thickness estimates of 68 cortical regions (desikan-killiany atlas). * = p-value <.05; ** = p-value <.01; *** = p-value <.001

(54)

*** *** *** *** *** lh_supramarginal_area lh_inferiortemporal_area lh_rostralmiddlefrontal_area lh_rostralanteriorcingulate_area rh_parahippocampal_area lh_precuneus_area lh_caudalanteriorcingulate_area rh_parsopercularis_area lh_parsopercularis_area rh_lingual_area rh_caudalmiddlefrontal_area rh_rostralmiddlefrontal_area lh_superiorfrontal_area lh_medialorbitofrontal_area rh_lateralorbitofrontal_area lh_lateralorbitofrontal_area rh_rostralanteriorcingulate_area rh_superiortemporal_area rh_caudalanteriorcingulate_area rh_inferiorparietal_area rh_postcentral_area lh_entorhinal_area rh_parsorbitalis_area rh_precuneus_area rh_isthmuscingulate_area rh_bankssts_area lh_inferiorparietal_area rh_pericalcarine_area lh_caudalmiddlefrontal_area lh_frontalpole_area rh_superiorparietal_area rh_lateraloccipital_area lh_lateraloccipital_area rh_fusiform_area rh_medialorbitofrontal_area lh_pericalcarine_area rh_temporalpole_area rh_parstriangularis_area rh_superiorfrontal_area lh_fusiform_area lh_superiortemporal_area rh_cuneus_area lh_cuneus_area rh_inferiortemporal_area rh_insula_area rh_middletemporal_area lh_bankssts_area rh_supramarginal_area lh_postcentral_area rh_frontalpole_area rh_transversetemporal_area lh_middletemporal_area rh_paracentral_area lh_lingual_area rh_entorhinal_area lh_parstriangularis_area lh_precentral_area lh_temporalpole_area rh_precentral_area lh_posteriorcingulate_area rh_posteriorcingulate_area lh_superiorparietal_area lh_paracentral_area lh_transversetemporal_area lh_parsorbitalis_area lh_parahippocampal_area lh_isthmuscingulate_area lh_insula_area −0.5 0.0 0.5 variance ratio *** *** *** *** *** *** rh_posteriorcingulate_thickness rh_insula_thickness rh_middletemporal_thickness lh_caudalmiddlefrontal_thickness lh_posteriorcingulate_thickness lh_bankssts_thickness rh_caudalanteriorcingulate_thickness rh_superiortemporal_thickness lh_middletemporal_thickness lh_parsopercularis_thickness lh_superiortemporal_thickness rh_inferiortemporal_thickness lh_pericalcarine_thickness lh_caudalanteriorcingulate_thickness lh_parahippocampal_thickness lh_precuneus_thickness rh_bankssts_thickness rh_inferiorparietal_thickness lh_superiorfrontal_thickness lh_isthmuscingulate_thickness rh_precuneus_thickness rh_fusiform_thickness lh_rostralmiddlefrontal_thickness lh_lateraloccipital_thickness rh_isthmuscingulate_thickness lh_supramarginal_thickness rh_superiorfrontal_thickness rh_pericalcarine_thickness lh_inferiorparietal_thickness lh_fusiform_thickness rh_transversetemporal_thickness rh_parahippocampal_thickness rh_caudalmiddlefrontal_thickness rh_rostralmiddlefrontal_thickness rh_superiorparietal_thickness lh_parstriangularis_thickness rh_rostralanteriorcingulate_thickness rh_parsopercularis_thickness lh_parsorbitalis_thickness rh_entorhinal_thickness lh_insula_thickness lh_inferiortemporal_thickness lh_lingual_thickness lh_superiorparietal_thickness lh_cuneus_thickness rh_frontalpole_thickness rh_lateralorbitofrontal_thickness lh_paracentral_thickness lh_precentral_thickness rh_lingual_thickness rh_paracentral_thickness lh_lateralorbitofrontal_thickness rh_postcentral_thickness lh_rostralanteriorcingulate_thickness rh_parsorbitalis_thickness lh_transversetemporal_thickness rh_parstriangularis_thickness rh_cuneus_thickness lh_entorhinal_thickness lh_frontalpole_thickness rh_medialorbitofrontal_thickness rh_supramarginal_thickness lh_postcentral_thickness rh_temporalpole_thickness rh_precentral_thickness lh_temporalpole_thickness rh_lateraloccipital_thickness lh_medialorbitofrontal_thickness −0.5 0.0 0.5 variance ratio

Figure 3: Variance ratios favouring males (green) and females (yellow). A) shows MI estimates of surface area of 68 cortical regions. B) shows MI estimates of mean thickness estimates of 68 cortical regions (desikan-killiany atlas). * = p-value <.05; ** = p-value <.01; *** = p-value <.001

(55)

● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● 10 15 20 25 30 10 15 20 25 chronological age predicted age as.factor(sex) ● ● female male

Model f. DK thickness, area and development

Figure 4: Anatomical prediction of age (predicted age) by chronological age for 168 individuals. The model to predict age includes estimates of 270 variables including cortical surface area and thickens mean estimates as well as MI. Colours correspond to males (green) and females (yellow). A linear model (solid line) between chronological age and predicted age is plotted.

(56)

25 50 75 100 10 15 20 25 age Reading Comprehension model 2 90 100 110 10 15 20 25 age Reading Fluency model 1 0.8 0.9 10 15 20 25 age Working memory model 2 11.5 12.0 12.5 13.0 13.5 14.0 8 10 12 14 16 18 age inhibition parent model 1 10.00 10.25 10.50 10.75 11.00 8 10 12 14 16 18 age shift parent model 1 13 14 15 8 10 12 14 16 18 age

emotional control parent model 1 11 12 13 14 8 10 12 14 16 18 age initiate parent model 2 13 14 15 16 8 10 12 14 16 18 age

working memory parent model 2 16 17 18 19 20 8 10 12 14 16 18 age

plan organize parent model 2 11.0 11.5 12.0 12.5 13.0 8 10 12 14 16 18 age

organization of materials parent model 1 36 38 40 8 10 12 14 16 18 age

behavior regulation index parent model 1 65 70 75 8 10 12 14 16 18 age

metacognition index parent model 2 11 12 13 14 15 18 20 22 24 26 28 age inhibition self model 2 9.0 9.5 10.0 10.5 11.0 18 20 22 24 26 28 age shift self model 1 12 13 14 15 16 17 18 20 22 24 26 28 age

emotional control self model 2 11 12 13 14 15 18 20 22 24 26 28 age initiate self model 2 10 11 12 13 18 20 22 24 26 28 age

working memory self model 1 13 14 15 16 17 18 18 20 22 24 26 28 age

plan organize self model 2 12 13 14 18 20 22 24 26 28 age

organization of materials self model 1 44 46 48 50 18 20 22 24 26 28 age

behavior regulation index self model 1 55 60 65 70 75 18 20 22 24 26 28 age

metacognition index self model 2

(57)

Behavioral correlations

Reading Comprehension Reading Fluency Woriking memory inhibit parent shift parent emotional control parent initiate parent wo

rking memo ry parent plan organi ze parent organization of mate rials parent beh a

vior regulation ind

e

x parent

metacognition ind

e

x parent

inhibit self shift self emotional control self initiate self wo

rking memo ry self plan organi ze self organization of mate rials self beh a

vior regulation ind

e x self metacognition ind e x self Reading Comprehension Reading Fluency Working memory inhibit parent shift parent emotional control parent initiate parent working memory parent plan organize parent organization of materials parent behavior regulation index parent metacognition index parent inhibit self shift self emotional control self initiate self working memory self plan organize self organization of materials self behavior regulation index self metacognition index self

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 r

Figure 6: Correlation matrix between task based assessment of EF (first three columns) and real-life assessment of the BRIEF questionnaire data (parent report columns 4 to 12, self-report columns 13 to 21). Positive correlations are indicated in red, negative correlations are indicated in purple. The stronger the correlation the darker the color. Only significant correlations are reported (p-value <.05).

Referenties

GERELATEERDE DOCUMENTEN

To summarize, stress during the early years of development, the pre- or postnatal and juvenile periods, has noticeable effects on the development of the brain.. It leads to an

Last, stronger structural anatomical correlations were observed for males compared to females, especially between brain regions that showed significant difference in

Cardiff University: We are grateful to all researchers within Cardiff University who contributed to the MBBrains panel, and Cardiff University Brain Research Imaging Centre F I G U R

The field study was conducted, first, to determine the relative importance of the corporate environment on productivity and well-being of the upper level executives compared to

We give a heuristic argument show- ing how the quantity ( ) arises from large deviations of local times associated with our simple random walk Z = f Z(t):t  0 g , and how the

Distributed algorithms allow wireless acoustic sensor net- works (WASNs) to divide the computational load of signal processing tasks, such as speech enhancement, among the

principles of happiness and well-being are perceived differently across cultures (Wierzbicka, 2004). For this paper, it could imply that the identified factors are only applicable

The comparison of the patterns of diversity with the results of the simulations suggest that the effective number of founders or of individuals at population crashes on the