• No results found

Combined XPS and contact angle studies of ethylene vinyl acetate and polyvinyl acetate blends

N/A
N/A
Protected

Academic year: 2022

Share "Combined XPS and contact angle studies of ethylene vinyl acetate and polyvinyl acetate blends"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Applied Surface Science

jo u rn a l h om epa g e :w w w . e l s e v i e r . c o m / l o ca t e / a p s u s c

Combined XPS and contact angle studies of ethylene vinyl acetate and polyvinyl acetate blends

I.O. Ucar

a

, M.D. Doganci

a

, C.E. Cansoy

a

, H.Y. Erbil

a,∗

, I. Avramova

b

, S. Suzer

b

aDepartmentofChemicalEngineering,GebzeInstituteofTechnology,41400Kocaeli,Turkey

bDepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

a r t i c l e i n f o

Articlehistory:

Received1January2011

Receivedinrevisedform21March2011 Accepted13June2011

Available online 21 June 2011

Keywords:

Ethylenevinylacetatecopolymers Polymerblending

Surfacefreeenergy XPS

Contactangle Polyolefin

a b s t r a c t

Inthisstudy,wepreparedthinfilmsbyblendingethylenevinylacetatecopolymers(EVA)containing 12–33(wt.%)vinylacetate(VA)withpolyvinylacetate(PVAc)andhighdensitypolyethylenehomopoly- mers.Largeareamicropatternshavingcontrolledprotrusionsizeswereobtainedbyphase-separation especiallyforthePVAc/EVA-33blendsusingdipcoating.ThesesurfaceswerecharacterizedbyXPSand contactanglemeasurements.AreasonablylinearrelationwasfoundbetweentheVAcontentonthe surface(wt.%)obtainedfromXPSanalysisandtheVAcontentinbulkespeciallyforPVAc/EVA-33blend surfaces.PEsegmentsweremoreenrichedonthesurfacethanthatofthebulkforpureEVAcopolymer surfacessimilartopreviousreportsandVAenrichmentwasfoundontheEVA/HDPEblendsurfacesdue tohighmolecularweightofHDPE.WateredecreasedwiththeincreaseintheVAcontentontheblend surfaceduetothepolarityofVA.Agoodagreementwasobtainedbetweensandatomicoxygensurface concentrationwiththeincreaseofVAcontent.TheapplicabilityofCassie–Baxterequationwastested andfoundthatitgaveconsistentresultswiththeexperimentalwatercontactanglesforthecasewhere VAcontentwaslowerthan55wt.%inthebulkcomposition.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Polymerblendingis acheapsurface modificationmethodto obtaindesiredsurfacepropertiesofthinpolymercoatingsrather thancomparativelyexpensivemethodssuchasplasmatreatment, surfacegrafting,filmdepositionundervacuumetc.[1].Whenpoly- mersareblended,thepreferentialenrichmentofsomefunctional groupsonthesurfaceaffectsthefinalpropertiesandapplications ofthesefilms.Phase-separatedroughorcomparativelyflatsur- facescanbe obtainedbychoosing convenientpolymer–solvent blending systems such as homopolymer–homopolymer, homopolymer–statisticalcopolymer,homopolymer–blockcopoly- mer, statistical copolymer–statistical copolymer [1–5]. Surface freeenergy,miscibility,viscosityattheprocesstemperature,and solubilityofeachpolymerinthechosensolventoftheblendcom- ponentsarethemostimportantfactorswhichaffecttheblending process and theresultantfilms [1–5]. Themolecularweight of thesepolymers,filmthicknessandthesolventevaporationrateare theotherimportantparameters[1,4].Thispaperisaboutprepara- tionandsurfacecharacterizationofPVAchomopolymer/EVA-33 copolymerblendshavingdifferentVAcontents inbulksolution.

Wecoatedglassslideswiththepolymerblendsbyapplyingdip

∗ Correspondingauthor.Tel.:+902626052114;fax:+902626052105.

E-mailaddress:yerbil@gyte.edu.tr(H.Y.Erbil).

coating into polymer blend solutions and determined both the wettabilityandthesurfaceenrichmentofPEandVAcontentsby phase-segregationontheseblendsurfacesafterdryinginrelation tothebulkVAcontentoftheblendsolution.

In a phase-segregation process, the surface free energy dif- ferences ofthe involved polymersare thedriving force[2,3,5].

However,someresearchersrejectedthisviewandattributedthe surfacesegregationwiththeconformationalentropydifferences betweenthesurfaceandbulk[6,7].Accordingtothisgroupcon- formational entropy in the bulk is higher than in the surface andwhenthenumberaveragemolecularweight(Mn)decreases, the conformational entropy of a chain at thefilm surface also decreases. Consequently, macromoleculehaving lower molecu- lar weight will be at the blend surface in order to minimize the conformationalentropy. Thisview canbe disputed sothat whena volatilesolventis usedincastingofthepolymerblend films,thesolventevaporatesrapidlyfromthesubstrateandthus thesystemcannotbeconsideredasanequilibriumprocess.For such non-equilibrium processes, polymer surface tensions and polymer–solvent interactions play much more important roles.

This situation was explained by spreading coefficient concept for thepolymerblends[1,8].Lietal. [8]studiedtheformation ofpolystyreneandpolymethylmethacrylateblendfilmsandlow surface tensionpolystyrenewasfoundtolocate over thepoly- methylmethacrylatelayerandspreading coefficientcalculations supportedthisresult.

0169-4332/$seefrontmatter © 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.apsusc.2011.06.070

(2)

Polyethylenevinylacetatecopolymer(EVA),whichisawidely usedthermoplasticresin,hasbeenconsideredtobeagoodcandi- datetobeusedasabiomedicalmaterialduetoitsgoodphysical properties,easeofhandlingandprocessing,andmoderatebiocom- patibility[9].EVA wasrecentlyusedtotest theremoval ofthe sporelingsofthegreenalgaUlvaformarinefoulingapplications [10].Ethylenevinylacetatecopolymersareproducedbyrandom copolymerizationofethyleneandvinylacetatemonomers,which aremainlyrecognizedfortheirflexibility,toughness(evenatlow temperatures)andadhesioncharacteristics[11].PropertiesofEVA copolymerschangemostlyduetothevariationoftheVAcontent.

WhenpolarVAcontentisincreased,therelativequantityofamor- phousphaseincreasesandthedegreeofcrystallinitythatcomes frompolyethylenedecreases.IncreasingtheVAcontentchanges thefinal copolymer from modified polyethylene torubber-like productsand someofthepropertiessuchasflexibility,elonga- tion,adhesionandsolubilityinorganicsolventsimprove[11,12].

ItispossibletomodifyEVAcopolymersurfacesbyblendingwith polyethylene(PE)andpolyvinylacetate(PVAc)homopolymers.

Contactangle measurements and surface free energy calcu- lations are useful techniques not only for homopolymer and copolymersurfaces,butalsoforpolymerblendsurfacestocharac- terizefilmsurfacesatthetoplayer.Surfacefreeenergyanalysisof LDPE/EVAblendswerepreviouslystudiedbyChattopadhyayetal.

[3].Contactanglemeasurementsand surfacefreeenergycalcu- lationsforLDPE/EVAblendswerealsoevaluatedbyAli[5]who concludedthatthemodificationofthesurfacepolarityoccurred whentheVAcontentofEVAcopolymerincreased.Asaresultofthis increase,contactanglesforwaterandreferenceliquidsdecreased andcalculatedsurfacefreeenergyvaluesraised[5].Matsunagaand Tamai[13]andlaterErbil[14]determinedsurfacefreeenergyval- uesofEVAcopolymersbyapplyingcontactanglemethod.Thesame methodwasalsoappliedtopolyethylenehomopolymerbyDann [15]andParketal.[16].

vanOss etal. [17] developed a successful approach toesti- matethesurfacefreeenergyofpolymers.Accordingtothistheory, Lifshitz–van der Waals interactions (indicated by superscript LW) include dispersion, polar–polar, and induction interac- tions, and acid base interactions (indicated by superscript AB) includehydrogen-bonding interactions,in otherwordselectron donor–acceptorinteractions.Totalsurfacefreeenergyisthesumof theseLifshitz–vanderWaalsandacid–baseinteractions[17].Sur- facefreeenergydeterminationofEVAcopolymersbyapplyingvan Oss–Good–ChaudhurymethodwasstudiedbyGrundkeetal.[18].

Similarly,Michalskiet al.[2]appliedvanOss–Good–Chaudhury methodtodeterminethesurfacefreeenergyofEVA,PVCandtheir blends.

X-rayphotoelectronspectroscopy(XPS)wasappliedtodeter- minethesurfacecompositionsoftheEVAcopolymersanditsblends whichhavevaryingVAcontents[19–21].Chihanietal.[19]used XPScharacterizationoftheEVAsurfacesobtainedbytheinjection moldingmethodandfoundthatsurfaceconcentrationofVAgroups washigherthan thatof thebulkwhen perfluorinatedethylene propylene(FEP)wasusedasthemould.Galuska[20]studiedEVA copolymerandEVA/LDPEblendsurfacesbyusingXPSandobtained alinearrelationbetweensurfaceandbulkVAcontentaccordingto oxygenconcentration.SurfacepropertiesofEVAcopolymerswere modifiedbytreatmentwithlowpressureRFplasmas[22],UVradia- tion[23]andthechangeofitsadhesionpropertiesweredetermined bycontactanglemeasurementsandXPS.

Inapreviousstudy,weinvestigatedthesurfacechemicalstruc- tureandwettingpropertiesofbothflatandroughEVAcopolymer filmsbyvaryingtheconcentrationandtemperatureofthedipcoat- ingsolution[24].Asolutionconcentrationof40mg/mlwasused fortheflatcoatingsandupto100mg/mlfortheroughcoatings andthetemperatureschangedfromroomtemperatureto125C.

XPSanalysisat0 and60 take-offangles(approximately10nm and5nmdepths,respectively)wasappliedandcontactanglemea- surementswerecarriedoutbyincreasingtheVAcontentofthe bulkEVAcopolymer.XPSresultsshowthathydrophobicPEcom- ponentwasenrichedonEVAsurfacesaround5nmdepthforallthe samples,whereashydrophilicVAcomponentwasenrichedonthe surfaceswhenVA<18%foronlyaround10nmdepth.Hydrophobic PEcomponentwasfoundtoenrichinthenear-surfaceregionfor allflatandroughEVAsamplesforadepthofaround5nm.Thedif- ferencebetweentheXPSresultsoftheflatandroughsurfaceswas notsignificantforEVAsamplesexceptEVA-33surfacewherethe atomicoxygencontentdecreased15%for10nmand20%for5nm depthduetoitsverylowmolecularweight[24].

In the present study, we applieddip coating of glass slides in polymer blend solutions of EVA-33 copolymer with PVAc homopolymerforthefirsttimeanddeterminedboththewetta- bilityof driedblend surfacesand thesurface enrichmentofPE andVAcontentsbyphase-segregationinrelationtotheVAcon- tentof theblendsolutionin bulk.In addition,wealsoblended EVAcopolymers(EVA-12,EVA-18,EVA-28andEVA-33)withHDPE homopolymerforcomparison.Contactangle,surfacefreeenergy analysisandXPSmeasurementsweredoneinordertoinvestigate thewettabilitypropertiesandsurfacecompositionsoftheseblend surfaces.ThecorrelationofsurfacefreeenergywiththeXPSresults wasdiscussedandtheapplicabilityoftheCassie–Baxterequation [25],whichwasderivedforthechemicallyheterogeneoussurfaces;

wasalsoinvestigatedfortheblendsurfaces.

2. Experimental

2.1. Materials

Polyvinyl acetate and high density polyethylene (HDPE) homopolymers and ethylene-vinyl acetate copolymers with varyingVAcontents(EVA-12,EVA-18,EVA-28-05,EVA-28-40,EVA- 28-150, EVA-33and EVA-40)wereused for the preparation of blendsurfaces.ThenamesofEVAcopolymersareself-descriptive, forexamplethatEVA-28-40hasaVAcontentof28wt.%,witha meltflowindexof40.Thenamesofmanufacturers,vinylacetate (VA)contentsandalsoexperimentallydeterminedmeltflowindex values(MFI)ofthepolymersaregiveninTable1.Allhomopoly- mersandcopolymerswereusedasreceived.Standardglassslides (76mm×26mm,ISOLAB,Turkey)wereusedintheexperiments.

Atwo-componentpolyepoxidelayer(404Chemicals,Turkey)was appliedastheprimercoatingontheglassslidesforthefilmstobe usedforcontactanglemeasurements.MERCKspectroscopicgrade water,methyleneiodide,ethyleneglycolandformamideliquids wereusedinstaticanddynamiccontactanglemeasurements.

2.2. Preparationofpolymericcoatings

Glassslides wereusedassubstratesand cleanedinchromic acid,rinsedwithdistilledwaterand driedina vacuumovenat 100C.Apolyepoxidelayer(404adhesive)wasdepositedonglass slidesbyapplyingdipcoatingfromitschloroformsolutionasthe primercoatingtocompensatefortheweakadherenceofpolymers ontoglassslides.Polyepoxideprimerwasonlyappliedforsamples, whichwereusedinthecontactanglemeasurements.Thinfilms fromblendsofEVAcopolymerscontaining12–33wt.%VAcontents withPVAc and HDPE homopolymerswere preparedfrom their xylene(mixtureofo-,m-,p-isomers,m-predominating)solutions athightemperaturesbydipcoatingtechnique.Theconcentration ofallthepolymersolutionswas20mg/ml.Cleanglassslideswere dippedintothepolymersolutionsbyusingaprecisehome-made mechanicaldipperat130Candwithdrawnfromthepolymersolu-

(3)

Table1

Characteristicsofpolymers.

Polymer VAcontentin bulk(wt.%)

MFIa(g/10min)ASTM D1238(2.16kg,190C)

MFI(g/10min) experimental(2.16kg, 190C)

Manufacturer Commercialname

HDPE 0 N/A 0.16 LyondellBasell HOSTALENGM8255

EVA-12 12 2.5 2.2 DuPontInc. ELVAX660

EVA-18 18 1.8 1.8 AsiaPolymerCorp. EV101

EVA-28-05 28 5–8 5 ArkemaLtd. EVATANE

EVA-28-40 28 35–45 33 ArkemaLtd. EVATANE

EVA-28-150 28 135–175 124 ArkemaLtd. EVATANE

EVA-33 33 350–450 375 ArkemaLtd. EVATANE

EVA-40b 40 57 N/A Aldrich

PVAcb 100 N/A 105 Aldrich

aQuotedfromsuppliers’catalogues.

bMolecularweightsofEVA-40andPVAcare42.000g/moland100.000g/molrespectively[32].

tionsatspecificrateof320mm/min.Hightemperaturesandlow depositionrateswereusedtoachievecomparativelyflatcoatings.

Coatedglassslidesweredriedinavacuumovenovernightat25C andkeptinadesiccator.

2.3. Staticanddynamiccontactanglemeasurements

KSV-CAM200-Finlandcontactanglemeterwasusedtomeasure thestaticcontactanglesoftheliquidsunderair.Equilibrium(e) contactanglesofwater,methyleneiodide,ethyleneglycolandfor- mamideweremeasuredbyusing5␮ldropletvolumestoneglect thegravity flatteningeffect. Theneedle wasremovedfromthe dropletduringtheemeasurementhoweveritwaskeptwithinthe liquiddropletsduringtheadvancing(a)andreceding(r)contact anglemeasurements.Firstadropletof3␮lvolumewasformedand itsvolumewasincreasedto8␮lduringtheameasurement.Anini- tialdropvolumeof8␮lwasdecreasedto2␮lwhilemeasuringthe

r.Contactanglemeasurementsweretakenover3differentareas foreachpolymersample.Averageandstandarddeviationofval- ueswerecalculatedaslessthan±2.Waterdynamiccontactangle measurementswerecarriedoutusingaKSVSigma700Dynamic Tensiometerapparatusatroomtemperature,usingthepolymer coatedglassslidesasWilhelmyplatesdippinginpurewater.

2.4. Opticalmicroscopy

Surfacetopographyofallthecoatedsampleswereinvestigated byusingaNIKONECLIPSELV100OpticalMicroscopewith×500 magnification.

2.5. X-rayphotoelectronspectroscopy

XPS investigations were carried out by means of a Kratos 800spectrometerwithMg K␣ (unmonochromatized) sourceat 1253.6eVwithatotalinstrumentalresolutionof∼1eV,undera basepressureof10−8mbar.TheC1sandO1sphotoelectronlines wererecordedandcalibratedtotheC1slineat285.0eV.XPSPEAK 4.0fittingprogramwasusedfordeconvolutionofthephotoelectron peaks.Theatomicsensitivityfactorhasbeenevaluatedasgivenin [26].Alldatawererecordedat90take-offangle,correspondingto maximumsamplingdepthofapproximately8nm.

3. Resultsanddiscussions

3.1. Opticalmicroscopyimages

OpticalmicroscopeimagesofPVAc/EVA-33blendswithvarying VAcontentsat×500magnificationaregiveninFig.1.Largearea patternshavingspecificprotrusionsizeswereobtainedasseenin

thisfigure,wherethesizeofprotrusionswasdecreasedwiththe increaseofVAcontentinthebulkEVAcopolymer.Itcanbespecu- latedthattheprotrusionscorrespondtoPEregionssincetheirtotal areaonthesurfacedecreaseswiththeincreaseofVAcontent.

3.2. XPSresults

X-rayphotoelectronlinesofC1sandO1shavebeenrecorded forthepolymerslistedinTable2,andweredeconvolutedforbet- terevaluationofsurface(O/C)ratio.TheC1speaksarecomplex andcanbecurve-fittedtothreepeaksassigned tohydrocarbon (C–H),etheric(C–O)andcarbonyl(C O)groupsonthesurfaceat around285.0eV,286.5eVand289.1eVrespectively.TheO1speaks arecurve-fittedtotwopeaks,whichareassociatedwith(C–O)and (C 0)groups.X-rayphotoelectronlineofC1sandO1speaksare showninFig.2aandbforthePVAchomopolymersurfaceasan indicativefigure.ThemainelementsonthesurfaceofpurePVAc areoxygenandcarbon.ThefunctionalcompositionofpurePVAc filmcanbedeterminedbycurvefittingofC1speak.Threediffer- entcarboncomponentswereconsidered:hydrocarbon(C–H/C–C) at285.0eV;alcoholorether(C–OH/C–O–C)at286.4eVandester (O–C O)at288.8eV.TheO1speakofpurePVAcfilmconsistedof twooxygenfunctionalities:ester(C–O–C O)at534.6eVandcar- bonyl(O–C O)at533.2eV[27].Blendratios,bulkandsurfaceVA contentsofEVAcopolymersaregiveninTable2.Oxygentocar- bonratios(O/C)andatomicoxygenconcentrationsarealsogiven inthistable.Thesurfaceoxygenatomicconcentrationsmeasured at90 take-offangleforadepthof8nm,were1–19%lowerthan thetheoreticalvaluescalculatedfromthebulkcopolymercompo- sitionforallthepureEVAcopolymers.Thisisinagreementwith thepreviousreportsindicatingthatPEsegmentsaremoreenriched atthesurfacethanVAsegmentsforEVAcopolymersbydiporspin coating[20,24].

ThechangeofVAcontentonthePVAc/EVA-33blendsurface versustheVAcontentinthebulkisgiveninTable2andFig.3a.

AsseeninthisfigurethechangeofVAcontentonthesurfacefora depthof8nm(at90take-offangle)wasnotsignificantwhenall thedatapointswereconsideredindicatingthatneitherPEnorVA enrichmentoccurred.Wealsodeterminedthatsimilartotheprevi- ousfindings[20,24],PEsegmentsweremoreenrichedatthesurface foradepthof8nmforpureEVAcopolymersasshowninFig.3b wherethesurfaceatomicoxygenconcentrationswere1–19%lower thanthetheoreticalvaluescalculated fromthebulkcopolymer.

However,anoppositebehaviorwasseenforalloftheEVA/HDPE blendsasseen fromthedatapointsof (50/50)compositionsof EVA-12,EVA-18EVA-28,EVA-33withHDPEasgiveninFig.3band atomicOconcentrationsmeasuredat90take-offanglewerefound tobe37–62%largerthanthetheoreticalvaluesforEVA/HDPEblend surfacesindicatingVAenrichmentattheseblendsurfaces.Natu-

(4)

Table2

TheoreticalandexperimentalresultsofXPS.

Theoretical 90Take-offangle

Polymer VA%bulk O/C %molatomicO VA%surf. O/C %molatomicO

HDPE 0 0.000 0.00 1.22 0.004 0.40

EVA-12/HDPE(50/50) 6 0.020 1.96 8.93 0.030 2.91

EVA-18/HDPE(50/50) 9 0.030 2.94 14.58 0.050 4.76

EVA-12 12 0.041 3.92 11.78 0.040 3.85

EVA-28/HDPE(50/50) 14 0.048 4.58 22.63 0.080 7.41

EVA-33/HDPE(50/50) 16.5 0.057 5.40 22.63 0.080 7.41

EVA-18 18 0.063 5.89 17.32 0.060 5.66

EVA-28-05 28 0.101 9.19 22.63 0.080 7.41

EVA-28-40 28 0.101 9.19 22.63 0.080 7.41

EVA-28-150 28 0.101 9.19 27.74 0.100 9.09

EVA-33 33 0.122 10.84 27.74 0.100 9.09

EVA-40 40 0.152 13.16 32.66 0.120 10.71

PVAc/EVA-33(20/80) 46.4 0.180 15.29 48.49 0.190 15.97

PVAc/EVA-33(30/70) 53.1 0.212 17.52 52.65 0.210 17.36

PVAc/EVA-33(50/50) 66.5 0.282 22.01 69.73 0.300 23.08

PVAc/EVA-33(65/35) 76.6 0.340 25.39 81.38 0.370 27.01

PVAc/EVA-33(80/20) 86.6 0.404 28.78 82.94 0.380 27.54

PVAc/EVA-33(85/15) 90 0.427 29.92 84.48 0.390 28.06

PVAc 100 0.500 33.33 94.64 0.460 31.51

Fig.1. OpticalmicroscopeimagesofPVAc/EVA-33blendsatX500magnification(a)46.4,(b)53.1,(c)66.5,(d)76.6,(e)86.6,(f)90wt.%VAcontentinbulk.

(5)

(a)

(b)

538 536 534 532 530

Binding Energy, eV O1s

292 290 288 286 284 282 280

Binding Energy, eV C1s

Fig.2. X-rayphotoelectronlinesof(a)C1sand(b)O1speaksforPVAchomopolymer.

rally,PEenrichmentisexpectedforallEVA/HDPEblendsurfaces whencomparedwiththeirbulkcompositionbecausePEcompo- nenthavingthelowersurfacefreeenergyshouldmigratetothe solid–airinterfaceinablendingprocessinordertominimizethe interfacialtensioninmostofthecases.

Thus,theenrichmentofVA contentontheEVA/HDPEblend surfacewasanexceptionandneedsanexplanation:Sinceaphase- separationoccursduringtheformationofEVA-polyolefinblends, it creates regions where VA or PE weremore concentrated on theblendsurfacedependingontheVAcontent[28],densityand molecularweightoftheusedpolymers.TheVAenrichmentonthe EVA/HDPEblendsurfacemaybeattributedtothelowerMFIvalueof HDPEthanalloftheEVAcopolymers,whichallowstheEVAcontent havinglowerMwthanHDPEtogouptothenearsurface.Themaxi- mumVAenrichmentwasseenforthe(50/50)EVA-28/HDPEblend composition.TheincreaseintheVAcontentofEVAcopolymerin bulkalsoincreasestheVAcontentontheEVA/HDPEblendsurface (40–67%asO/Cratio),exceptforEVA-33/HDPEblendbecauseof thelowMwofEVA-33copolymerhavingaveryhighMFIvalueas giveninTable1.

Nevertheless,thesurfaceVA compositionsobtainedfromthe XPSmeasurementsgenerallyfittedwiththecorrespondingbulk compositionswithinathinbandasseeninFig.3aandb,although minordeviationsoccurred.Thus,PVAc/EVA-33blendsurfacescan beusedaspracticaltest surfaceswheretheVA contentsofthe blendsonthesurfacecanbecalculated byadding theVAfrac- tionofthePVAchomopolymerandEVA-33copolymerinthebulk composition.

y = 0,9604x + 1,4468 R2 = 0,9844

0 20 40 60 80 100

20

0 40 60 80 100

VA content in bulk (wt. %)

VA content on surface (wt. %)

(a)

y = 0,8816x + 2,6156 R2 = 0,9651

0 20 40 60 80 100

20

0 40 60 80 100

VA content in bulk (wt. %)

VA content on surface (wt. %)

(b)

Fig.3.DependenceofVAcontentonsurface(wt.%)versustheVAcontentinbulk for:(a)PVAc/EVA-33blends,(b)EVA/HDPEblendsandEVAcopolymers.

3.3. Contactangleandsurfacefreeenergyresults

Staticadvancing,a,equilibrium,e,andrecedingcontactangle,

r measurementresultsobtainedbyKSV-CAM200-Finlandcon- tactanglemeteranddynamica,rresultsofwaterdropsobtained byKSVSigma700DynamicTensiometeronallsample surfaces aregiveninTable3.Contactanglehysteresis(),whichisthe differencebetweenadvancingandrecedingwatercontactangles, ( =a−r),indicateseitherthechemicalheterogeneityforflat surfacesorsurfaceroughnessofchemicallyhomogeneoussurfaces [4].Staticanddynamicresultsofallsamplesarealsogivenin Table3.Staticwatereresultsofthepolymersdecreasedfrom102 to60withtheincreaseofpolarhydrophilicVAcontent.Thesame decreaseofaandrresultswiththeincreaseofVAwasalsoseenin Table3.StaticwatereresultswiththechangeinVAcontentinbulk (wt.%)forallofthesamplesandalsotheliteraturedataaregiven inFig.4a.TheincreaseofpolarVAcontentonpolymersurfaces resultedinadecreaseofthewaterequilibriumcontactanglesin agreementwiththepreviousreports[2,14,29,30].Weplottedboth thestaticanddynamicadvancingcontactangleswiththechangein VAcontentinbulk(wt.%)forallofthesamplesinFig.4bforcompar- ison.Asseeninthisfigure,agoodagreementexistsbetweenstatic anddynamicadvancingcontactangleresultsforthesamplescon-

(6)

Table3

Staticanddynamicwatercontactangleresultsofhomopolymersandpolymer blends.

Static Dynamic

Polymer a e r  a r 

HDPE 109 102 90 19 107 88 19

EVA-12/HDPE(50/50) 99 94 76 23 98 78 20

EVA-18/HDPE(50/50) 93 87 80 13 93 77 16

EVA-12 93 84 79 14 100 80 20

EVA-28/HDPE(50/50) 98 90 77 21 96 72 24

EVA-33/HDPE(50/50) 98 87 66 32 96 63 33

EVA-18 92 82 75 17 93 70 23

EVA-28-05 88 79 67 21 93 67 26

EVA-28-40 92 81 63 29 92 66 26

EVA-28-150 93 80 64 29 92 62 30

EVA-33 93 78 48 45 94 48 46

EVA-40 94 77 47 47 96 46 50

PVAc/EVA-33(20/80) 76 76 50 26 82 46 36

PVAc/EVA-33(30/70) 75 73 53 22 84 44 40

PVAc/EVA-33(50/50) 72 62 51 21 83 47 36

PVAc/EVA-33(65/35) 71 61 50 21 79 40 39

PVAc/EVA-33(80/20) 72 61 52 20 80 40 40

PVAc/EVA-33(85/15) 71 61 53 18 80 38 42

PVAc 80 60 34 46 78 34 44

taininglessthan40wt.%VAwhereasthedynamicaangleresults werearound10higherthanthestaticonesafter40wt.%VAcon- tentinbulk,forthePVAc/EVA-33blendsurfaces.Thisshowsthat thedynamiccontactanglemeasurementismoresensitivetothe surfaceroughnessandchemicalheterogeneitythanthestaticcon- tactanglemethod.Ontheotherhand,lowerstaticvalueswere

50 60 70 80 90 100 110

20

0 40 60 80 100

VA content in bulk (wt. %)

VA content in bulk (wt. %)

e

Erbil 1987 Devallencourt 2002 du Toit1995 Michalski 1998 This work

(a)

50 60 70 80 90 100 110 120

20

0 40 60 80 100

a

static dynamic

(b)

Fig.4.Dependenceof(a)waterequilibriumstaticcontactangle(experimentaland literaturedata),(b)waterstaticanddynamicadvancingcontactanglewiththe changeinVAcontentinbulk(wt.%)forallofthepolymers.

Table4

Equilibriumcontactangleresultsoftestliquidsonpolymers.

Polymer MeI2 Formamide EG

HDPE 53 85 72

EVA-12/HDPE(50/50) 47 74 69

EVA-18/HDPE(50/50) 46 70 67

EVA-12 49 77 71

EVA-28/HDPE(50/50) 47 81 71

EVA-33/HDPE(50/50) 42 70 70

EVA-18 46 74 70

EVA-28-05 45 72 68

EVA-28-40 43 77 69

EVA-28-150 49 81 72

EVA-33 43 73 74

EVA-40 42 83 73

PVAc/EVA-33(20/80) 47 65 58

PVAc/EVA-33(30/70) 49 70 61

PVAc/EVA-33(50/50) 41 68 65

PVAc/EVA-33(65/35) 45 53 53

PVAc/EVA-33(80/20) 45 66 53

PVAc/EVA-33(85/15) 45 62 52

PVAc 41 43 54

obtainedforPVAc/EVA-33blendsurfacesthanthatofthepurePVAc andEVA-33surfaces,althoughthereisnotanydirectrelationship betweenthecontactanglehysteresisandtheVAcontent.Wemay attributethedecreaseintothedecreaseofsurfaceroughness duringblendingPVAcandEVA-33.Itwasfoundthatourresultsof pureEVAwereclosetothereportedavaluesgivenin[19,22,23].

SurfaceshavinghigherVAcontentswerealsostudiedintheliter- aturebyusingEVAcopolymerswithhighVAcontent[29]orEVA blends[2].Michalskietal.[2]reportedwatereofEVA-70(70wt.%

VAcontent)copolymeras67.1,whichisclosetoourvalueof62 forthePVAc/EVA-33(50/50)blendsurfacewhichhas66.5wt.%VA contentinbulk.

Surfacefreeenergyofasolidcanbedeterminedbyemeasure- mentsofdifferenttestliquiddropsonthesolidsurface[4,17].We appliedvanOss[17]methodforthesurfacefreeenergycalcula- tions.

LV(1+cos)=2



SLWLLW+



S+L+



SL+



(1)

wheresubscriptSissolid,Lisliquid,Visvapor,superscriptLW denotesthe“Lifshitz–vanderWaalsinteractions”andABdenotes the“acid–baseinteractions”,andi+ istheLewisacid,andiis theLewisbaseparameterofsurfacefreeenergy,(iAB=2



i+i).

Both the solid surface and liquid drop consistsof two surface freeenergycomponentterms,oneisLWcomprising“dispersion”,

“dipolar”,and“induction”interactionsandtheothertermisAB comprisingalltheelectrondonor–acceptorinteractions,suchas hydrogen-bonding.Theirsumgivesthetotalsurfacefreeenergy (iTot=iLW+iAB).WeneedasetofvaluesofLLW,L+andLfor thereferenceliquidssuchasmethyleneiodide,␣-bromonaphtha- lene,ethyleneglycol,glycerolandformamide,whichwassupplied byvanOss–Goodbyusingarbitraryrelation,W+ =W forwater [4,17],inorder toapplyEq.(1)tothee data.Ingeneral,three formsofEq.(1)aresimultaneouslysolvedbyusingtheedataof threedifferentliquidswithtwoofthembeingpolarandhydrogen- bonding.

WecalculatedS,S+,SAB,andStotvaluesofthepolymersby usingEq.(1)accordingtovanOss–Good–Chaudhurymethodafter determiningthee valuesofthemethyleneiodide(MeI2), ethy- leneglycol(EG),andformamide(F)testliquids,whicharegivenin Table4.Thecalculatedsurfacefreeenergyresultsofallthesam- plesarereportedinTable5.Weplottedthevariationofatomic oxygensurfaceconcentrationfor90 take-offangleandelectron donorparameter,SwiththeincreaseoftheVAcontentinbulk (wt.%)inFig.5andverygoodagreementwasobtainedbetweenS

(7)

0 5 10 15 20 25 30 35

20

0 40 60 80 100

VA content in bulk (wt.%)

0 5 10 15 20 25 30 35

Atomic O (XPS-90o )

Atomic O (XPS-90 )°

Fig.5.PlotoftheatomicoxygensurfaceconcentrationobtainedbyXPSmeasure- mentsat90оtake-offangleandelectrondonorparameter,Swiththeincreaseof VAcontentinbulk(wt.%).

andatomicoxygenconcentrationsimilartoanotherrecentreport showingthestrength of thevanOss–Good–Chaudhurymethod [26]. Theincrease inVA contentresulted ina small riseinthe totalsurfacefreeenergycomponent,StotasseeninTable5how- evertherewasnodirectrelationshipbetweenStotandVAcontent especiallyforblendsprobablyduetotheintroductionofsurface roughnessbyphase-separationontheseblendcoatings.

3.4. ApplicabilityofCassie–Baxterequation

In 1944, Cassie–Baxter [25] derived an equation for two- component composite solid surfaces with varying degrees of heterogeneitiesanddefinedtheequilibriumCassie–Baxtercontact angle,CB.

cosCB=f1 cos1−f2cos2 (2) f1andf2aretheliquid/solidcontactareafractionsofsolidcom- ponents1and2onthesurfaceand1and2indicatethecontact angleswhicharemeasuredonflat1and2surfacesrespectively.Eq.

(2)indicatesthatthecontactanglemeasuredonaheterogeneous surfacecanbecalculatediftheareafractionsofthepolymercom- ponentsareknown.Cassie–Baxterequationwasfoundtobeuseful

Table5

SurfacefreeenergyresultsofpolymersurfacescalculatedbyusingvanOss–Good equation(mJ/m2).

Polymer SLW +S S SAB totS

HDPE 32.6 0.0 0.2 0.0 32.6

EVA-12/HDPE(50/50) 35.9 0.0 1.4 0.0 35.9

EVA-18/HDPE(50/50) 36.5 0.0 4.0 0.0 36.5

EVA12 34.8 0.0 6.3 0.0 34.8

EVA-28/HDPE(50/50) 35.9 0.0 2.8 0.0 35.9

EVA-33/HDPE(50/50) 38.6 0.0 3.4 0.0 38.6

EVA18 36.5 0.0 6.9 0.0 36.5

EVA28-05 37.0 0.0 8.8 0.0 37.0

EVA28-40 38.1 0.0 6.9 0.0 38.1

EVA28-150 34.8 0.0 9.0 0.0 34.8

EVA33-400 38.1 0.0 9.0 0.0 38.1

EVA40 38.6 0.0 9.5 0.0 38.6

PVAc/EVA-33(20/80) 35.9 0.0 11.6 0.0 35.9

PVAc/EVA-33(30/70) 34.8 0.0 14.9 0.0 34.8

PVAc/EVA-33(50/50) 39.1 0.0 23.1 0.0 39.1

PVAc/EVA-33(65/35) 37.0 0.01 25.2 1.0 38.0

PVAc/EVA-33(80/20) 37.0 0.0 25.8 0.0 37.0

PVAc/EVA-33(85/15) 37.0 0.0 25.8 0.0 37.0

PVAc 39.1 0.2 22.1 4.2 43.3

50 60 70 80 90

20

0 40 60 80 100

CB

theoretical experimental

VA content in bulk (wt.%)

Fig.6. TheoreticalCassie–Baxterand experimentallymeasuredcontactangles versustheVAcontentinbulk(wt.%)byusingweightfractioncalculation.

intheanalysisofchemicallyheterogeneousflatsurfaces,andalso airpocketcontainingroughsurfacesalthoughitcannotexplainthe corrugationofthethree-phasecontactlinebetweenthedropand solid[31].

We tested theapplicabilityof theCassie–Baxterequationto thechemicallyheterogeneous PVAc/EVA-33blendsurfaces: We assumed thatthesolid areafractionsf1 and f2 areequal tothe weight fractions on the surface and calculated them for PVAc homopolymer and EVA-33copolymerseparately. We measured watere onflatPVAcandEVA-33as1 and2.Thenwesolved Eq.(2) forthePVAc/EVA-33blendsand calculatedthetheoreti- calCassie-Baxtercontactangle,CB.Fig.6showsthevariationof thetheoreticalCassie–Baxterandexperimentallymeasuredcon- tactangleswiththeincreaseofVAcontentinbulkbyusingthe weightfractionresults.Asseeninthisfigure,Cassie–Baxtertheory givesgoodagreementwiththeexperimentalresultsbelow55wt.%

totalVAcontentinbulkwhichcanbeattributedtothepresence ofthehigherconcentrationofthemorehydrophobicEVAregions onthesurface.However,theoreticalCassie–Baxtercontactangles andexperimentalonesdidnotfitwitheachotherfortheVAcon- tentswhichwerehigherthan55wt.%probablyduetheincreasein hydrophilicityarisesfromtheVAgroup.Inthisregion,eresultsof theblendswereveryclosetotheresultsofPVAchomopolymeras giveninTable3.ThisshowsthattheCassie–Baxterequationgives betterresultsforthecaseswherehydrophobicregionsdominate onthesurface.

4. Conclusions

Large areapatterns having controlledprotrusion sizes were obtainedforPVAc/EVA-33blendsbyapplyinganinexpensivedip coatingmethod.Areasonablylinearrelationwasfoundbetween theVAcontentonthesurface(wt.%)obtainedfromXPSanalysisand theVAcontentinbulkespeciallyforPVAc/EVA-33blendsurfaces.

ForpureEVAcopolymersurfaces,PEsegmentsaremoreenriched onthesurfacethanthatofthebulk similartopreviousreports.

However,wedeterminedVAenrichmentontheEVA/HDPEblend surfaces,whichmaybeattributedtothehighmolecularweightof HDPE.

The increase in polar and hydrogen-bonding VA content on polymersurface resultedinadecrease e values ofwater drop.

The relation between surface free energy and XPS results was investigatedandagoodagreementwasobtainedbetweenbasic surface free energycomponent, s,and atomic oxygensurface concentrationwiththeincreaseofVAcontent.Wealsotestedthe applicabilityoftheCassie–Baxtertheoryandagoodagreementwas

(8)

foundwiththeexperimentalwatereresultsforsurfaceshaving below55wt.%totalVAcontent.However,whenVAcontentswere higherthan55wt.%,thentherewasapooragreementwiththis theoryandexperimentalresultsprobablyduetotheincreasein hydrophilicregionsonthesurfacecontainingVAgroups.Incon- clusion,Cassie–Baxterequationfitstheexperimentalresultsbetter forthecaseswherehydrophobicregionsdominateonthesurface.

References

[1]D.R. Paul, S. Newman, Polymer Blends, Academic Press, New York, 1978.

[2] M.C.Michalski,J.Hardy,B.J.H.Saramago,J.ColloidInterfaceSci.208(1998) 319–328.

[3] S.Chattopadyay,R.N.Ghosh,T.K.Chaki,A.K.Bhowmick,J.Adhes.Sci.Technol.

15(2001)303–320.

[4] H.Y.Erbil,SurfaceChemistryofSolidandLiquidInterfaces,BlackwellPublish- ing,Oxford,UK,2006.

[5]Z.I.Ali,J.Appl.Polym.Sci.104(2007)2886–2895.

[6] E.Helfand,Z.R.Wasserman,Macromolecules9(1976)879–888.

[7]S.K.Kumar,T.P.Russell,Macromolecules24(1991)3816–3820.

[8]Y.Li,Y.Yang,F.Yu,L.Dong,J.Polym.Sci.PartB:Polym.Phys.44(2006) 9–21.

[9] M.Yin,Y.Yuan,C.Liu,J.Wang,Biomaterials30(2009)2764–2773.

[10]I.O.Ucar,C.E.Cansoy,H.Y.Erbil,M.E.Pettitt,M.E.Callow,J.A.Callow,Biointer- phases5(2010)75–84.

[11]A.M.Henderson,IEEEElec.Insul.Mag.9(1993)30–38.

[12]H.Y.Erbil,VinylAcetateEmulsionPolymerizationandCopolymerizationwith AcrylicMonomers,CRCPress,USA,2000.

[13]T.Matsunaga,Y.Tamai,J.Appl.Polym.Sci.22(1978)3525–3530.

[14]H.Y.Erbil,J.Appl.Polym.Sci.33(1987)1397–1412.

[15]J.R.Dann,J.ColloidInterfaceSci.32(1970)302–320.

[16]S.J.Park,H.C.Kim,H.Y.Kim,J.ColloidInterfaceSci.255(2002)145–149.

[17]C.J.vanOss,M.K.Chaudhury,R.J.Good,Chem.Rev.88(1988)927–941.

[18] K.Grundke,H.J.Jacobasch,F.Simon,S.T.Schneider,J.Adhes.Sci.Technol.9 (1995)327–350.

[19] T.Chihani,P.Bergmark,P.Flodin,JAdhes.Sci.Technol.9(1995)843–857.

[20]A.A.Galuska,Surf.InterfaceAnal.21(1994)703–710.

[21] R.L.McEvoy,S.Krause,P.Wu,Polymer39(1998)5223–5239.

[22]C.M.Cepeda-Jimenez,R.Torregrosa-Macia,J.M.Martin-Martinez,J.Adhes.Sci.

Technol.17(2003)1145–1159.

[23]M.D. Landete-Ruiz, J.M.Martin-Martinez, Int. J. Adhes.Adhes. 25(2005) 139–145.

[24]M.D.Doganci,C.E.Cansoy,I.O.Ucar,H.Y.Erbil,E.Mielczarski,J.A.Mielczarski, J.Appl.Poly.Sci.,inpreparation.

[25]A.B.D.Cassie,S.Baxter,Trans.Faraday.Soc.40(1944)546–551.

[26] H.Y.Erbil,B.Yas¸ar,S.Suzer,B.M.Baysal,Langmuir13(1997)5484–5493.

[27] G.Beamson,D.Briggs,HighResolutionXPSofOrganicPolymers:TheScienta ESCA300Database,Wiley,Chichester,1992.

[28]B.Na,Q.Zhang,Q.Fu,G.Zhang,K.Shen,Polymer43(2002)7367–7376.

[29]C.Devallencourt,S.Marais,J.M.Saiter,M.Labbe,M.Métayer,Polym.Test.21 (2002)253–262.

[30]F.J.duToit,R.D.Sanderson,W.J.Engelbrecht,J.B.Wagener,J.FluorineChem.74 (1995)43–48.

[31]H.Y.Erbil,C.E.Cansoy,Langmuir25(2009)14135–14145.

[32]W.L.Lee,M.Hong,E.Wijdada,S.C.J.Loo,Macromol.RapidCommun.31(2010) 1193–1200.

Referenties

GERELATEERDE DOCUMENTEN

Naar aanleiding van een verzoek van de Nederlandse Vereniging voor Psychiatrie (NVvP) en nieuwe publicaties over de behandeling van therapieresistente obsessief compulsieve

Ook als sprake is van dusdanig ernstige beperkingen dat duidelijk is dat verzekerde niet tot de doelgroep van de Wsw behoort, kunt u naar het oordeel van het College een aanvullende

Research building blocks EARF Zachman TOGAF Speakers Literature Case study.. Research building blocks EARF Zachman TOGAF Speakers Case study Questionnaires Interviews 4-5 years “Hard

Het beeldmateriaal is door de onderzoekers systematisch beoordeeld en ‘gescoord’, waarbij allerlei aspecten van ontmoe- tingen tussen verkeersdeelnemers werden geno- teerd die

Deze informatie zou telers de mogelijkheid bieden om gedurende het seizoen hun perceel gerst iets bij te sturen, om zo onder andere een te laag eiwitgehalte te

Ook was er bij deze cultivar betrouwbare invloed van de snijrijpheid op de knoplengte en knopdiameter, want rijper oogsten gaf langere knoppen en grotere bloemen (zie

Als gekeken wordt naar de daling van het overschot dan blijkt die wel groter te zijn voor bedrijven die als doelstelling aan hebben gegeven de eindnormen te willen gaan halen. Je