• No results found

Cover Page The handle

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The handle"

Copied!
33
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle http://hdl.handle.net/1887/57176 holds various files of this Leiden University dissertation

Author: Gulian, Margarita

Title: The development of the speech production mechanism in young children : evidence from the acquisition of onset clusters in Dutch

Date: 2017-10-31

(2)

/Cr/  and  /sC/  clusters1    

5.1.  Introduction  

In  this  chapter  I  examine  how  two-­‐year-­‐olds  perceive  words  with  onset  clusters   that   are   either   reduced   or   fully   pronounced.   As   in   Chapter   1,   the   focus   is   on   onset   clusters   consisting   either   of   consonant   +   liquid,   or   of   /s/   +   consonant.  

When  toddlers  start  producing  such  words,  they  typically  reduce  the  word  by   omitting   one   of   the   cluster   consonants.   However,   as   careful   analyses   of   the   produced   tokens   show   in   Chapter   1,   there   are   acoustic   traces   of   the   omitted   consonant,  but  these  are  unperceivable  to  the  adult  ear.  This  suggests  that  the   apparently   omitted   segments   are   in   any   case   present   in   the   segmental   representation.   Toddlers'   cluster   realizations   are   thus   reduced   during   the   production  process,  at  lower  levels  of  their  speech  production  mechanism.  The   evidence   for   this   assumption   so   far   only   comes   from   analyses   of   child   productions.  To  test  the  hypothesis  that  toddlers  have  detailed  representations   of  clusters,  we  need  to  examine  infants'  perception  of  (reduced)  clusters.  This  is   why,   in   the   current   chapter   I   report   on   a   preferential   looking   experiment   designed   to   investigate   whether   two-­‐year-­‐olds   are   sensitive   to   reduced   onset   clusters  in  perception.  Production  data  from  most  of  the  children  participating   in  the  experiment  were  obtained  too,  to  observe  the  link  between  production   and  perception  in  more  detail.    

I   have   limited   the   work   in   this   thesis   to   a   study   of   the   system   behind   the   production  of  isolated  words,  since  this  is  what  the  developing  speakers  in  this   thesis,   being   between   one   and   two-­‐years   old,   mostly   produce.   Within   the   context   of   word-­‐production,   this   study   will   focus   on   the   -­‐   developing   -­‐  

production  of  word-­‐onset  consonant  clusters.  A  typical  deviation  in  early  child  

1 This  Chapter  is  partly  based  on  the  publication:  

Gulian,  M,  Junge,  C.  &  Levelt,  C.  (2014).  Two-­‐year-­‐olds  distinguish  snakes  from   nakes  but  not  trains  from  tains.  BUCLD  38  Proceedings,  Cascadilla  Press.

(3)

language  productions  is  the  reduction  of  these  clusters  to  singleton  consonants,   like   in   (Dutch)   [tɛin]   for   target   trein   ‘train’,   and   [tup]   for   target   stoep   ‘side-­‐

walk’.  As  mentioned  above,  up  until  now  we  only  find  grammatical  accounts  of   this  deviation,  in  the  form  of  a  fixed  syllable  template,  a  parameter  setting,  or  a   constraint  on  syllable  structure  (Fikkert,  1994;  Pater  &  Barlow,  2003;  Velleman  

&  Vihman,  2002).  A  brief  discussion  of  these  accounts  will  follow  below  in  1.4.  

However,  instead  of  resulting  from  a  specific  grammatical  setting,  these  cluster   reductions  could  also  be  the  outcome  of  the  speech  production  process,  and  in   the  speech  production  mechanism  there  are  several  possible  sources  for  error   that  could  be  considered.  This  is  what  will  be  done  in  this  thesis,  by  studying   children's   cluster   productions   in   different   ways   -­‐   acoustically,   phonologically,   and   in   relation   to   children's   perception   of   consonant   clusters   -­‐   and   analyzing   both  longitudinal,  spontaneous  production  data,  and  elicited  productions.    

 

To  examine  the  amount  of  detail  that  toddlers  stored  for  onset  clusters  in  their   mental  representations,  a  preferential  looking  experiment  ('PLP':  Golinkoff  et.  

al,   1987;   for   a   recent   review   see   Golinkoff   et.   al,   2013)   was   carried   out.  

Swingley   and   Aslin   (2000)   modified   this   paradigm   to   examine   the   amount   of   detail  with  which  words  are  stored  in  the  infant  brain:  infants  listen  to  correct   pronunciations  or  to  'mispronunciations'  of  words  corresponding  to  one  of  two   pictures   that   they   are   presented   with   on   a   screen.   To   obtain   a   mispronunciation,   usually   one   of   the   target   phonemes   is   replaced   by   another   phoneme,   like   in   the   mispronunciation   'vaby'   instead   of   the   correct   'baby'.  

Although   even   in   the   mispronunciation   condition,   infants   fixate   the   correct   object   above   chance,   their   looking   behavior   is   affected   by   the   way   words   are   produced:   Infants   typically   look   longer   at   a   target   picture   that   is   named   correctly  than  when  it  is  named  with  a  mispronunciation.    

 

Table   1   presents   an   overview   of   studies   comparing   infants'   performance   for   'correct   pronunciations'   versus   'mispronunciations'.   Most   studies   provide   evidence  showing  that  infants  have  detailed  word  representations:  infants  are  

(4)

sensitive  to  mispronunciations  for  consonants  as  well  as  for  vowels,  in  different   positions   of   the   word   (e.g.,   in   onset,   in   medial,   and   in   coda   position).   Infants   notice  mispronunciations  both  for  well-­‐known  words  and  for  recently-­‐learned   words   (Bailey   &   Plunkett,   2002;   White   &   Morgan,   2008),   which   suggests   that   word-­‐templates  are  detailed  from  the  beginning  of  storage  (see  also  Altvater-­‐

Mackensen   &   Mani,   2013).   However,   infants   are   not   sensitive   to   all   mispronunciations:   Detection   of   mispronunciations   is   dependent   on   the   identity   of   the   target   phoneme   (Van   der   Feest,   2007),   and   on   the   overlap   in   phonological   features   between   target   and   the   substituted   phoneme   (White   &  

Morgan,   2008).   However,   the   mispronunciation   paradigm   has   not   yet   been   extended   to   words   starting   with   complex   clusters,   which   is   the   focus   of   this   thesis.   Therefore,   the   current   chapter   examines   how   detailed   clusters   are   stored  in  the  mental  lexicon  of  toddlers’  speech  production  mechanism.  

 

Table  1:  Overview  of  the  results  of  the  studies  summarized  in  this  section.    

Study   Age   and   language  

Method   Type   of  

mispronunciation+  

Example  

Results  

Swingley   and   Aslin   (2000)  

From   18   to   23  months   Dutch  

PLP   Onset   dog    tog    

Words   stored   in  detail   Swingley  

(2003)  

19-­‐month-­‐

olds   Dutch  

PLP   Onset   +   medial   position  

bal  dal   baby  bady  

Detailed   storage   of   plosives   in   word   onset   and   word   medial  

position   Swingley  

(2005)  

11-­‐month-­‐

olds   Dutch  

HTPP   Onset  +  coda     teen    peen   teen    teem  

Detailed   storage   of   plosives   in   word   onset   but   not   in   word  coda   Mani   and  

Plunkett   (2007)  

15,   18   and   24-­‐month-­‐

olds   English  

PLP   Onset  +  vowel   bed    bud   bed    ped  

Detailed   storage   of   both   vowels   and  

(5)

consonants  

Bailey  and   Plunkett   (2002)  

18,   24-­‐

month-­‐olds   English  

PLP   Onset  

cup      gup   (change   in  voice)  

cup      dup   (change   in  place  and  voice)  

Detailed   storage   of   words,   no   correlation   with   vocabulary   White  and  

Morgan   (2008)  

19-­‐month-­‐

olds   English  

PLP   Onset  

cup      tup   (change   in  place)  

cup      bup   (change   in  place  and  voice)   cup      vup   (change   in   place,   voice,   manner)  

Detailed   storage   of   consonants   in   the   word   onset  

Van   der   Feest   (2007)  

24-­‐month-­‐

olds   Dutch  

PLP    

Onset   (change   in   place  and/or  voice)   poes    boes   boom    poom   poes    does   doos    poos  

Detailed   storage   of   consonants   in   the   word   onset   of   the   voice   feature,   asymmetric   findings   for   place.  

Mani  et  al.  

(2012)   14-­‐month-­‐

olds   English  

ERP   Vowels  

bed    bid   Detailed   storage   of   vowels   Mills  et  al.  

(2004)   14   and   20-­‐

month-­‐olds   ERP   Onset   dog    bog   cat    gat  

Consonants   are   not   stored   in  detail  

 

***HTP  (headturn  procedure);  (S)PLP  (sequential)  preferential  looking  paradigm);  ERP   (event-­‐related  potentials)  

****Kuh  ‘cow’;  Schaf  ‘sheep’;  Taf  (MP  of  Schaf);  Buch  ‘book’.  

 

When  toddlers  try  to  produce  onset  clusters,  they  often  reduce  the   cluster  by   omitting   one   of   the   consonants.   Which   consonant   is   omitted   depends   on   the   identity   of   the   cluster.   For   consonants   containing   a   liquid   as   the   second   consonant   (/C+liq/   clusters),   it   is   the   second   consonant   that   is   omitted,   whereas   for   clusters   starting   with   an   /s/   (/sC/   clusters)   it   is   usually   the   first   consonant,   that   is,   the   fricative,   that   is   omitted.   In   the   preferential   looking  

(6)

experiment  the  perception  of  reduced  vs.  correct  /C+liq/  clusters  and  reduced   vs.   correct/sC/clusters   was   therefore   compared.   Due   to   the   lack   of   enough   prototypical   nouns   starting   with   /kn/   this   cluster   was   not   included   in   the   experiment.   Note   that   in   contrast   to   previous   literature,   'mispronunciations'   were  created  not  by  substituting  one  phoneme  for  another,  but  by  reducing  the   onset   cluster   to   one   of   the   target   consonants.   The   type   of   reduction   followed   the   predominant   pattern   of   initial   child   productions:   for   /C+liq/-­‐clusters   the   liquid  was  omitted  while  for  /sC/-­‐clusters  it  was  the  fricative  that  was  omitted   (Fikkert,  1994;  Jongstra,  2003).  We  used  the  PLP  to  test  whether  two-­‐year-­‐old   Dutch   children   store   onset   clusters   in   their   complex   form   (CCV)   even   though   they  produce  target  words  with  an  onset  cluster  in  a  simplified  form  (CV).  The   research   questions   underlying   the   perception   experiment   are   formulated   below.  

 

1. Do  two-­‐year-­‐olds  perceive  the  difference  between  correctly   produced  and  reduced  clusters?    

2. Is  there  a  difference  in  the  looking  behavior  towards  /C+liq/  

cluster  trials  and  /sC/  cluster  trials?  

 

To   date   no   experiments   have   tested   the   perception   of   reduced   clusters   in   known  words,  and  only  one  study  has  looked  at  the  perception  of  clusters  at  all.  

Archer  and  Curtin  (2011)  tested  6-­‐  and  9-­‐month-­‐olds'  preference  for  different   types  of  onset  clusters  in  pseudo-­‐words.  In  the  first  experiment  they  contrasted   phonotactically   well-­‐formed   onset   clusters   like   /pl/   and   /kl/   with   phonotactically  ill-­‐formed  clusters,  like  /tl/.  The  results  pointed  out  that  both   age  groups  looked  longer  at  trials  containing  the  ill-­‐formed  clusters  than  at  the   trials   containing   only   well-­‐formed   clusters.   Furthermore,   only   9-­‐month-­‐olds   distinguished   between   well-­‐formed   frequent   and   infrequent   clusters.   The   authors'   conclusion   was   that   while   6-­‐month-­‐olds   can   discriminate   between   native   and   nonnative   sound   combinations,   they   are   not   yet   sensitive   to   type   frequency  for  legal  onset  clusters.  Nevertheless,  since  this  study  used  only  used  

(7)

pseudo-­‐words,   the   finding   that   infants   are   able   to   distinguish   between   well-­‐  

and  ill-­‐formed  clusters  suggest  that  infants  have  stored  at  least  some  clusters  of   known  words  in  detail,  to  allow  for  generalization  to  novel  words  (i.e.,  pseudo-­‐

words).   However,   to   test   this   assumption   it   is   crucial   to   test   children's   perception  of  known  words.  This  is  why  we  conducted  a  PLP  experiment  where   the  perception  of  target-­‐like  vs.  reduced  clusters  was  tested.  Furthermore,  I  did   not   test   random   mispronunciations   of   target   clusters,   but   mispronunciations   that  are  similar  to  the  actual  cluster  mispronunciations  of  two-­‐year-­‐olds.  

 

If   infants   have   stored   all   clusters   correctly,   they   should   be   sensitive   to   how   clusters   are   produced   and   it   is   therefore   expected   that   they   will   look   longer   when   correctly   produced   test   items   are   presented   than   when   test   items   are   presented   that   are   incorrectly   produced,   with   reduced   onset   clusters.   It   is   possible   that   infants   only   notice   mispronunciations   for   one   type   of   onset   cluster.   Given   that   /sC/   clusters   are   generally   acquired   later   than   /C+liq/  

clusters   (Jongstra,   2003),   it   could   be   that   toddlers   only   notice   mispronunciations  for  /C+liq/  clusters.  However,  the  opposite  is  possible  too,   i.e.,   toddlers   only   notice   mispronunciations   for   /sC/   clusters,   because   the   omission   of   initials   consonant,   in   this   case   /s/,   could   be   acoustically   more   salient  than  omission  of  a  second  consonant,  as  in  the  case  of  the  omitted  liquid.  

It  is,  thus,  possible  that  the  position  of  omission  plays  a  role  such  that  omission   of   a   consonant   in   the   first   position   is   more   detrimental   to   word   recognition   than  omission  of  a  consonant  in  second  position.  A  second  possibility  why  the   omission  of  /s/  is  more  salient  than  a  liquid  is  because  they  differ  in  acoustic   saliency  and  duration.  

 

We   tested   two-­‐year   olds   because   at   this   age   they   have   acquired   a   vocabulary   large  enough  to  contain  a  variety  of  words  with  clusters  in  the  onset.  It  is  also   one   of   the   earliest   ages   at   which   one   can   obtain   production   data   in   an   experimental   setting   (Hoff   et   al.,   2008).   After   the   perception   experiment   an   elicitation   task   was   carried   out   to   see   how   the   same   infants   produced   words  

(8)

with  the  two  types  of  clusters.  On  the  basis  of  their  productions  the  participants   were  grouped  as  either  "reducers"  or  "substituters"  of  consonant  clusters.  The  

"substituters"   produced   consonant   clusters,   but   these   clusters   were   not   necessarily   segmentally   correct.   Participants   who   did   not   produce   any   of   the   words  were  not  grouped.      

 

5.2.  Method    

5.2.1.  Participants  

Data   from   40   monolingual   Dutch   children,   20   girls   and   20   boys,   with   a   mean   age   of   24;6   (months;   days),   ranging   between   23;16   and   24;21,   were   retained   for  analysis.  An  additional  18  children  were  tested  but  excluded  from  analysis   because  they  did  not  complete  the  test  (n  =  10)  or  due  to  equipment  failure  (n  =   8).   All   children   were   reported   to   have   a   normal   development   and   were   recruited   from   the   Leiden   Babylab   Database.   The   study   was   approved   by   the   Ethical   Committee   of   the   faculty   of   Social   Sciences,   and   parents   signed   the   consent  form.  

 

5.2.2.  Stimuli  

For   the   perception   experiment   27   words   were   selected:   10   /sC/   -­‐   cluster   words;  12  /C+liq/-­‐cluster  words;  5  filler  words  that  served  as  distracter  words   at   test.   According   to   Bacchini   et   al.,   2005,   most   two-­‐year-­‐olds   would   know   these  words.  See  Appendix  1  for  a  list  of  the  words.  For  each  word,  we  selected   a   high-­‐resolution   realistic   picture   with   the   object   appearing   on   a   white   background.   For   the   elicitation   task   we   selected   six   words,   of   which   3   were   /sC/   words   and   3   were   /C+liq/   words.   All   of   these   words   were   used   in   the   perceptual  experiment  too.    

 

Auditory   stimuli   accompanying   each   picture   in   the   perceptual   test   were   recorded  in  a  soundproof  booth,  with  a  sample  rate  of  44.1  kHz.  A  female  native   speaker  of  Dutch  uttered  the  stimuli  in  a  child-­‐directed  manner.  All  words  were  

(9)

recorded   in   natural   carrier-­‐contexts   (i.e.   not-­‐spliced).   Three   types   of   carrier   sentences  containing  the  target  word  were  used  in  the  test  phase:  Kijk  naar  de   [target],  mooi  he!'  Look  at  the  [target],  isn't  it  pretty?'  or  Zie  je  een  [target]?  Vind   je  het  mooi?  'Do  you  see  a  [target]?  Do  you  like  it?'  and  Kijk,  een  [target]!  Mooi,   hè?,  'Look,  a  [target]!  Isn't  it  pretty?'.  Target  words  were  either  a  /C+liq/  word   like  bril  'glasses'  or  bloem  'flower'  (liquids  were  always  /r/  or  /l/),  or  an  /sC/  

word  like  schoen    'shoe'.  Words  were  either  correctly  produced  (CC)  or  reduced   (RC).  To  illustrate,  a  /C+liq/  word  like  bril  was  correctly  produced  as  [bʀɪl]  and   in  the  incorrect  version  the  cluster  was  reduced,  resulting  in  [bɪl];  an  /sC/  word   like  schoen  was  correctly  produced  as  [sχun]  or  incorrectly  as  [χun].  The  mean   duration   of   all   correctly   pronounced   target   words   was   770   milliseconds   (a   mean   duration   of   800   ms   for   /sC/   words   and   of   730   ms   for   /C+liq/   words),   while   for   all   mispronounced   target   words   the   mean   duration   was   660   milliseconds  (a  mean  duration  of  680  ms  for  reduced  /sC/  words  and  of  640  ms   for  reduced  /C+liq/  words).    

   

 

Figure  1:  An  example  from  the  familiarization  phase,  with  the  picture  of  a  shoe   (schoen).    

 

(10)

  Figure  2:  An  example  from  the  test  phase,  where  two  objects  are  visible  on  the   screen.  In  this  case  the  bril  -­‐  schep  ('glasses'  –  'shovel')  trial.  

 

5.2.3.  Procedure  

Children   first   participated   in   the   perception   task,   before   they   were   administered   the   elicitation   task.   The   perception   experiment   consisted   of   a   familiarization   phase,   followed   by   a   test   phase.   The   function   of   the   familiarization   phase   was   to   make   sure   that   children   would   recognize   the   pictures  that  were  presented  in  the  experimental  phase.  In  the  familiarization   phase,  all  twenty-­‐seven  objects  were  presented  in  isolation:    visually  they  were   presented   with   the   picture   of   the   target   word,   slowly   moving   up   and   down,   while  the  picture  was  named  -­‐  in  the  correct  way,  in  the  recorded  female  voice.  

Each  familiarization  trial  lasted  for  4  seconds  (see  Figure  1).    

 

The  experimental  phase  consisted  of  twenty-­‐five  trials  (twenty-­‐two  test  trials;  

3   filler   trials),   in   which   children   saw   two   objects   side   by   side.   The   pairs   of   pictures   moved   slowly   up   and   down   while   the   auditory   stimulus   was   presented,   naming   only   one   of   the   objects.   Each   experimental   trial   lasted   for   eight   seconds.   The   pairs   of   pictures   were   presented   two   seconds   after   the   beginning   of   the   trial.   Paired   objects   did   not   overlap   in   word   onset:   most   pairings  comprised  objects  from  two  different  consonant-­‐cluster  pairings  (e.g.  

bril  -­‐  schep;  'glasses'-­‐'shovel';  see  Figure  2).  We  controlled  for  saliency  effects;  

animate  objects  were  paired  with  other  animate  objects;  inanimate  objects  with  

(11)

other   inanimate   objects.   Each   pairing   was   presented   twice:   in   total,   the   participants  were  invited  to  look  at  all  objects.    

 

At  test,  children  heard  only  one  pronunciation  of  each  target  word:  either  the   correct   form   or   the   reduced   form.   Each   child   was   presented   with   a   mix   of   correct   and   reduced   test   items.   Therefore,   in   order   to   test   all   possible   trials   with   correctly   produced   and   reduced   clusters   two   experimental   groups   were   created.   Furthermore,   to   control   for   the   possible   diminishing   concentration   towards   the   end   of   the   test,   each   experimental   group   was   tested   in   two   different   orders   of   presentation   of   the   stimuli.   There   were   thus   4   versions   of   the  experiment,  and  each  version  was  presented  to  10  children.  In  each  version,   children  were  presented  with  a  relatively  equal  amount  of  correct  and  reduced   pronunciations   of   target   words,   for   both   types   of   consonant-­‐clusters.   In   total   the   experiment   counted   4   types   of   test   stimuli,   i.e.   4   test   conditions:   correct   C+liquid  clusters  (CCliq),  correct  /sC/  clusters,  (CCs),  reduced  C+liquid  clusters   (RCliq),  and  reduced  /sC/  Clusters  (RCs).  This  is  schematized  in  Table  2  below.  

All   children   were   presented   with   all   4   conditions,   with   5   or   6   trials   per   condition.   Trials   were   distributed   in   a   semi-­‐randomized   way:   two   trials   from   the   same   condition,   or   two   trials   with   the   same   pairing   of   pictures   never   immediately   followed   one   another.   For   a   more   detailed   overview   of   the   different  test  trials,  see  Appendices  2  and  3.  The  familiarization  phase  lasted  for   3  minutes  and  the  experimental  phase  for  5  minutes.    

 

After  participating  in  the  perception  experiment,  the  children  were  tested  with   a  short  word  elicitation  task.  Their  utterances  were  recorded  with  a  Microtrack   II  digital  recorder  and  an  external  Microtrack  II  microphone.  First  the  children   were  shown  pictures  of  three  words,  starting  either  with  a  /sC/,  /Cl/  or  a  /Cr/  

cluster:  stoel  'chair';  bloem  'flower',  and  broek  'trousers'.  If  they  showed  interest   in   participating   in   the   task,   they   were   given   the   chance   to   produce   3   more   cluster  words  of  the  same  types.  The  intention  of  the  word  elicitation  task  was   to   find   out   in   what   stage   of   development   of   cluster   production   the   children  

(12)

were,   i.e.   whether   they   exhibited   cluster   reduction   in   both   /sC/   and   /C+liq/  

clusters,   whether   they   exhibited   only   /sC/   cluster   reduction   or   whether   they   mastered   the   production   of   both   /sC/   and   /C+liq/   clusters.   Finally,   parents   filled   in   a   questionnaire   concerning   their   child's   receptive   and   productive   vocabulary  (short  N-­‐CDI's;  Zing  &  Lejaegere,  2003).  

 

Table  2:  An  overview  of  all  the  possible  target  words  used  for  the  picture  pair   'bril-­‐schep'  (glasses  -­‐  shovel).  

trial  type   cluster  type   experimental   conditions  

example  

correct   cluster    

/C+liq/  words   CCliq   bril  [bʀɪʟ]  

/sC/  words   CCs   schep  [sχɛp]  

reduced   cluster    

/C+liq/  words   RCliq   bil  [bɪʟ]  

/sC/  words   RCs   chep  [χɛp]  

 

5.2.4.  Apparatus  

The  entire  experiment  took  place  in  a  2m  ×  2m  soundproof  booth.  During  the   experiment,  children  sat  on  their  caregiver's  lap  at  a  distance  of  90  cm  from  the   screen.  One  camera,  mounted  directly  under  the  screen  recorded  the  children's   eye   movements.   Caregivers   wore   headphones   and   listened   to   a   mix   of   music   and  backward  speech.  

 

An  experimenter  monitored  the  session  outside  the  booth  while  the  experiment   was   run   on   a   Macintosh   G4   laptop   computer   using   the   Habit   X   1.0   software   (Cohen   et   al.,   2000).   The   looking   behavior   of   each   participant   during   the   experiment   was   recorded   with   a   Panasonic   camera   on   a   Panasonic   DVD   recorder.   The   video   recordings   of   the   children’s   faces   were   coded   offline   by   trained  scorers  using  Elan  (EUDICO  Linguistic  Annotator)  3.6.    

 

(13)

5.2.5.  Scoring  

The   main   interest   of   the   perception   experiment   was   to   compare   children's   looking  behavior  during  the  correctly  pronounced  target  words  vs.  the  looking   behavior  during  the  reduced  target  words.  Each  test  trial  was  divided  into  two   phases:  the  pre-­‐naming  phase  measured  from  the  onset  of  the  trial  (including   the  carrier  sentence)  up  to  the  onset  of  the  target  word:  0  –  2,000  ms,  and  the   post-­‐naming  phase  from  360  ms  after  the  onset  of  the  target  word  up  to  2,000   ms  after  the  onset  of  the  target  word:  2,360  –  4,000  ms.  The  delay  of  360  ms   after   the  word  onset  is  considered  to   be   the   time   that   infants   need   to   initiate   eye   movement   in   response   to   speech   (Swingley   &   Aslin,   2000).   Only   trials   during   which   children   fixated   both   the   target   and   the   distractor   in   the   pre-­‐

naming  phase  were  taken  into  account  for  the  final  analysis.  Two  looking-­‐time   measures  were  used:  proportion  of  looking  time  at  the  target  (PTL)  and  latency   longest  look  at  the  target  (LLK).    

 

PTL   is   computed   by   dividing   the   total   time   spent   looking   at   the   target   by   the   total  time  spent  looking  at  either  the  target  or  the  distractor  (Swingley  &  Aslin,   2000).   Latency   longest   look   is   the   difference   between   the   longest   look   at   the   target  and  the  longest  look  at  the  distractor  (Mani  &  Plunkett,  2007).  The  effect   of  naming  on  any  given  trial  is  the  difference  in  PTL  and  LLK  between  the  post-­‐  

and  pre-­‐naming  phases.  A  positive  difference  (post-­‐  minus  pre-­‐naming  phase)   indicates  that  a  participant  fixated  the  target  relatively  more  after  naming  than   before  it  was  named.  In  the  statistical  analysis  this  difference  measure  for  both   the   PTL   and   the   LLK   measures   was   used,   separately   for   each   of   our   four   conditions   (CCs;   CCliq;   RCs;   RCliq).   If     children   would   have   stored   their   onset   consonant   clusters   in   detail,   naming   effects   are   expected   to   be   larger   for   correctly-­‐produced  consonant  clusters  than  for  reduced  clusters.    

 

For  the  production  analysis  children  fell  into  one  of  3  categories:  (1)  Reducers:  

children   who   reduced   clusters;   (2)   Substituters:   children   who   produced   clusters   of   one   or   both   cluster   types,   either   correctly   or   with   segmental  

(14)

substitutions,   and   (3)   Non-­‐producers:   children   who   refused   to   participate   in   the  word  elicitation  task.      

 

5.3.  Results:  perception  of  clusters    

5.3.1.  The  Results  for  PTL  measure  

A  repeated  measures  (RM)  analysis  of  variance  test  (ANOVA)  was  performed,   with   pronunciation   condition   (correct   cluster   vs.   reduced   cluster)   and   cluster   type  (C+liquid  cluster  vs.  /sC/  cluster)  as  factors.    

 

The  analysis  of  variance  revealed  that  the  factor  of  cluster  type  had  a  significant   effect  (F  [1,39]  =  4.009,  p  =  .05):  children  looked  longer  during  /sC/  cluster  test   trials  than  during  /C+liq/  cluster  test  trials.  The  factor  pronunciation  condition   did   not   show   a   significant   effect   (p   ≥   .119):   children   did   not   differentiate   between  correctly  produced  or  reduced  test  trials.  Neither  did  the  PTL  measure   point  to  an  interaction  between  cluster  type  and  pronunciation  condition,  p  ≥   .11.    

 

5.3.1.1.  Between-­‐subject  factors  

In   the   RM   ANOVA,   where   the   PTL   measure   was   the   dependent   variable,   the   between-­‐subject  factors  sex  and  group  were  also  investigated.  It  is  necessary  to   check  that  none  of  the  independent  subject-­‐related  factors  are  interacting  with   the   dependent   factor,   in   this   case   the   difference   PTL   measure.   There   was   no   interaction   between   the   between-­‐subject   factors   and   the   difference   PTL   measure,  for  all  p  ≥  .071.  

 

5.3.1.2.  Planned  post-­‐hoc  comparisons  

One-­‐sample   t-­‐tests   were   performed   to   examine   whether   there   were   naming   effects   for   each   cluster-­‐type.   Indeed,   for   all   conditions,   looking   time   at   the   target  word  in  the  post-­‐naming  phase  was  significantly  longer  than  chance  (i.e.  

compared  to  0),  for  all  p  ≤  .034.  This  effect  was  strongest  for  /sC/  words  in  the  

(15)

correctly   produced   condition   t(39)   =   4.9;   p   <   .001.   In   other   words,   in   all   the   conditions,  a  naming  effect  was  found  and  this  effect  was  even  stronger  in  the   case  of  correctly  produced  /sC/  words.  

 

Naming   effects   were   then   compared   for   each   cluster   type,   either   produced   correctly   or   reduced.   When   words   are   correctly   produced,   there   is   a   significantly   larger   increase   for   /sC/   words   as   compared   to   /C+liq/   words   (t(39)   =   -­‐2.63;   p   =   .012).   When   words   were   produced   with   reduced   clusters,   infants'  looking  behavior  was  similar  (p  ≥  .9).  A  larger  difference  PTL  measure   for  correctly  produced  /sC/  cluster  words  than  for  /C+liq/  words  means  that   children   looked   longer   at   the   target   word   in   the   post-­‐naming   phase   and   that   this  effect  was  larger  for  /sC/  words  than  for  /C+liq/  words.  

 

We   also   wanted   to   find   out   whether   in   the   four   conditions,   children   looked   longer  than  chance  at  the  target  word  in  the  post-­‐naming  phase.  This  is  why  the   four   different   conditions   were   compared   to   zero   by   means   of   one-­‐sample   t-­‐

tests.   The   t-­‐tests   pointed   out   that   the   looking   time   at   the   target   word   in   the   post-­‐naming  phase  was  significantly  longer  than  chance,  for  all  p  ≤  .034,  for  the   difference  PTL  measure  for  /C+liq/  words  in  the  CC  and  CR  condition  and  for   /sC/  words  in  the  CR  condition.    

 

Since   the   ANOVA   did   not   reveal   an   effect   of   pronunciation   condition   for   the   difference  PTL  measure,  it  cannot  be  concluded  that  children  looked  longer  in   one   condition   as   compared   to   another   condition   on   the   basis   of   the   way   the   cluster   word   was   pronounced.   In   Figure   3   the   mean   values   for   the   difference   PTL   measure   are   given,   showing   how   much   longer   the   PTL   was   in   the   post-­‐

naming   phase   with   respect   to   the   pre-­‐naming   phase   for   words   like   bloem   /CCliq/  and  boem  /RCliq/;  stoel  /CCs/  and  toel  /RCs/.    

(16)

     

Figure  3:  Mean  values  and  SD  of  the  difference  PTL  score  for  /C+liq/  words  in   the  correct  cluster  (CC)  vs.  /C+liq/  words  in  the  reduced  cluster  (RC)  condition   and  for  /sC/  words  in  the  CC  condition  vs.  /sC/  words  in  RC  condition.  

 

5.3.2.  The  results  for  LLK  measure  

For   the   LLK   measure   a   repeated   measures   analysis   of   variance   test   (RM   ANOVA)   was   conducted,   with   naming   phase   pronunciation   condition   (correct   cluster   vs.   reduced   cluster)   and   cluster   type   (liquid   cluster   vs.   /s/   cluster)   as   independent   variables   and   measure   for   looking   behavior   (difference   LLK)   as   dependent  variable.    

 

The   analysis   of   variance   did   not   reveal   significant   effects   of   cluster   type   and   pronunciation   condition,   for   all   p   ≥   .099.   However,   there   was   a   significant   interaction   between   the   factors   cluster   type   and   pronunciation   condition   (F   [1,39]  =  6.51,  p  =  .015).  In  order  to  find  out  in  which  way  this  interaction  was   expressed,  a  number  of  paired  sample  t-­‐tests  were  carried  out,  namely  for  the   difference   LLK   measure   for   /C+liq/   words   in   the   CC   condition   vs.   the   CR   condition;   for   /sC/   words   in   the   CC   condition   vs.   the   CR   condition;   for   the   /C+liq/  words  vs.  the  /sC/  words  in  the  CC  condition,    and  for  the  /C+liq/  vs.  

the  /sC/  words  in  the  CR  condition.  The  difference  LLK  measure  turned  to  be   significantly  larger  for  /sC/  words  in  the  CC  condition  as  compared  to  those  in  

0 0.05 0.1 0.15 0.2

/CCliq//RCliq/ /CCs/ /RCs/

*

D iff er en ce  in  m s  

(17)

the  CR  condition  t(39)  =  2.28;  p  =  .028;  this  was  not  found  for  /C+liq/  words  p  ≥   .35.  Furthermore,  a  significant  difference  between  the  /C+liq/  and  /sC/  words   in  the  CC  condition  was  found,  where  the  participants  looked  longer  in  the  post-­‐

naming  phase  at  correctly  pronounced  /sC/  words  t(39)  =  -­‐3.19;  p  =  .003.  

 

I   also   wanted   to   find   out   whether   in   the   four   conditions,   the   children   looked   longer  than  chance  at  the  target  word  in  the  post-­‐naming  phase.  This  is  why  the   four   different   conditions   were   compared   to   zero   by   means   of   one-­‐sample   t-­‐

tests.   The   t-­‐tests   pointed   out   that   the   looking   time   at   the   target   word   in   the   post-­‐naming   phase   was   significantly   longer   than   chance,   for   all   p   ≤   .012,   difference  LLK  measure  for  /C+liq/  words  in  the  CC  and  CR  condition  and  for   /sC/  words  in  the  CR  condition.  This  effect  was  even  stronger  for  /sC/  words  in   the  CC  condition  t(39)  =  5.66;  p  =  .000.  In  other  words,  in  all  the  conditions,  a   naming   effect   was   found   and   this   effect   was   even   stronger   in   the   case   of   correctly  produced  /sC/  words.  

 

Since   the   RM   ANOVA   exhibited   an   interaction   between   cluster   type   and   pronunciation   condition   for   the   difference   LLK   measure   and   the   separate   t-­‐

tests   pointed   out   that   this   effect   was   due   to   participants   having   their   longest   look  at  the  correctly  pronounced  /sC/  target  picture  in  the  post-­‐naming  phase,   as  compared  to  the  mispronounced  /sC/  target  word  and  as  compared  to  the   correctly   pronounced   /C+liq/   target   word.   The   mean   values   of   the   difference   LLK  measure  for  target  words  like  bloem  and  boem;  stoel  and  toel  are  presented   in  Figure  4  below.  

   

(18)

     

Figure  4:  Mean  values  and  SD  of  the  difference  LLK  score  for  /C+liq/  words  in   the  correct  cluster  (CC)  vs.  /C+liq/  words  in  the  reduced  cluster  (RC)  condition   and  for  /sC/  words  in  the  CC  condition  vs.  /sC/  words  in  RC  condition.  

 

5.3.2.1.  Between-­‐subject  factors  

In   the   RM   ANOVA,   where   the   LLK   measure   was   the   dependent   variable,   the   between-­‐subject  factors  sex  and  group  were  also  investigated,  as  it  is  necessary   to  check  whether  any  of  the  independent  subject-­‐related  factors  interact  with   the   dependent   factor,   in   this   case   the   LLK   measure.   There   was   no   interaction   between  the  between-­‐subject  factors  and  measure  of  latency  longest  look,  for   all  p  ≥  .115.  

 

5.3.3.  NCDI  scores  

Parents   were   asked   to   fill   out   two   versions   of   the   Dutch-­‐NCDI,   NCDI-­‐2A   and   NCDI-­‐2B,   for   children   between   18-­‐   and   24-­‐months.   The   number   of   correct   scores   was   then   calculated   in   percentages.     For   the   current   correlation   test,   I   only  used  the  results  on  perception  and  production  from  the  NCDI-­‐2A  version   of  the  test,  since  the  results  form  NCDI-­‐2A  and  NCDI-­‐2B  were  highly  similar.    

 

In  order  to  find  out  if  the  productive  and/or  the  perceptive  vocabulary  scores   of  the  two-­‐year-­‐olds  were  correlated  with  the  difference  scores  obtained  in  the  

0 0.2 0.4 0.6

/CCliq//RCliq/ /CCs/ /RCs/

*

*

D iff er en ce  in  m s  

(19)

perception   test,   a   linear   regression   test   was   conducted,   with   four   different   measures  as  independent  variables.  These  were  the  difference  PTL  measure  for   /C+liq/  words  in  the  CC  condition  and  in  the  RC  condition,  and  the  difference   measure  for  /sC/  words  in  the  CC  condition  and  in  the  CR  condition.  None  of   the  four  cues  (difference  measure  /C+liq/  in  CC  and  in  CR  condition,  difference   measure  /sC/  words  in  CC  condition  and  in  CR  condition)  correlated  with  the   vocabulary  scores  (for  all  p  >  .05).  The  same  analysis  was  conducted  between   the  productive  NCDI  scores  and  the  four  PTL  difference  scores,  the  perceptive   vocabulary   and   the   LLK   difference   scores,   the   productive   vocabulary   and   the   LLK  difference  scores  and  again,  no  correlation  was  found  (for  all  p  >  .05).  

 

5.4.  Results:  Production  

Children   were   grouped   based   on   the   way   in   which   they   in   general   produced   cluster   words   in   the   elicitation   task.   Eleven   children   mainly   reduced   both   cluster  types  (reducers),  and  twelve  children  produced  two  consonants  in  one   or   both   cluster   types   (substituters);   seventeen   children   refused   to   participate   (non-­‐producers).  Little  could  be  concluded  about  this  last  group;  it  was  not  the   case   that   they   did   not   talk   at   all,   since   their   parents   reported   that   they   were   able  to  utter  words.  However,  because  nothing  could  be  concluded  about  their   cluster  production  capacities,  this  group  of  children  was  not  taken  into  account   in  the  main  analysis  below.  

 

Table   3   summarizes   findings   from   the   production   experiment.   Both   the   reducers   and   the   substituters   uttered   between   4   and   6   (out   of   a   total   of   6,   namely  3  /sC/  and  3  /C+liq/  words)  words  in  the  elicitation  task.    

 

The   substituters   and   the   reducers   had   comparable   perceptive   and   productive   vocabulary   sizes,   as   determined   by   the   NCDIs   (for   both   perception   and   production   vocabularies,   t-­‐tests   turned   out   to   be   insignificant,   with   p   ≥   .31).  

Non-­‐producers   exhibited   the   lowest   perceptive   and   productive   vocabulary  

(20)

scores.  Table  3  also  shows  the  production  patterns  for  the  substituters  and  the   reducers  speaker  types.  

 

Table   3:   NCDI   scores   and   production   patterns   for   substituters,   reducers   and   non-­‐producers  speaker  types.  

 

 

5.5.  The  link  between  perception  and  production  

Naming   effects   were   compared   for   the   substituters   and   the   reducers.   Since   results   from   the   looking   behavior   with   the   latency   longest   look   measure   suggest  that  overall,  toddlers  noticed  the  mispronunciation  for  /sC/  words,  this   measure  (i.e.  the  LLK  difference  score)  was  used  in  the  statitical  analysis  below.  

 

In   Table   3   it   can   be   seen   that   of   the   twelve   cluster   reducers,   9   only   reduced   /sC/   clusters,   while   they   produced   target   /C+liquid/   clusters   correctly   -­‐   or   at   least   with   two   consonsants.   While   these   /sC/   cluster   reducers   did   not   show   different  looking  times  for  correct  vs.  reduced  /C+liq/  words  (p  ≥  .39),  they  did   look   longer   at   correctly   pronounced   /sC/-­‐words   than   at   reduced   /sC/-­‐words   (t(11)   =   5.97,   p   =   .0001).   In   other   words,   the   children   who   tended   to   reduce   /sC/  clusters  were  sensitive  to  the  difference  between  correctly  produced  and   reduced  /sC/  words,  but  not  to  the  difference  between  correctly  produced  and   reduced  /C+liq/  words.    

  Speaker   types    

Maximal   number   of  tokens   that   start   with   a   consonan t  cluster  

Number   of   children   with   production   pattern:  

/C+liq/  

correct;   /sC/  

C1  omitted  

Number   of   children   with   production   pattern:  

/C+liq/   C2   substituted;  

/sC/   C1   omitted  

Number   of   children   with   production   pattern:  

/C+liq/   C2   omitted;  

/sC/   C1   substituted  

Number   of   children   with   productio n  pattern:  

/C+liq/  

correct;  

/sC/   C1   substitute d  

Number   of   children   with   production   pattern:  

/C+liq/   C2   omitted;  

/sC/   C1   or   C2  omitted  

NCDI-­‐

2A   prod.  

NCD I-­‐2A     perc.  

Substituter   female:  5     male:  7  

6   6   3   2   1   0   81    

46-­‐

100   60     31-­‐

93  

Reducer   female:  8     male:  3  

6   0   0   0   0   11   84    

50-­‐

100   67     26-­‐

97  

(21)

 

Similar  paired-­‐sample  t-­‐tests  were  carried  out  for  the  substituters.  Here  we  did   not  find  significant  differences,  neither  for  the  /C+liq/  words,  nor  for  the  /sC/  

words,  (for  both  p  ≥  .64).  Although  this  group  of  children  has  reached  a  higher   level   in   their   production   performance   than   the   reducers,   they   did   not   look   significantly   longer   to   correctly   produced   words:   they   increased   their   looks   only   marginally.   However,   this   increase   is   not   significantly   different   from   the   reducers'   increase   for   the   correctly   produced   /sC/-­‐clusters   (p   ≥   .44).   This   suggests   that   the   substituters   reveal   the   same   pattern   as   reducers,   but   to   a   lesser   extent.   I   also   used   unpaired   t-­‐tests   to   test   whether   substituters   and   reducers   exhibited   a   naming   effect   for   either   /C+liq/   or   /sC/   words.   I   found   that   both   reducers   and   substituters   showed   a   naming   effect   for   /sC/   words   (t(11)   =   -­‐3.44,   p   =   .006   and   t(12)   =   -­‐3.19,   p   =   .008,   respectively)   but   not   for   /C+liq/  words  (for  both  production  types  p  ≥  .26).  

 

To  sum  up,  I  found  an  asymmetry  between  production  patterns  and  perception   patterns,   where   children   who   reduced   /sC/   clusters   in   their   productions   showed   awareness   of   the   difference   between   correctly   and   incorrectly   pronounced   /sC/   clusters,   while   children   who   were   more   advanced   in   their   realization   of   clusters   did   not.   With   respect   to   /C+liq/   words,   no   significant   differences  were  found.  

 

5.6.  Discussion  

In  this  chapter  we  looked  at  children's  looking  behavior  for  correctly  produced   and   mispronounced   /sC/   words   and   /C+liq/   words   in   a   preferential   looking   paradigm  experiment.  In  the  data  we  obtained,  it  was  observed  that  although   all   four   conditions   elicited   naming   effects   (i.e.   increase   at   looking   at   target),   there   was   a   significant   difference   between   cluster   types   when   measuring   children’s   longest   looks.   The   largest   naming   effect   was   obtained   for   correctly   produced   /sC/   words   and   it   differed   significantly   from   the   effect   for   the   incorrect  pronunciation  of  /sC/  words.  

(22)

 

Recall  that  in  other  PLP  studies,  longer  fixation  at  the  target  is  found  when  it  is   named  correctly  as  opposed  to  when  the  target  is  mispronounced  (Swingley  &  

Aslin,   2000)   and   that   bigger   violations   in   the   target   word   lead   to   shorter   fixation  at  the  target  picture  (White  &  Morgan,  2008).  In  studies  that  found  that   infants  are  sensitive  to  mispronunciations,  it  is  often  concluded  that  they  have  a   detailed   lexical   representation   of   the   correct   target   word.   Thus,   according   to   these  studies,  longer  fixation  at  a  target  picture  named  correctly  (as  opposed  to   fixation  at  the  target  named  with  a  mispronounced  label)  points  to  a  detailed   lexical  representation  of  the  target  word.  If  we  apply  this  line  of  reasoning  to   the  difference  in  looking  times  obtained  for  /sC/  words  in  the  present  study,  we   would   have   to   conclude   that   24-­‐month-­‐old   Dutch   children   have   a   detailed   representation  of  the  onset  cluster  in  the  /sC/  words,  since  they  are  sensitive  to   C1  deletion.  

 

However,   if   we   use   this   interpretation   for   /sC/   clusters,   then   the   question   arises  why  the  same  subjects  did  not  exhibit  a  significant  difference  in  looking   time   for   correctly   produced   /C+liquid/   words   vs.   mispronounced   /C+liquid/  

words,  with  longer  looks  for  correct  productions,  while  most  of  these  subjects   even  produced  two  consonants  when  attempting  these  target  clusters.  The  24-­‐

month-­‐olds   looked   equally   long   at   the   picture   of   a   ‘bread’   when   they   were   presented   with   /bʀoːt/   as   when   they   were   presented   with   /boːt/,   suggesting   that   they   found   the   word   label   lacking   the   C2   in   the   onset   a   “good   enough”  

exemplar   of   the   Dutch   word  brood.   The   apparent   insensitivity   to   an   incorrect   form  of  brood  vs.  the  sensitivity  to  a  correct  form  of  stoel  could  be  explained  by   saliency.   It   could   be   that   children   are   only   sensitive   to   the   correctness   of   consonants  at  word  edges  (Swingley  &  Aslin,  2000;  Swingley,  2005)  and  of  the   vocalic   nucleus   (Mani   &   Plunkett,   2007),   and   that   they   are   less   sensitive   to   consonants   in   non-­‐edge   positions,   like   the   C2  in   the   present   study.   The  

(23)

difference  in  sensitivity  could  also  be  enhanced  by  the  higher  acoustic  saliency   of  the  fricative  in  a  C1  position.2    

 

While  one  of  these  types  of  saliency  could  be  involved  in  the  results  here,  it  is   remarkable,  in  Figure  4,  that  the  LLK  score  for  correct  /C+liq/  words  is  not  only   comparable  to  the  LLK  score  for  mispronounced  /C+liq/  words,  but  also  to  the   score   for   incorrect   /sC/   words.   This   suggests   that   listeners   are   equally  

“uninterested”,   in   the   correct   naming   of   brood   as   in   the   incorrect   naming   of   stoel.  The  difference  between  correctly  produced  brood  and  correctly  produced   stoel  for  the  LLK  measure  is  a  striking  230  ms.  This  difference  is  not  caused  by  a   general   preference   for   /sC/   words   (or   for   the   objects   which   picture   /sC/  

words)   as   the   looking   times   to   objects   in   the   two   conditions   did   not   significantly   differ   from   one   another   in   the   pre-­‐phase   (p   ≥   .36).   In   the   post-­‐

phase,   however,   the   LLK   measure   was   significantly   higher   for   correctly   produced  /sC/  words  than  for  correctly  produced  /C+liq/  words  (t(39)  =  -­‐3.03,   p   =   .004).   This   difference   cannot   be   explained   by   the   mean   duration   of   /sC/  

words  either;  these  words  were,  on  the  whole,  55  ms  longer  than  /Cliq/  words,   but   this   is   insufficient   to   explain   the   longer   LLK   of   230   ms   for   correctly   produced  /sC/  from  the  LLK  for  correctly  produced  /C+liq/  targets.  

 

The   short   looking   times   at   correct   /C+liq/   words   suggest   an   alternative   hypothesis,   according   to   which   the   results   in   this   chapter   point   to   a   learning   effect  for  /sC/  clusters.  These  clusters  are  usually  acquired  later  than  /C+liq/  

clusters   (Fikkert,   1994).   The   learning   effect   results   from   the   learners’  

comparison   of   their   own   reduced   forms   of   target   /sC/   words,   like   [tul]   for   target  stoel  (chair)  /stul/,  to  the  perceived  correct  form  that  they  are  presented   with,  [stul].  If  their  own  segmental  representation  of  the  word  does  not  contain   /s/,  and  they  notice  the  mismatch  of  their  own  form  compared  to  the  form  they  

2  According  to  the  sonority  scale  (Selkirk,  1984)  /s/  is  less  sonorous  than   liquids.  However,  when  /s/  is  in  word  initial  position,  it  is  acoustically  more   salient  than  the  liquid  following  a  plosive  in  /C+liq/  clusters.    

Referenties

GERELATEERDE DOCUMENTEN

Title: The development of the speech production mechanism in young children : evidence from the acquisition of onset clusters in Dutch..

Title: The development of the speech production mechanism in young children : evidence from the acquisition of onset clusters in Dutch.

Title: The development of the speech production mechanism in young children : evidence from the acquisition of onset clusters in Dutch.

Title: The development of the speech production mechanism in young children : evidence from the acquisition of onset clusters in Dutch.

Title: The development of the speech production mechanism in young children : evidence from the acquisition of onset clusters in Dutch.

Title: The development of the speech production mechanism in young children : evidence from the acquisition of onset clusters in Dutch.

Title: The development of the speech production mechanism in young children : evidence from the acquisition of onset clusters in Dutch.

Finally, we can additionally extract from the data of the control-experiments the following: under the as- sumption that a shared phonological property within one response set