• No results found

The algebraic Riccati equation and singular optimal control: The discrete-time case

N/A
N/A
Protected

Academic year: 2021

Share "The algebraic Riccati equation and singular optimal control: The discrete-time case"

Copied!
20
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Tilburg University

The algebraic Riccati equation and singular optimal control

Geerts, A.H.W.

Publication date:

1993

Document Version

Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):

Geerts, A. H. W. (1993). The algebraic Riccati equation and singular optimal control: The discrete-time case.

(Research Memorandum FEW). Faculteit der Economische Wetenschappen.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal Take down policy

(2)
(3)

THE ALGEBRAIC RICCATI EQUATION AND SINGULAR OPTIMAL CONTROL:

THE DISCRETE-TIME CASE

Ton Geerts

FEW 613

(4)

K.U.B.

(5)

THE ALGEBRAIC RICCATI EQUATION AND SINGULAR OPTIMAL CONTROL:

THE DISCRETE-TIME CASE` Ton Geerts~

Tilburg University, Department of Economics, P.O. Box 90153, NL-5000 LE Tilburg, The Netherlands,

fax: (0)13-663280, e-mail: geertsColkub.nl

Abstract We consider a general infinite-horizon linequadratic control problem, with

ar-bitrary stability constraints, subject to a standard discrete-time system. In particular, we derive necessary and su,~icient conditions for the existence of the optimal cost, and we characterize

this optimal cost as a certain solution of the associated linear matrix inequality. This solution turns out to satisfy the corresponding (possibly singular) algebraic Riccati equation, and thus we can establish a map from all possible stability constraints to the set of positive semidefinite solutions of this equation. As a by-result, we present a necessary and su,(j~icient condition for the existence of a positive semidefinite solution of the general Riccati equation. Finally, we derive necessary and su,~cient conditions for the existence of optimal controls if the underlying discrete-time system is left invertible, and these optimal controls turn out to be implementable

by a unique feedback law.

Keywords Infinite-horizon linear-quadratic control, discrete-time system, arbitrary stability constraints, regularity and singularity, linear matrix inequality, algebraic Riccati equation, left invertibility, feedback law.

1. Introduction and preliminaries. Consider the standard discrete-time system E

x(i f 1) - Ax(i) f Bu(i),y(i) - Cx(i) f Du(i), (1)

together with the ad~itional output variable

z(i) - Sx(i) ~ Tu(i), (2)

where, for all i~ 0, u(i) E Rm, x(i) E Rn and x(0) - xo, y(i) E R' and z(i) E R'. All matrices involved are real and constant. Also, for every xo and every control sequence u-{u(i)}~o, we define the function

J(xo, u) :- E~oy~(i)y(i). (3)

Then we are interested in the Ginear-Quadratic Control Problem with z-stability (LQCP)2: For all xo, determine

JZ(xo) :- inf {J(xo,u)~u is such that lim;y~z(i) - 0}, (4)

and if, for every xo, JZ(xo) G oo, then compute ( if possible) for every xo a control sequence u such that J:(xo) - J(xo, u and lim;y~z(i) - 0. The problem is called regular if ker D) - 0 and singular if ker (D) ~ 0. If ker ( S) - 0 and T- 0, then ( LQCP)z will be ca~led the LQCP with ( state) stability, and if s- 0, then we will speak of the LQCP without stability.

Regular as well as singular cases for these two problems are discussed in the lengthy [1], by means of Silverman's structure algorithm. In the present paper, we will treat ( LQCP)Z with S and T arbitrary, regardless whether D is left invertible or not, by a more direct algebraic

approach. In Section 2 we will derive necessary and su,~cient conditions for existence of the

optimal cost (1.4). Finally, in Section 3 we will present necessary and su cient conditions for ezistence of optimal controls if the underlying system E is left invertible 1, p. 351], i.e., if p: - normal rank (T(z)) - m, with T(z) :- D~- C(zl - A)-iB [1, p. 350].

We will need a few well-known observations, as well as some new statements. Assume that there exists a matrix MZ ? 0 such that, for all xo E Rn, J:(xo) C xóMZxo. Then there ezists a unique If2 E Rnxn' KZ ~ 0, such that, for all xo, JZ(xo) - xóKZxo [2, Lemma 5]. Next, let

': Part of this research was carried out in the course of 1991, when the author was with the Mathematical lnstitute of Wiirzburg University, Germany, as an Alexander von Humboldt-research fellow.

(6)

i J 1, and assume that u(j) (j - 0, 1,...,(i - 1)) are given. Then the function Js : R" -~ R}

satisfies the Dissipation Inequality (e.g. [2, Lemma 1])

x~KZxo C E;-óy~(J)y(7) f ~~(z)IíZx(z)~ (5)

and xóKZxo - inf{E}-óy~(1)y(7) } x~(z)lí:~(t)~u(7),J - 0,...,(i - 1)} (6) If moreover P(Ií):- C'C -~ A'lí A- Ií C'D -~ A'Ií B

' ' D'C f B'KA D'D f B'KB, ' with K- K' E RnXn' (7)

then E~-óy (j)y(j) f x'(i)Kx(i) - xóKao - E~-ó[x~(.7) ~(j)]P(K) [ u(~), (8)

(Sketchy proof for (1.8): Take i- 1. Then (1.8) is clear form (1.1) and (1.7). Next, take i- 2. Then the left hand-side of (1.8) is equal to {y'(1)y(1) ~- x'(2)Kx(2) - x'(1)Kx(1)} f

{y'(~)y(0) } x'(1)Iíx(1) - xolíxo} - [x'(1) u'(1)]P(lí)] [ ~~1~ l ~ [x'(0) u'(0)]P(K) [ ~~~~ 1 ,

etc.) Combination of (1.5) with (1.8) now yields that the rightJhand-side of (1.8) for K- JKZ is positive semidefinite, and thus, by taking i- 1 and realizing that xo as wejl as u(0) are arbitrary, we find that

P(líz) ? 0, (9)

and hence KZ E r:- {Ií E Rnxnllí - K', P(Ií ) ~ 0}, (10)

the solution set of the Linear Matrix Inequality ( LMI). If, in addition,

~(lí ):- C'C ~- A'Ií A- Ií -(C'D f A'KB)(D'D f B'lí B)}(D'C -~ B'KA) (11)

(where N} denotes the Moore-Penrose inverse of the matrix N), and

F(lí :- - D'D f B'lí B)} ( D'C -}- B'lí A(Ií - lí' E Rnxn ) (12)

then K E~ t~ ~~lí) ~ 0, D'D d- B'IíB ) 0, -~D'D f B'IfB)F(Ií) - D'C -1- B'KA (Schur's Lemma~, and rank (P(Ií)) - rank (~(!í))-~ rank (D'D f B'KB). Hence, for every á E Rn, u E

Rn` an every K E r

[x'u']P(K) ~ u J - i~(K)x ~- [u' - i'F'(K)][D'D } B'Ií B][u - F(K)i] (13) and thus, for every xo and every i 1 1, (1.6) transforms by (1.8) into

inf{E;-ó[~ (j)~(líz)x(j) f [u~(j) -~~(j)F'(!íL)1 [D~D ~- B'IíZBI [~(j)-

(14)

F(líZ)x(j)]]~u(j), j - 0,...,(i - 1)} - 0.

We establish that r contains the matrix that represents JZ, the optimal cost for (LQCP)z,

provided that JZ is bounded from above by a quadratic form. Furthermore

Proposition 1.1.

~(lí~) - 0, rank (P(Ií~)) - rank (D'D ~- B'KZB).

Proof. Take i- 1 in (1.14). Then the infimum is attained for u(0) - F(Iíz)xo. It follows that

xó~(IíZ)xo - 0 for every xo.

Lemma 1.2.

Assume that Ií E I'. Then rank P K( ( )) - p-7 If P lí( ) - DK~ [CK Dh , with CK DK]l [

right invertible and TK(z) :- DK f Ch-(zI - A)-rB, then rank (P(lí)) - p if and only if TK(z) is right invertible as a rational matrix.

Proof. Follows directly by appropriately rewriting some proofs in [3].

Corollary 1.3.

Let Ií E I' and ~(lí) - 0. Then rank (P(lí)) - rank (D'D f B'IiB) - p.

Proof. It is clear that C~ (I - Dh (D'.Dh-)tDh )C~ -~(lí) in Lemma 1.2 and since ~(K) - 0,

(7)

(P(K)) -

P-Corollary 1.4.

If p- m, then D'D ~- B'IíZB ) 0.

Proposition 1.5.

Let xo E Rn,u {u(i)}~ be such that z z) ~ 0(i ~ oo), and set v(i) : u(i)

-F(Kz)x(i),i ~ 0. Then E~ov}(i)(D'D ~} B'KsBw(i) G o0 4~ J(xo,u) G oo. In addition,

if J(xo, u) G oo, then

J(xo, u) - E~ov'(i)[D'D -1- B'IíZB]v(i) f xpK;xo. (15)

Proof. If J(xo,u) G oo, then x'(i)Ií~x(i) C E~;y (j)y(j), by definition and time-invariancy (!)

and hence x' ( z KZx(z -~ 0(i ~ oo). Thus, by (1.8), (1.13) and Proposition 1.1, we get (1.15). Conversely, if ~~ov'~i)[D'D -F B'IíZB]v(i) G oo, then, again by (1.8), (1.13) and Proposition 1.1, J(xo, u) cannot be infinite, as x'(i)IíZx(i) 1 0 for all i. Thus, J(xo, u) G oo and hence, as

z(i) -~ O,x'(i)lízx(i) --~ 0(i -i oo), and we have (1.15).

Corollary 1.6.

Assume in Proposition 1.5 that p- m. Then J(xo,u) - xóKZxo t~ u(i) - F(KZ)x(i) for every i ~ 0.

Proof. By Corollary 1.4, D'D -F B'IíZB ) 0. Now apply Proposition 1.5.

It follows from Corollary 1.6 that if for every xo an optimal control sequence for (LQCP)2 exists, then this sequence can be given in terms of a feedback law, and this feedback law is

unique, if p- m. For more details, see Section 3.

We will close this preliminary Section with the following, partly new, algebraic results. Let I'o C I' denote the set of solutions of the algebraic Riccati equation (ARE):

Fo :- {lí E I'~~(K) - 0}. (16)

Let, further, for any G E Rn`xn and any lí - lí' E Rnxn

Ac:-A-~BG,Cc:-C-}-DG,Sc:-SfTG, (17)

~c(K) :- CéCc f A'GKAc - Ií -(A'cKB -~ CCD)(D'D ~- B'KB)}(B'lí Ac f D'Cc). (18) Proposition 1.7.

(a) IfIí~O,then~(Ií)10e~~c(lí)?Oand~(Ií)-0e~~c(lí)-0. (b) If K E I'o, then IC - AF~h~KAF~h~~ f CF~h~CF~h-~.

(c) If D'D f B'Ii8 is invertible, then AF~h-~ - Ac - B(D'D ~ B'IíB)-'(D'Cc -}. B'KAG). If, moreover, 0 G lí E I'o, then D'CF~h~~ ~- B'IíAF~hi - 0.

Proof. If K E r and Ií 7 0, then P(lí ) 1 0 e~ ~(K) 1 0 ad ~(K) 0 t~ rank (P(K))

-rank (D'D f B'Ií B). If Pc(lí) stands for (1.7) with Ac and Cc instead of A and C, then, obviously, Pc(!í) 1 0 4~ P(lí )) 0, and thus we establish (a). For (b), see [1, (14)]. Next, if

D'D f B'Ií B is invertible, then (D'D f B'KB)-'(D'Cc f B'KAc) f F(K) - G. Finally, by

(a), ~(lí )- 0 a~F~ti-~(K) - 0, and the proof of (c) is then completed by applying (b). 2. Necessary and sufFicient conditions for the existence of the optimal cost. In the sequel, G A~im(B) ~- im(B) -~ Aim(B) f... -}- An-lim(B), G ker (C)~A

1-ker (C) n 1-ker (CA) n ... n 1-ker (CAn-1), X,(A) denotes the stable subspace of A [6, Ch. VI] and ~ C- A DB J is the system matrix of E. If A(G~ ) C Gi, A(.CZ) C GZ and ,C~ C Gz, then

o(A~G2~G1) denotes the spectrum of the quotient map induced by A on GZ~G1i the quotient

space of G2 over G1 (for maps and matrices we use the same symbols). Definition 2.1 [1, Section III].

Let V- V(E) denotes the space of points xo E Rn for which there exist u(i) (i 1 0) such that, for all i 1 0, y(i) - 0. Let, moreover, VZ - VZ(E) denote the space of points xo E R" for which there exist u(i) (i 1 0) such that, for all i~ 0, y(i) - 0 and z(i) - 0.

Proposition 2.2. -

-V is the largest subspace G for which there exists a map G: Rn -~ R~ such that (A-bBG)G C

(8)

ker (C~-DG) ~A-~BG 1 .VZ is the largest subspace G for which there exists a map G: R" -~ Rm

such that (A -f BG),C C G, (C f DG),C - 0, (S ~- TG)G - 0. If G E ~1(E) :- {H : R" -~

R"`~(AH)Vz C VZ, (CH)Vz - C, (S~}VZ - 0}, then V~ -c ker ~ C f DG IA ~- BG 7. l S f TG

Furthermore, ~Z(E) fl ~(E) ~ 0.

Proof All claims, except for the last one, are in [1, Section III]. Next, let G E~Z(E) ~ 0. Then

the map G~VZ can be extended on V in such a way that the resulting extension, G: V-~ R"`,

is such that (A } BG)V C V, (C f DG)V - 0(e.g. [4]). If G is an arbitrary extension of G on R", then G E~~(r) fl G(~).

Now (et G E~~(.`J,) fl C~O~), I,hcn, with v(i - u(i) - Gx(i), ( 1.1)-( l.2) trans(orm into

x(i f 1) - AGx(i) f I3a(z), y(i) - Ccx i) -~ Dv(i), (1)

z(i) - S~x(i) f Tv(i). 2)

Suppose that X2 is such that VZ ~X2 - V, and that X3 is such that V~X3 - R". Moreover, et [ ker ([ ~

J)

fl B-'(VZ)] ~U2 -[ ker (D) fl B-1(V)], and let [ ker (D) (1 B-'(V)] ~U3 - R"`. Then, with respect to suitably chosen bases, (2.1) -(2.2) transform into

xl(i f 1) Aii Ai2 Ai3 xi(z) Bil B12 B13 vl(i)

x2(i f 1) - 0 A22 A23 x2(i) f 0 B22 B23 v2(i) , (3a) x3(2 ~ 1) C C A~ x3(2) C O B33 v3(Z)

x~(i) v1(i)

y(i) -[0 0 C3] x2(i) f[0 0 D~] v2(i) ,

x3(Z) 213(Z) xl(z) vi(z) Z(2) -[C S2 s3] x2(2) ,~[~ T2 T3] v2(2) , x3(z) v3(z) (3b) (4)

with ker (B33) fl ker (D3) - 0 and ker ( f ó22 B23 1) fl ker ([ T ~3

J

)- 0, by

construc-L

33 J 2 3

tion. Note that y(i) is generated by the subsystem for x3(i), whereas y(i) and z(i) jointl are

generated by the subsystem for x2(z) and x3(i). These subsystems are strongly observable ~1, p.

344 by construction, i.e., the associated system matrices are of full column rank for every s E C

[l, ~ection III], [5]. Thus, these subsystems are strongly detectable [l, p. 354], i.e., if y(i) -~ 0, then x3(i) -z 0, and if I z(i) ]-' [ C, , then [~3~i~ J~ L ~

1 (i -~ oo), irrespective of

inputs and initial states L[1, Section III], [5]. This key observation leads us to the first main

result.

Theorem 2.3

~Ixo E Rn : JZ(xo) C oo t-~ X,(A)f G A~im(B) ~~V~ - Rn. (5)

Assume this to be the case. Then there exists a unique matrix IíZ E I'o such that, for all

xo, JZ(xo) - xóKZxo and ifZVz - 0. In addition, if If E I', IfVZ - 0, then K c Kz.

Proof. Let xo E R", J(xo, u) G oo and z(i) -. 0(i -~ oo) for some u. Then, also, y(i) ~ 0(i --~

oo). Now, consider (2.3)-(2.4). From the foregoing, then, [ y3~i~

J

--~ ~ ~

J

(i -~ oo), i.e., the Euclidean distance between x(i)

xo E Vz, JZ(xo) - 0, we establish A22 A23 B22 ( [ 0 Á~ ' 0

and VZ converges to zero as i tends to infinity. As, for every that JZ(xo) G oo for every xo E Rn only if

J

) is stabilizable (6)

B23

B33

(9)

[6, Ch. VI]. Assume this to be the case. Then there exists a feedback vz(i)

v3(i)

-Hzz Hz3 xz(z) such that the resultíng closed-loop matrix for xz(i) and x3(i) has all

[ f~32 H33 ] ~ x3(Z)

its eigenvalues within the unit circle [6, Ch. VI]. Therefore there exists a matrix Ms ? 0, with

VZ C ker (MZ), such that, for all xo, JZ(xo) G xóMixo, and hence there also exists a unique

KZ 1 0 such that, for all xo, Jz(xo) - xólíZxo [2, Lemma 5], and KLVZ - 0. From Proposition 1.1, then, KZ E I'o. On the other hand, if VZ denotes a basis matrix for VZ, then, obviously,

by the Hautus test, 2.6) e~ (AC, [B V~]) is stabilizable b X, A)f G A~im([B Vs]) 1- R" [6, Ch. VI] 4~ X,(A~f G A~im(B) 1-hV2 - R", since, G A~im([B VZ]) 1-G Alzm(B) )

fV~ ~ A(VZ) f... -F An-1 VZ) -G A~im(B) )- f-VZ, as (A ~ BG)VZ C VZ. Finally, assume that

(2.5) holds and let lí E 1~, KVZ - 0. If J(xo, u) G oo and z(i) -~ 0(i -~ oo), then xz(i) -~ 0 and x3(i) -~ 0(i -~ oo) in (2.3)-(2.4), and hence x'(i)Itix(i) -~ 0(i -~ oo). Thus, from (1.8),

xólfZxo - JZ(xo) ~ xólíxo and ICZ ~ Ií . This completes the proof.

Definition 2.4. -

-E is output stabilizable if X,(A)-}- G A~im(B) ) fV - Rn. Corollary 2.5.

Let Jt, J- denote the optimal costs for the LQCP with and without stability, respectively.

For every xo É Rn, Jf(xo) G oo if and only if E is stabilizable. If this is the case, for all

xo,J~(xo) - xóK~xo with lí~ E I'o and, if lí E F, then K G Kt. For every xo E R", J-(xo) G

0o if and only if E is output stabilizable. If this is the case, then, for all xo, J- zo) - xóK-xo with Ií- E I'o~ ker (lí-) - V, and, if lí E I' and It V- 0, then K G I~-. Moreover,

u(i) - F(Ii- x(i) (i 7 0) is optimal. ~

Proof. If ker~S) - 0 and T - 0, then VZ - 0; if s- 0, then VZ - V. Now, combine Theorem 2.3 with Proposition 1.5.

Corollary 2.6.

{KEI'o~ií ~0}~Ot~X,(A)~GA~zm B)~-fV-Rn.

Proof. ~ let ~(K) - O,Ií 1 0. Then, by ~1.8), (L13), J(xo,u) G xoKxo if, for all i 1 0 we

take u(i) - F(If)x(i). Now, apply Corollary 2.5. ~ Corollary 2.5.

-It should be stressed that Theorem 2.3 determines If~ unambiguously in terms of solutions of I'; if Íf E I', ÍfVZ - 0 and li G Íf if lí E I', IfV2 - 0, then hz C Íf G líZ. In words, one can say that KZ is the largest element of {K E I'~IíV~ - 0}. Yet, KZ E Fo and KZ corresponds

to I 0 KD I, with Íf~ the largest solution of the LMI that corresponds to the subsystem for xz(i) and xz(i) in (2.3) (Proposition 1.7 (a)). If s- 0, then Ii~ - I ~ 1~

J

, and K33 denotes

L

33

the unique positive semidefinite solution of the ARE that is associated with the subsystem for

x3(i) [1, Section IV].

3. Existence of optimal controls for left invertible systems.

In the final Section we assume that p- m[1, p. 350-351]. Moreover, we assume (2.5) to be valid and hence (Corollary 1.4) D'D-~ B'IíZB 1 0. For notational ease, set AZ AF1KZl~CZ

:-Cp(Kz)'Sx :- Sp(h'yl~Dl :- {z E C.~~z~ G 1}, Do :- {z E C~~zl G 1}.

Proposition 3.1.

t1 xo E Rn~u : JZ(xo) - J(xo~u) and z(i) -~ 0(i ~ oo) (~ o(AZ~Rn~V2) C Do.

Proof. ~ From Corollary 1.6, for every xo E Rn,u(i) - F(IíZ)x(i) (i ~ 0) and hence (1.1)-(1.2 transform into x(i f 1) - AZx(i), y(i) - CZx(i), z(i) - SZx(i). From Proposi-tion 1.7 l~c), then, F(IíZ) E~2(E) (take G E~Z(E), and recall that KZVz - 0). Thus, if

r xl(z ~- 1) VZ~Xz - R", then the transformed system (1.1)-(1.2) can be partitioned into I xz(i -F 1)

-All Aiz xl(z)

,y(z) - Czxl(z),z(z) - Szxl(i), and o-(Azz) - v(ALZ~R"~VZ). As

(10)

x2(i) ~ 0(i --~ oo) for every xo2 (see proof of Theorem 2.3), it follows that v(A22) C Do. G If Q(A22) C Do, then choosing u(i) - F(K~)x(i) (i 1 0) yields that x2(i) -~ 0 for every xo~ and

thus, for every xo E Rn, z(z) -~ 0(i --~ oo). Now, apply Proposition 1.5.

Proposition 3.2.

v(AZ~Rn~VZ) C Dl.

Proof. Consider (2.3). Since p- m, ker (D) fl B-1(V) - 0[1, p. 352], and thus the first two

columns of B in (2.3) are not appearing, and D- D3. Let, further, A- f 022 A~ 1'

B-L

~J

I B23

J

, C-[0, C3]. As (A, B) is stabilizable by (2.5), the largest solution Kt of the LMI

L

B33

associated with E- (A, B, C, D) exists (Corollary 2.5), and Iíz -[ 0 K](see end oft Section 2). Moreover, D'D f B'K~B D'D f L3'Íí~É3 1 0, and it follows that Q(AZ~R"~VZ)

-v(A - B(D'D -~ B'IítB)-'(D'C ~- B'Ií~A)). IIence we are done if the largest solution K~ of I' satisfies Q(AF~k-tl) C D~ if (A, B) is stabilizable and p- m(existence of K~ is clear by Corollary 2.5). Now, consider, besides (1.1), the system En(n ~ 1) with, instead of y(i), y„(i

-[y'(i) (l~n)x'(i)]'. The system matrix for E„ is left invertible for every s E C, as ker (B~ fl

ker (D) - 0, and hence the unique positive semidefinite solution of n-ZIf~(It )- O, lí,,, is such that a(AF~K„1) C Do [1, Section IV]. As K,,, 1 lí„Z ~ Iít(nl 7 n2), by (1.4) and Corollary 2.5,

n-2I 0 ~ 0 we establish that Ií :- lim„y~Ií„ ? Ií~, but also Ií G lí~, since P(K„) -~ I 0 0] ' and thus, by continuity, K E I'. Hence lí~ - lí and therefore o-(AF~x~I) LC Dl, again by continuity (note that, for all n~ 1, D'D -~ B'IínB ~ D'D f B'IítB 1 0).

Proposition 3.3.

-If G1,2 E~(E), then v(Ac, ~V) - Q(Ac,~V). Let G E t~Z(E) rl ~(E). Then v(AZ~Rn~VZ) fl

(Di~Do) - 0 ~ o(Ac~V~Vz) fl (D~~Di) - 0.

Proof. First claim: (1, p. 353]. Second claim: ~ Let (Ac - aI)v E Vz~v E V,v ~ Vz~~~~ - 1.

Then, with K- KZ in Proposition 1.7 (a), we find that B'KZv - 0, as D'D -F B'KZB ~ 0. Hence, by Proposition 1.7 (c), AZv Acv, which contradicts our assumption. ~ Let (Az -~I)v E VZ~v ~ VZ~I~~ - 1. Then, by Proposition 1.7 (b) with If - KZ,v EG ker (CZ)~AZ ~C

V(u(i) - F(KZ)x(i) yields y(i) - 0 for all i ~ 0 if ao - v). Now K- exists, by Corollary 2.5.

Thus, by Proposition 1.7 (c), AF~k--~v - Acv-On the other hand, again by Proposítion 1.7 (c),

AFIK-lv - Azv - B(D'D -~ B'lí-B)-1(D'Cz f B'Ií-AZ)v - AZv, and we have a contradiction

with our assumption. Theorem 3.4.

Assume that (2.5) is valid and that E is left invertible. Then for every xo E Rn an optimal control for ( LQCP )Z exists if and only if v(Ac~V~VZ) fl (D1`Do) -~, with G E~Z(E) fl C(E). If this is the case, then this optimal control is unique, and it can be given by the unique feedback

law u(i) - F(KZ)x(i), for all i~ 0.

Proof. Combine Propositions 3.1-3.3.

Remarks.

1. Observe that Theorem 2.3 links any ( LQCP )Z to one líZ E I'o. Thus, Theorem 2.3 rriaps the set { ( ,S T E) (R'x" R'xn` s ) 0, ) ~ - } to {Ií E ro Ií ~ 0~ - } if A B is stabilizable. One

( x' ) x' líxo on Rn, with

can show that this map is, in fact, ont,o; for every 0 G Ií E 1'0, JZ( o) - o

z(i) - Kx(i) (i 1 0).

2. Corollary 2.6 generalizes [7, Theorem 3.1].

3. Proposition 3.2 is untrue if p~ m. For example, let A- 2, B- 1,C - D- 0, S- 1,T - 0. The ARE is 0- 4K - lí - 41í --lí; lí~ - 0 and AFlhtl - 2~ Dl; note that T(z) - 0. References.

1. L.M. Silverman, "Discrete Riccati equations: Alternative algorithms, asymptotic prop-erties, and system theory interpretations", in Control and Dynamic Systems 12,

(11)

Academic, New York, pp. 313-385, 1976.

2. B.P. Molinari, "The time-invariant linear-quadratic optimal control problem", Automatica 13, pp. 347-357, 1977.

3. J.M. Schumacher, "The role of the dissipation matrix in singular optimal controln, Syst.

Cont. Lett. 2, pp. 262-266, 1983.

4. W.M. Wonham, Linear Multivariable Control: A Geometric Approach, Springer, New York, 1979.

5. M.L.J. Hautus, "5trong detectability and observers", Lin. Alg. Appl. 50, pp. 353-368, 1983.

6. H. Kwakernaak ót R. Sivan, Linear Optimal Control Systems, Wiley, New York, 1972.

(12)

IN 1992 REEDS VERSCHENEN

532 F.G. van den Heuvel en M.R.M. Turlings

Privatisering van arbeidsongeschiktheidsregelingen Refereed by Prof.Dr. H. Verbon

533 J.C. Engwerda, L.G. van Willigenburg

LQ-control of sampled continuous-time systems Refereed by Prof.dr. J.M. Schumacher

534 J.C. Engwerda, A.C.M. Ran 8~ A.L. Rijkeboer

Necessary and sufficient conditions for the existence of a positíve definite solution of the matrix equation X t A~`X-lA - Q.

Refereed by Prof.dr. J.M. Schumacher 535 Jacob C. Engwerda

The indefinite LQ-problem: the finite planning horizon case Refereed by Prof.dr. J.M. Schumacher

536 Gert-Jan Otten, Peter Borm, Ton Storcken, Stef Tijs

Effectivity functions and associated claim game correspondences

Refereed by Prof.dr. P.H.M. Ruys

537 Jack P.C. Kleijnen, Gustav A. Alink

Validation of simulation models: mine-hunting case-study Refereed by Prof.dr.ir. C.A.T. Takkenberg

538 V. Feltkamp and A. van den Nouweland Controlled Communication Networks Refereed by Prof.dr. S.H. Tijs 539 A. van Schaik

Productivity, Labour Force Participation and the Solow Growth Model Refereed by Prof.dr. Th.C.M.J. van de Klundert

540 J.J.G. Lemmen and S.C.W. Eijffinger

The Degree of Financial Integration in the European Community Refereed by Prof.dr. A.B.T.M. van Schaik

541 J. Bell, P.K. Jagersma

Internationale Joint Ventures

Refereed by Prof.dr. H.G. Barkema

542 Jack P.C. Kleijnen

Verification and validation of simulation models Refereed by Prof.dr.ir. C.A.T. Takkenberg

543 Gert Nieuwenhuis

Uniform Approximations of the Stationary and Palm Distributions of Marked Point Processes

(13)

11

544 R. Heuts, P. Nederstigt, W. Roebroek, W. Selen

Multi-Product Cycling with Packaging in the Process Industry Refereed by Prof.dr. F.A. van der Duyn Schouten

545 J.C. Engwerda

Calculation of an approximate solution of the infinite time-varying LQ-problem

Refereed by Prof.dr. J.M. Schumacher 546 Raymond H.J.M. Gradus and Peter M. Kort

On time-inconsistency and pollution control: a macroeconomic approach Refereed by Prof.dr. A.J. de Zeeuw

54~ Drs. Dolph Cantrijn en Dr. Rezaul Kabir

De Invloed van de Invoering van Preferente Beschermingsaandelen op Aandelenkoersen van Nederlandse Beursgenoteerde Ondernemingen

Refereed by Prof.dr. P.W. Moerland 548 Sylvester Eijffinger and Eric Schaling

Central bank independence: criteria and indices Refereed by Prof.dr. J.J. Sijben

549 Drs. A. Schmeits

Geïntegreerde investerings- en financieringsbeslissingen; Implicaties voor Capital Budgeting

Refereed by Prof.dr. P.W. Moerland

550 Peter M. Kort

Standards versus standards: the effects of different pollution restrictions on the firm's dynamic investment policy

Refereed by Prof.dr. F.A. van der Duyn Schouten

551 Niels G. Noorderhaven, Bart Nooteboom and Johannes Berger

Temporal, cognitive and behavioral dimensions of transaction costs; to an understanding of hybrid vertical inter-firm relations

Refereed by Prof.dr. S.W. Douma 552 Ton Storcken and Harrie de Swart

Towards an axiomatization of orderings Refereed by Prof.dr. P.H.M. Ruys 553 J.H.J. Roemen

The derivation of a long term milk supply model from an optimization

model

Refereed by Prof.dr. F.A. van der Duyn Schouten 554 Geert J. Almekinders and Sylvester C.W. Eijffinger

Daily Bundesbank and Federal Reserve Intervention and the Conditional Variance Tale in DM~S-Returns

Refereed by Prof.dr. A.B.T.M, van Schaik

555 Dr. M. Hetebrij, Drs. B.F.L. Jonker, Prof.dr. W.H.J. de Freytas "Tussen achterstand en voorsprong" de scholings- en personeelsvoor-zieningsproblematiek van bedrijven in de procesindustrie

(14)

111

556 Ton Geerts

Regularity and singularity in linear-quadratic control subject to implicit continuous-time systems

Communicated by Prof.dr. J. Schumacher

557 Ton Geerts

Invariant subspaces and invertibility properties for singular sys-tems: the general case

Communicated by Prof.dr. J. Schumacher 558 Ton Geerts

Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case

Communicated by Prof.dr. J. Schumacher

559 C. Fricker and M.R. Jaïbi

Monotonicity and stability of periodic polling models Communicated by Prof.dr.ir. O.J. Boxma

560 Ton Geerts

Free end-point linear-quadratic control subject to implicit conti-nuous-time systems: necessary and sufficient conditions for solvabil-ity

Communicated by Prof.dr. J. Schumacher 561 Paul G.H. Mulder and Anton L. Hempenius

Expected Utility of Life Time in the Presence of a Chronic Noncom-municable Disease State

Communicated by Prof.dr. B.B. van der Genugten 562 Jan van der Leeuw

The covariance matrix of ARMA-errors in closed form Communicated by Dr. H.H. Tigelaar

563 J.P.C. Blanc and R.D. van der Mei

Optimization of polling systems with Bernoulli schedules Communicated by Prof.dr.ir. O.J. Boxma

564 B.B. van der Genugten

Density of the least squares estimator in the multivariate linear model with arbitrarily normal variables

Communicated by Prof.dr. M.H.C. Paardekooper

565 René van den Brink, Robert P. Gilles Measuring Domination in Directed Graphs Communicated by Prof.dr. P.H.M. Ruys

566 Harry G. Barkema

The significance of work incentives from bonuses: some new evidence

(15)

1V

567 Rob de Groof and Martin van Tuijl

Commercial integration and fiscal policy in interdependent, finan-cially integrated two-sector economies with real and nominal wage rigidity.

Communicated by Prof.dr. A.L. Bovenberg

568 F.A. van der Duyn Schouten, M.J.G. van Eijs, R.M.J. Heuts

The value of information in a fixed order quantity inventory system Communicated by Prof.dr. A.J.J. Talman

569 E.N. Kertzman

Begrotingsnormering en EMU

Communicated by Prof.dr. J.W. van der Dussen

570 A. van den Elzen, D. Talman

Finding a Nash-equilibrium in noncooperative N-person games by solving a sequence of linear stationary point problems

Communicated by Prof.dr. S.H. Tijs 571 Jack P.C. Kleijnen

Verification and validation of models

Communicated by Prof.dr. F.A. van der Duyn Schouten 572 Jack P.C. Kleijnen and Willem van Groenendaal

Two-stage versus sequential sample-size determination in regression analysis of simulation experiments

573 Pieter K. Jagersma

Het management van multinationale ondernemingen: de concernstructuur

57~ A.L. Hempenius

Explaining Changes in External Funds. Part One: Theory Communicated by Prof.Dr.Ir. A. Kapteyn

575 J.P.C. Blanc, R.D. van der Mei

Optimization of Polling Systems by Means of Gradient Methods and the Power-Series Algorithm

Communicated by Prof.dr.ir. O.J. Boxma

576 Herbert Hamers

A silent duel over a cake

Communicated by Prof.dr. S.H. Tijs

577 Gerard van der Laan, Dolf Talman, Hans Kremers

On the existence and computation of an equilibrium in an economy with constant returns to scale production

Communicated by Prof.dr. P.H.M. Ruys

(16)

V

579 J. Ashayeri, W.H.L. van Esch, R.M.J. Heuts

Amendment of Heuts-Selen's Lotsizing and Sequencing Heuristic for Single Stage Process Manufacturing Systems

Communicated by Prof.dr. F.A. van der Duyn Schouten

580 H.G. Barkema

The Impact of Top Management Compensation Structure on Strategy Communicated by Prof.dr. S.W. Douma

581 Jos Benders en Freek Aertsen

Aan de lijn of aan het lijntje: wordt slank produceren de mode? Communicated by Prof.dr. S.W. Douma

582 Willem Haemers

Distance Regularity and the Spectrum of Graphs Communicated by Prof.dr. M.H.C. Paardekooper

583 Jalal Ashayeri, Behnam Pourbabai, Luk van Wassenhove

Strategic Marketing, Production, and Distribution Planning of an Integrated Manufacturing System

Communicated by Prof.dr. F.A. van der Duyn Schouten 584 J. Ashayeri, F.H.P. Driessen

Integration of Demand Management and Production Planning in a Batch Process Manufacturing System: Case Study

Communicated by Prof.dr. F.A. van der Duyn Schouten 585 J. Ashayeri, A.G.M. van Eijs, P. Nederstigt

Blending Modelling in a Process Manufacturing System Communicated by Prof.dr. F.A. van der Duyn Schouten

586 J. Ashayeri, A.J. Westerhof, P.H.E.L. van Alst Application of Mixed Integer Programming to

A Large Scale Logistics Problem

Communicated by Prof.dr. F.A. van der Duyn Schouten 587 P. Jean-Jacques Herings

On the Structure of Constrained Equilibria

(17)

V1

IN i993 REEDS VERSCHENEN

588 Rob de Groof and Martin van Tuijl

The Twin-Debt Problem in an Interdependent World Communicated by Prof.dr. Th. van de Klundert

589 Harry H. Tigelaar

A useful fourth moment matrix of a random vector

Communicated by Prof.dr. B.B. van der Genugten

590 Niels G. Noorderhaven

Trust and transactions; transaction cost analysis with a differential behavioral assumption

Communicated by Prof.dr. S.W. Douma 591 Henk Roest and Kitty Koelemeijer

Framing perceived service quality and related constructs A multilevel approach

Communicated by Prof.dr. Th.M.M. Verhallen

592 Jacob C. Engwerda

The Square Indefinite LQ-Problem: Existence of a Unique Solution

Communicated by Prof.dr. J. Schumacher

593 Jacob C. Engwerda

Output Deadbeat Control of Discrete-Time Multivariable Systems Communicated by Prof.dr. J. Schumacher

594 Chris Veld and Adri Verboven

An Empirical Analysis of Warrant Prices versus Long Term Call Option Prices

Communicated by Prof.dr. P.W. Moerland 595 A.A. Jeunink en M.R. Kabir

De relatie tussen aandeelhoudersstructuur en beschermingsconstructies Communicated by Prof.dr. P.W. Moerland

596 M.J. Coster and W.H. Haemers

Quasi-symmetric designs related to the triangular graph Communicated by Prof.dr. M.H.C. Paardekooper

597 Noud Gruijters

De liberalisering van het internationale kapitaalverkeer in histo-risch-institutioneel perspectief

Communicated by Dr. H.G. van Gemert

598 John Gártzen en Remco 'Lwetheul

Weekend-effect en dag-vati-de-week-effect op de Amsterdamse effecten-beurs?

Communicated by Prof.dr. P.W. Moerland 599 Philip Hans Franses and H. Peter Boswijk

Temporal aggregration in a periodically integrated autoregressive process

(18)

V11

600 René Peeters

On the p-ranks of Latin Square Graphs

Communicated by Prof.dr. M.H.C. Paardekooper

601 Peter E.M. Borm, Ricardo Cao, Ignacio García-Jurado Maximum Likelihood Equilibria of Random Games Communicated by Prof.dr. B.B. van der Genugten

602 Prof.dr. Robert Bannink

Size and timing of profits for insurance companies. Cost assignment for products with multiple deliveries.

Communicated by Prof.dr. W. van Hulst

603 M.J. Coster

An Algorithm on Addition Chains with Restricted Memory Communicated by Prof.dr. M.H.C. Paardekooper

604 Ton Geerts

Coordinate-free interpretations of the optimal costs for LQ-problems subject to implicit systems

Communicated by Prof.dr. J.M. Schumacher 605 B.B. van der Genugten

Beat the Dealer in Holland Casino's Black Jack Communicated by Dr. P.E.M. Borm

606 Gert Nieuwenhuis

Uniform Limit Theorems for Marked Point Processes Communicated by Dr. M.R. Jaïbi

60~ Dr. G.P.L. van Roij

Effectisering op internationale financiële markten en enkele gevolgen voor banken

Communicated by Prof.dr. J. Sijben 608 R.A.M.G. Joosten, A.J.J. Talman

A simplicial variable dimension restart algorithm to find economic equilibria on the unit simplex using n(ntl) rays

Communicated by Prof.Dr. P.H.M. Ruys 609 Dr. A.J.W. van de Gevel

The Elimination of Technical Barriers to Trade in the European Community

Communicated by Prof.dr. H. Huizinga 610 Dr. A.J.W. van de Gevel

Effective Protection: a Survey Communicated by Prof.dr. H. Huizinga 611 Jan van der Leeuw

First order conditions for the maximum likelihood estimation of an exact ARMA model

(19)

V111

612 Tom P. Faith

(20)

Referenties

GERELATEERDE DOCUMENTEN

Consequently, when single BCAAs are used together with ammonium as the only other source of nitrogen, aroma compound production shows a strong linear correlation between the amino

on the reason for this difference, it appears to be related to the international nature of the Jobvite (2014) study and the South African focus of this study. As noted, South

The significance of financial leverage in determining firm value is evident in the REIT period, with increasing debt levels associated with lower firm value, suggesting

THE IMPACT OF SUBSISTENCE USE OF FOREST PRODUCTS AND THE DYNAMICS OF HARVESTED WOODY SPECIES POPULATIONS IN A PROTECTED FOREST RESERVE IN WESTERN ZIMBABWE.. By

Differentiaalvergelijkingen zijn een onderwerp dat zich goed laat behandelen met grafische methoden, waarin de differentiaalrekening echt wordt gebruikt, en dat zelf ook

Ze lopen uiteen van: ‘Het wiskundeonderwijs in Nederland is niks meer’ tot ‘Ze hebben er meer plezier in, maar ik moet ze nog wel even duidelijk maken dat algebraïsche vaardigheden

Wanneer de Wasbeer zich permanent vestigt in Nederland zijn, gezien de ervaringen in Duitsland waar lokaal hoge dichtheden worden bereikt, de effecten met betrekking tot

‘Zo beschouwd lijkt al die aandacht voor ‘wilde’ natuur in Nederland niet in verhouding tot het aantal mensen dat hier werkelijk gebruik van maakt.’... Mensen zoeken mensen op,