• No results found

responses steady-state Characterization implant of cochlear artifacts in electrically evokedauditory Biomedical Signal Processing and Control

N/A
N/A
Protected

Academic year: 2021

Share "responses steady-state Characterization implant of cochlear artifacts in electrically evokedauditory Biomedical Signal Processing and Control"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

BiomedicalSignalProcessingandControl31(2017)127–138

ContentslistsavailableatScienceDirect

Biomedical

Signal

Processing

and

Control

j ou rn a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b s p c

Characterization

of

cochlear

implant

artifacts

in

electrically

evoked

auditory

steady-state

responses

Hanne

Deprez

a,b,∗

,

Robin

Gransier

a

,

Michael

Hofmann

a

,

Astrid

van

Wieringen

a

,

Jan

Wouters

a

,

Marc

Moonen

b

aKULeuven,ExperimentalORL,Dept.Neurosciences,Herestraat49,3000Leuven,Belgium

bKULeuven,STADIUS,Dept.ElectricalEngineering(ESAT),KasteelparkArenberg10,3000Leuven,Belgium

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received18March2016

Receivedinrevisedform23June2016 Accepted26July2016

Keywords:

Cochlearimplant(CI) CIstimulationartifacts

Electricallyevokedauditorysteady-state responses(EASSR)

Linearinterpolation Monopolarmodestimulation

a

b

s

t

r

a

c

t

Objective:Electricallyevokedauditorysteady-stateresponses(EASSRs)areneuralpotentialsmeasured

intheelectroencephalogram(EEG)inresponsetoperiodicpulsetrainspresented,forexample,through

acochlearimplant(CI).EASSRscouldpotentiallybeusedforobjectiveCIfitting.However,EEG

sig-nalsarecontaminatedwithelectricalCIartifacts.Inthispaper,wecharacterizedtheCIartifactsfor

monopolarmodestimulationandevaluatedatwhichpulserate,linearinterpolationoverthesignalpart

contaminatedwithCIartifactissuccessful.

Methods:CIartifactswerecharacterizedbymeansoftheiramplitudegrowthfunctionsandduration.

Results:CIartifactdurationswerebetween0.7and1.7ms,atcontralateralrecordingelectrodes.At

ipsi-lateralrecordingelectrodes,CIartifactdurationsarerangefrom0.7tolargerthan2ms.

Conclusion:Atcontralateralrecordingelectrodes,theartifactwasshorterthantheinterpulseinterval

acrosssubjectsfor500pps,whichwasnotalwaysthecasefor900pps.

Significance:CIartifact-freeEASSRsarecrucialforreliableCIfittingandneuroscienceresearch.TheCI

artifacthasbeencharacterizedandlinearinterpolationallowstoremoveitatcontralateralrecording

electrodesforstimulationat500pps.

©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND

license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Acochlearimplant(CI)isanelectronicdevicethatcanrestore hearingin severelyhearingimpairedsubjects.ACIsystem con-sistsofthreemainparts:anexternalspeechprocessor,theimplant, andanelectrode arrayinsertedinthecochlea.Thespeech pro-cessorconvertstheincomingsoundtoanelectricalstimulation pattern,whichistransmittedtotheimplantviaaradiofrequency (RF)link.Theelectrodesstimulatetheauditorynervewithbiphasic charge-balancedpulses[1].Twostimulationmodesareoftenused,

Abbreviations: AGF,amplitudegrowth function;C,maximum comfortable stimulationlevel;CI,cochlearimplant;d,interpolationduration;D,STIMartifact duration;EABR,electricallyevokedauditorybrainstemresponse;(E)ASSRs, (electri-callyevoked)auditorysteady-stateresponses;ECAP,electricallyevokedcompound actionpotential;I,interceptoftheCIartifactAGF;ICA,independentcomponent analysis;PCA,principalcomponentanalysis;POD,programmingdevice;RF,radio frequency;RFartifact,RFcommunicationlinkartifact;STIMartifact,electrical stim-ulationartifact;T,thresholdstimulationlevel;,slopeoftheCIartifactAGF.

∗ Correspondingauthorat:KULeuven,STADIUS,Dept.ofElectricalEngineering (ESAT),KasteelparkArenberg10bus2446,3001Leuven,Belgium.

E-mailaddress:hanne.deprez@esat.kuleuven.be(H.Deprez).

dependingonthereturnelectrode:bipolarmodeforstimulation betweenintra-cochlearelectrodesandmonopolarmodefor stim-ulationbetweenintra-andextra-cochlearelectrode(s).Inclinical settings, pulses are oftendelivered at highrates in monopolar mode,whichrequireslessbatterypowerthanstimulationin bipo-larmode.Furthermore,thresholdlevelsvarylessoverstimulation electrodes with stimulation in monopolar compared to bipolar mode,resultingineasierCIfitting.

Sinceearlyimplantationisprovencrucialforspeechand lan-guagedevelopment (e.g.[2]), anincreasingnumber of severely hearingimpairedinfantsreceiveaCIwithinthefirstyearoflife. PriortoCIactivation,thethreshold(T)andmaximumcomfortable (C)stimulationlevelsaredeterminedbasedonbehavioral(verbal) feedback.Thisisparticularlychallengingininfantsand subjects whocannotgivereliablebehavioralfeedback.Insuchcases, objec-tiveCIfittingbasedonelectrophysiologicalmeasurementscould beused.

Objective CI fitting based on electrophysiological measure-ments is currently under investigation. Transient responses to low-rate stimuli measured at the electrode-nerve interface (ECAPs)andatthebrainstemlevel(EABRs)havebeeninvestigated as objective measures for threshold estimation. However, the http://dx.doi.org/10.1016/j.bspc.2016.07.013

(2)

Fig.1.ExampleofaCIartifactforS8,withaCIattherightside,measuredwith37HzAM900ppspulsetrainsatasubthresholdstimulationamplitude.Left:timeand frequencydomainsignalsatrecordingelectrodesTP8(ipsilateral)andTP7(contralateral),referencedtoCz.Right:spatialdistributionofspectralpoweratthemodulation

frequency,referencedtoCz.TheunitsofthetopographyplotaredBnV=20log10nV,where1␮Vcorrespondsto60dBnVand0.1␮Vcorrespondsto40dBnV.Noneural

responseisexpectedtobepresent,assubthresholdstimulationlevelswereused.

thresholdvaluesobtainedwiththesemethodsthatuselow-rate stimuliareonlymoderatelycorrelatedwithbehavioralthresholds tohigh-ratepulsetrains[3–6].

ObjectiveCIfittingbasedonelectricallyevokedauditory steady-stateresponses(EASSRs)isalsobeingresearched.EASSRsareneural steady-stateresponsestoelectricalstimuliwithaperiodicity,such asa modulated pulsetrain. Theyare theelectrical analogue of auditorysteady-stateresponses(ASSRs),whichareevoked acous-tically,andcanberecordedwithheadmountedscalpelectrodes. ASSRsaretheresultofneuralphase-lockingtoanauditory stim-ulusand theresponse isbelieved toresultfromdifferentbrain regions,dependingontherepetitionormodulationfrequencyof thestimulus(furthercalledresponsefrequency)[7,8].(E)ASSRscan bedetectedinthefrequencydomainattheresponsefrequencyby meansofastatisticaltest,e.g.anF-testoraHotellingT2test[9,8]. EASSRsarecorruptedbyelectricalstimulationartifacts,which canbecausedbyboththeelectricalstimulationpulsesandtheRF communicationlinkbetweentheexternalspeechprocessorand theimplant.The former canhave a periodiccomponent atthe responsefrequencywhichmaydistorttheneuralresponse[12]. Fig.1showstheEEGsignalrecordedontwochannelsintimeand frequencydomain,forsubthresholdstimulation.BothEEGsignals haveacomponentatthemodulationfrequency,whichiscausedby theelectricalstimulationsincenoneuralresponseisbelievedtobe present.Thespatialdistributionofthespectralcomponentatthe modulationfrequencyisshowninthetopographyplot,indicating thattheelectricalstimulationartifactispresentonallrecording electrodes.Theamountofdistortionishighlysubject-dependent, andisaffectedbythestimulationparametersandtherecording electrode positions. Stimulation in monopolar mode results in largerCIartifactsthaninbipolarmode[10,11].

ItwasrecentlydemonstratedthatEASSRsinresponseto high-ratestimuliresultinelectrophysiologicalthresholdsthatcorrelate wellwithbehavioral thresholdsforstimulationinbipolarmode [12].Thenextstepistoevaluatethresholdestimationbasedon EASSRsforclinicallyusedparameters,inparticularforstimulation inmonopolarmode.

StimulationartifactscontaminatingtheEEGareaproblemin variousdomainswhereelectricalormagneticstimulationisused, includingdeepbrainstimulation,transcranialmagneticand cur-rentstimulation,somatosensoryandcochlearimplantstimulation. Changestothemeasurementset-up,suchasmaximum separa-tionofstimulationandrecordingelectrodeleads,propergrounding ofamplifierandsubject,andcarefulskinpreparationcanhelpto reduceartifactamplitudes[10,13].However,noneofthese meas-urescancompletelypreventthepresenceofexcessivestimulation artifactsintheEEG.Optimalreference electrodeplacement has beeninvestigatedfortransientresponsestocochlearimplant stim-ulation[14],butoptimalselectionofreferenceelectrodehasnotyet beenassessedforartifactremovalinEASSRmeasurements. Stimu-lusdesigncanalsohelptoavoidstimulationartifacts:responsesto alternatingpolaritypulseshavebeenaveragedinordertoreduce thestimulationartifact[15,16],orshortstimulihave beenused suchthatthestimulationartifacthasdecayedbeforetheresponse occurs[16].Adjustmentstothestimuliarenotdesirableinourcase, becauseweaimtomeasureEASSRstoclinicallyusedstimuli. There-fore,stimulationisrestrictedtocathodic-first,biphasicpulses,with fixedpulsewidthandinterphasegap,presentedathighratesand inmonopolarmode.

ArtifacteliminationmethodsremoveEEGchannelsorepochs thatarecontaminatedwithartifact.Thisisdoneforexamplewith ocularartifactsintheEEG.However,allepochsareaffectedby stim-ulationartifactsinEASSRmeasurementsbecauseofthecontinuous stimulation.Furthermore,mostrecordingchannelsareaffectedby stimulationartifact. Therefore, artifact eliminationmethods are notappropriateforartifactremovalinEASSRmeasurements,since almostalldatawouldberejected.

Severalmethods havebeenproposedforstimulationartifact minimization.Singlechanneltechniquesincludefrequency[17], time–frequency[18–20],oradaptivefiltering[21–26].Template subtraction [27–30] has also been investigated. In the case of EASSR,frequency domain filteringis inappropriatebecausethe stimulationartifacthasacomponentattheresponsefrequency. For adaptive filtering and template subtraction, assumptions

(3)

H.Deprezetal./BiomedicalSignalProcessingandControl31(2017)127–138 129

Fig.2.SimulatedCIartifactspectrumforunmodulatedpulsetrainspresentedatarepetitionfrequencyof40pps(left)andforhigh-rate(900pps)40HzAMpulsetrains (right),inthecaseofsymmetric(top)andasymmetricCIartifacts(bottom).

concerningthestimulationartifactshapeorfilteringprocessneed tobemade.

Interpolation methods [31,32,10,12] have also been used. Fortime-restrictedstimulationartifacts,aninterpolationcanbe appliedbetweenapre-artifactandpost-artifactsample,effectively removingthestimulationartifact.Thismethodisonlysuccessfulif theinterpulseintervalislargerthanthestimulationartifact dura-tion,andithasbeenvalidatedforEASSRmeasurementsinbipolar stimulationmode.

Multichannel techniques such as beamforming [33], prin-cipal (PCA) [16] and independent component analysis (ICA) [14,16,34–41]wereinvestigatedinvariousdomains.CIstimulation artifactshavesuccessfullybeenremovedfromtheEEGfor tran-sientresponsesusingmultichannelmethods,butthesemethods havenotyetbeeninvestigatedforsteady-stateresponses. Clini-cally,multichannelEEGsystemsareexpensiveandrequiremore subjectpreparationtime.

TheaimofthisstudyistocharacterizetheCIartifactfor mod-ulatedhigh-ratepulsetrainsstimulatedinmonopolarmodeand investigatethefeasibilityofstimulationartifactremovalwithlinear interpolation.Modulatedpulsetrainsareamodelforthe electri-calpulsesequencesafterprocessingofspeechbytheCIprocessor. LinearinterpolationwaschosenastheCIartifactremovalmethod, becauseitsefficiencyhasbeendemonstratedforbipolar stimula-tion,anditcanbeappliedtosinglechanneldata.TheCIartifact characterizationwillhelptoexplorethefeasibilityofotherabove mentionedCIartifactremovalmethods.Theinfluenceofreference electrodepositionontheCIartifactcharacteristicsandthe operat-inglimitsoftheinterpolationmethodwillbeinvestigated.

2. Materialsandmethods

TheCIartifactconsistsoftwomainpartsfromtheRF commu-nicationlink(theRFartifact)andfromtheelectricalstimulation (theSTIMartifact).TheCIartifactistime-lockedtotheelectrical

stimulationpulseandcancontainafrequencycomponentatthe modulationfrequency[10,12],ascanbeseeninFig.1forrecorded dataandFig.2forsimulatedcases.Thismayresultindistorted EASSRpropertiessuchasamplitudeandphaseandfalsepositive EASSRdetections.

InCochlearNucleus®implants,thestimulationamplitudeofthe pulsesisnonlinearlyencodedintheRFtransmissionandis there-foreconstantforstimulationpulseswithdifferentamplitudes[28], whereastheSTIMartifactamplitudeisrelatedtothestimulation pulseamplitude.Forstimulationwithunmodulatedpulsetrains, boththeRFandtheSTIMartifactarepresentattheresponse fre-quency(namelytherepetitionfrequencyofthestimulationpulses). For stimulationwithhigh-rate modulatedpulsetrains,onlythe STIMartifactispresentattheresponsefrequency(namelythe mod-ulationfrequencyofthestimulationpulses).Furthermoreifthe STIMartifactissymmetric,noSTIMartifactwillbepresentatthe responsefrequency,ascanbeseeninFig.2.Inthefollowing,we onlyconsiderstimulationwithhigh-ratemodulatedpulsetrains. Inthis case,onlytheSTIMartifactcomponentsareproblematic forEASSRmeasurementsastheymayhaveacontributionatthe modulationfrequency.

ThescalingoftheCIartifactswithincreasingstimulation ampli-tudeisquantifiedbymeansoftheslopeoftheCIartifactamplitude growthfunction(AGF).Iftheslopeiszero,theCIartifactsdonot scalewithchangingstimulationamplitude,whichindicatesthat theywillnotbepresentatthemodulationfrequency.IfCI arti-factsarepresentatthemodulationfrequency,theycanpossiblybe removedwithalinearinterpolation.However,thisonlyworksif theCIartifactisshorterthantheinterpulseinterval.Therefore,the STIMartifactdurationisalsoquantified.

EASSRsweremeasuredin11subjectswithaCochlearNucleus® CI with stimulation below the subject’s behavioral threshold level.Detailsaboutsubjects,stimulation,andrecordingsetupare describedinSections2.1,2.2and2.3,respectively.CIartifactAGF interceptsandslopesandSTIMartifactdurationsweredetermined

(4)

Table1

ListofsubjectswithCochlearNucleus®implantdetails.S:subjectidentifier;Sex:M:

male,F:female;Age:ageinyears;Exp:CIexperienceinyears;Sideofimplantation: R:right,L:left;PR:pulseratetested.

S Sex Age Exp Implanttype Side PR

500pps 900pps S1 F 55 16 CI24R L x S2 M 64 11 CI24R L x x S3 M 19 17 CI24M L x S4 F 85 5.7 CI24R L x x S5 M 74 1.2 CI24RE R x S6 M 52 1.7 CI24RE R x S7 M 64 16 CI24R L x x S8 M 52 1.9 CI24RE R x x S9 F 44 0.5 CI422 R x x S10 F 77 1.9 CI24Re L x S11 F 63 2.5 CI24RE R x

forallsubjectsasdescribedinSection2.4.Allsignalprocessingand

statisticalanalysesweredoneinMATLABR2013a. 2.1. Subjects

Intotal,11adultsubjectsparticipatedintheexperiments.They allhad aCochlearNucleus® CI.DetailscanbefoundinTable1. Allsubjectstook partvoluntarily and signed an informed con-sentform.Theexperimentswereapprovedbythemedicalethics committeeoftheUniversityHospitalsLeuven(approvalnumber B32220072126).

2.2. Stimulationsetup

Anin-housedevelopedstimulationsoftwareplatform gener-ated the electrical stimulation pulse sequences with specified stimulationparameters,suchaspulserate,modulationfrequency, stimulationelectrode,etc.[10].Theelectricalpulsesequenceswere senttoaprogrammingdevice(POD)connectedtoaL34research speechprocessorprovidedbyCochlearLtd.,therebybypassingthe subject’sclinicalspeechprocessor.

CochlearNucleus® implantshave tworeturn electrodes out-sidethecochlea,i.e.thecasingandtheballelectrode.Allsubjects werestimulatedinmonopolarmodeMP1+2,i.e.betweenan intra-cochlear electrode and thetwo extracochlear return electrodes whichareelectricallycoupled[42].Anintracochlearelectrodein themiddleofthearraywasused:electrode11wasusedforall subjectsexceptS1,forwhomelectrode13wasused.Thestimuli consistedofamplitude-modulated(AM)pulsetrainswith modula-tionfrequenciesinthe40Hz-range,whichisoftenusedfortesting adultsbecauselargeresponsesareexpectedhere.Clinicallyused symmetricbiphasicpulseswithapulsewidthof25␮sandan inter-phasegapof8␮swereusedforstimulation.

Thresholdandcomfortlevelsweredeterminedforstimulation withunmodulated(Tu andCu)andAMpulsetrains(TmandCm). TheTlevelisthestimulationamplitude(inCochlearclinicalcurrent units(cu),aunitofelectricalcurrent)thatelicitsajustperceivable auditoryperception.TheClevelis thestimulationamplitudeat perceivedmaximumcomfortableloudness.For AMpulsetrains, thedeterminedTmandCmrefertothemaximumamplitudeofthe AMpulsetrainsthatresultinajustperceivableauditorysensation andamaximallycomfortablesound,respectively.

Twostimulationpulseratesweretested:500ppswhichisatthe lowerendofclinicallyusedstimulation,and900ppswhichisthe defaultpulserateusedinCochlearNucleus®implants.Thestimuli weremodulatedwithfrequenciesinthe40Hzrange.Subjectswere stimulatedatsubthresholdstimulationpulsetrainintensities,with modulationdepthequalto(Cm−Tu)/(Cm+Tu),during5min.

2.3. Recordingsetup

Tostudytheeffectofreferenceelectrodeposition,a64-channel active-electrodeBioSemiActiveTwoDCEEGrecordingsystemwas used.Thesystemhasa24bitresolutionoveradynamicrangeof 524mVPPandasamplingrateof8192Hzwasused.Therecording setuphasabuilt-inanalog5thordersinclow-passfilterwitha cutofffrequencyof1638Hz.Recordingelectrodeswereplacedon thesubject’sheadaccordingtothepositionsoftheinternational 10–20system[43].Atriggersignalwassenttotherecordingsystem forsynchronizationatthebeginning ofeachrecordingepochof 1.024s.AfterEEGsignalrecordingduring5min,thesignalswere rereferencedofflinetothreecommonlyusedreferenceschemes: averagereference,vertexreferenceCz,andforeheadreferenceFpz. The recordings were made in a soundproof and electrically shieldedroom.Subjectswereseatedina comfortablechairand wereaskedtomoveaslittleaspossible.Asilentbutsubtitledmovie oftheirchoicewasplayed,toguaranteethesameattentionalstate acrosssubjectsandmeasurements.

2.4. CIartifactcharacterization 2.4.1. CIartifactamplitudegrowth

TheCIartifactAGFA(As)showshowtheCIartifactamplitudeA changeswithincreasingstimulationpulseamplitudeAs.

TheCIartifactamplitudeApwasdeterminedforevery stimu-lationpulse.Letxp(t,c)betheEEGsignalfollowingpulsep(with stimulationamplitudeAs(p)␮A)attimetandchannelc.Inthe fol-lowing,wewillmakeabstractionofthechannelcasthemethod canbeappliedtoeverychannelseparately.Ap(in␮V)wasdefined asthesumofthepulse’smaximalandminimalamplitude. Ap=





max

t xp(t)+mint xp(t)





(1)

For symmetrical artifacts, with equal negative and positive amplitudes,Apwillbezero.Forasymmetricalartifacts,Apwilldiffer fromzero.

For each stimulation pulse pstimulated at amplitude As(p), themaximalandminimalEEGamplitudesweredeterminedand summed,resultinginAp.Next,thesevalueswereaveragedforall pulsespresentedatthesamestimulationamplitude,suchthatone CIartifactamplitudeAisdeterminedforeach stimulationpulse amplitudeAs.Inafirstapproximation,theCIartifactAGFA(As)can bemodeledasalinearfunctionofAs:A(As)=mAs+Iwithintercept Iandslopem=◦,asshowninFig.3.Thebestlinearfitwas deter-minedforeverychannelwithaleastsquaresprocedure,resulting invaluesfortheinterceptIandslope.

TheinterceptIrepresentsasymmetricCIartifactcomponents thatareconstantacrossstimulationpulseintensities;these arti-factcomponentsaremainlycausedbytheRFartifact.Theslope representsasymmetricCIartifactcomponentsthatchangewith increasingstimulationpulseamplitude,namelytheSTIMartifact. IftheCIartifactissymmetric,bothandIwillbezero.Ifiszero andIisnon-zero,theCIartifactismainlycausedbyRF transmis-sion.IfbothandIarenon-zero,theCIartifactconsistsofRFand STIMartifact.OnlytheSTIMartifactcomponentsareproblematic forEASSRmeasurementsasthesearetheonlycomponentsthat haveacontributionatthemodulationfrequency.

Aslopeof1◦correspondstoanincreaseof0.017␮V/␮A.Inthis study,thestimulationamplituderangeaveragedoversubjectsis about100␮A.Therefore, the amplitudedifferencebetweenthe largestandsmallestpulseamplitudefor=1◦is1.7␮Vforan aver-agesubject.Thisisalargevalue,comparedtotheneuralresponse whichhasamplitudesbetween20and500nVforaveragesubjects inthe40Hzrange[12].

(5)

H.Deprezetal./BiomedicalSignalProcessingandControl31(2017)127–138 131

Fig.3. CIartifactAGFsforS1andS8,measuredwith37HzAM900ppspulsetrainsatasubthresholdstimulationamplitude,betweenanipsilateraloccipitalelectrode(O2)

andforeheadreferenceelectrode(Fpz).

CIartifactAGFswereconstructedforallsubjects.Examplesof suchAGFsareshowninFig.3.Pulseratesof500and900ppswere used,althoughnotallsubjectsweretestedwithstimulationatboth pulserates,asshowninTable1.TheDCbiaswasremovedfromthe recordedEEGsignalswithasecond-order2Hzhigh-passfilterand theEEGsignalswererereferencedtoeitheraveragereference,Cz, orFpz.ThevaluesoftheinterceptIandslopeoftheCIartifact AGFweredeterminedforeveryrecordingchannelandfordifferent recordingelectrodeconfigurations.

2.4.2. STIMartifactduration

Artifactswereremovedbylinearinterpolationbetweena pre-stimulusandpost-stimulussample.Thetimebetweenthepre-and post-stimulussampleis calledtheinterpolationdurationd.The maximumpossibleinterpolationdurationisdefinedasthe inter-pulseinterval,whichistheinverseofthepulserate,andequals 2msand1.1msforstimulationat500and900pps,respectively. Inthiscase,onesampleperpulseperiod,thepre-stimulus sam-ple,isretained.Alinear interpolationwasappliedbetweenthe pre-stimulussampleat−100␮sandpost-stimulussamples vary-ingbetween+500and+1900␮s,instepsof100␮sfor500pps.For 900pps,post-stimulussamplesvaryingbetween+500and+900␮s, wereused,instepsof100␮s.Thesamplingrateisnotanexact mul-tipleofthepulserate.Therefore,thestartofastimulationpulseis notexactlyalignedtoasample.Thestartandendsamplesofthe interpolationarecalculatedforeachpulseseparately,byrounding thestartandendtimeoftheinterpolationtothenearestsample. Lookingoverthewholerecording,theaveragetimebetweenthe startoftheinterpolationintervalandthestartofastimulationpulse isequaltothepre-stimulusinterpolationduration.Equivalently, theaveragetimebetweenthestartofastimulationpulseandthe endoftheinterpolationintervalisequaltothepost-stimulus inter-polationduration.Post-stimulussamplesbefore+500␮swerenot used,astheCIartifactpeaklastsforabout500␮s,ascanbeseenin Fig.4.

After linear interpolation, the signals were filtered with a second-order2Hzhigh-passfilter,rereferencedtoeitheraverage reference,CzorFpz,andsplitinto1.024sepochs.The300 result-ingepochs,correspondingtoa5minrecordinglength,werethen averagedtoreducethenoiseleveln.Then,theresultingspectral amplitudesAmatthemodulationfrequencyinfunctionofthe inter-polationdurationdweredetermined,asillustratedinFig.4.

WhentheinterpolationdurationisshorterthantheSTIM arti-fact,Am(d)maystillcontainsomeSTIMartifact.However,Am(d) decreaseswithincreasinginterpolationduration,asalargerpart oftheSTIMartifactisthencanceled.Whentheinterpolation dura-tionislongerthantheSTIMartifactduration,Am(d)stabilizesat theneuralresponseamplitude,namelytherealEASSRamplitude. Am(d)stabilizestothenoiselevel,inourcase,asnoneuralresponse isexpectedtobepresentforsubthresholdstimulation.

AnAm(d)AGFexampleisshowninFig.4.ThedifferencesinAm forincreasinginterpolationdurationdwerecomparedtothenoise levelafteraveragingn.TheSTIMartifactdurationDwasdefinedas theshortestinterpolationdurationforwhichthisdifferencedidnot exceedthesubjectdependentnoiseleveln,whichisapproximately 50nV:

D=d:[Am(d)−Am(d−1)]<n (2)

IfAm(d)didnotsaturate,meaningthatthedifferenceinAm(d)was notsmallerthanthenoiselevelforanyinterpolationdurationd,the STIMartifactdurationDwassetequaltothemaximalinterpolation duration.

2.4.3. Statisticalanalyses

TheinterceptIandslopeoftheCIartifactAGFandtheSTIM artifact duration Dwere determinedas described above for all recording electrodes and for three reference electrode configu-rations inall subjects.Leftandright recordingelectrodes were switchedforsubjectswithaCIattherighthandside,toputthe resultsinthesamefigureforsubjectswithaCIattheleftandright

(6)

0.5 0.7 0.9 1.1 1.31.5 1.7 1.9 0 0.05 0.1 0.15 0.2 0.25 Spectral amplitude at f m A m (uV) 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 0 0.05 0.1 0.15 0.2 0.25 −600 −500 −400 −300 −200 −100 0 Amplitude (uV) Ipsilateral −50 0 50 100 Contralateral

Post−stimulus interpolation duration d (ms)

Fig.4.CIartifactpulse(top)andAm(d)AGFwithincreasinginterpolationdurationdforsubjectS2(bottom).StimulationbelowTlevelat500pps,foripsi-andcontralateral

recordingelectrodes.TheSTIMartifactdurationsareindicatedindash-dottedlines.ReferenceelectrodeCz.

handside.Theresultingsignalswereaveragedacrossallsubjectsto obtaintheaverageCIartifactprofileshowninFig.5.Thismaygive ablurredview,asCIartifactsmaybelocalizedslightlydifferently inallsubjects.

Inthefollowing,onlyrecordingelectrodeslocatedinthe pos-teriorpartofthehead(Tx,C(P)x,P(O)x,Ox,Ix)wereconsidered.For eachsubject,themedianvalueof,IandDovertherecording elec-trodeswasdetermined.Astatisticalanalysisinvestigatingtheeffect ofreferenceelectrode,hemisphere,andpulserateon,IandDwas

carriedout.Alleffectsarereportedatasignificancelevelof5%. ThedatawerenotnormallydistributedaccordingtoaJarque–Bera test,andthereforeonlynonparametrictestswereused.AFriedman analysiswasusedtoinvestigatetheeffectofreferenceelectrodeon theCIartifactAGFslopeandSTIMartifactdurationforeachpulse rateandforeachhemisphere.Theeffectofhemispherewas inves-tigatedusingWilkinsonsignedranktests(averagingtheresultsfor referenceelectrodesCzandFpz).TheinfluenceofpulserateonCI artifactAGFslopeandSTIMartifactdurationwascheckedforeach

Fig.5. MeanslopeandinterceptIoftheCIartifactAGFandmeanSTIMartifactduration,averagedoverallsubjectswithrecordingswithstimulationat500pps.Average reference(leftcolumn)andreferenceelectrodeCz(rightcolumn).

(7)

H.Deprezetal./BiomedicalSignalProcessingandControl31(2017)127–138 133 −10 0 10 20 30 40 50 60 Ipsilateral

CI artifact AGF slope θ (degrees)

0 200 400 600 800 1000

CI artifact AGF intercept I (uV)

S2 S4 S6 S7 S8 S9 S10 S11 0 2 4 6 8 10 Contralateral S2 S4 S6 S7 S8 S9 S10 S11 0 200 400 600 800 1000 Subject

Fig.6.CIartifactAGFslopeandinterceptIforipsi-andcontralateralposteriorrecordingelectrodesforeachsubjectwithrecordingswithstimulationat500pps.Reference electrodeCz.Theboxplotshowsthemedianand25th(q1)and75thpercentiles(q3).Outliers(+)arealldatapointsthatfalloutsidetherange [q1±1.5(q3−q1)] .

hemisphere(averagingtheresultsforreferenceelectrodesCzand Fpz),usingWilkinsonranksumtests.

3. Results

3.1. CIartifactAGFslopeandintercept

CIartifactAGFslopesandinterceptsareshowninFigs.6and7. TheCIartifactissymmetricifbothandIarezeroandthisisonly thecaseforsubjectS1(Fig.7).

MostsubjectshadaCIartifactAGFsimilartothatofsubjectS8 inFig.3.TheCIartifactslopeisdifferentfromzero,whichmeans thattheSTIMartifactcontributestotheCIartifact.

3.2. STIMartifactduration

Fig.8 showsSTIM artifactdurationsDfor each subject sep-arately, on all ipsilateral and contralateral posterior recording electrodes respectively. For stimulation at 500pps, the median STIM artifact duration at the ipsilateral posterior electrodes is 1.6ms,althoughtheSTIMartifactdurationisclosetoorlongerthan 2msatsomeelectrodesinsomesubjects(Fig.8).Forstimulation at900pps,thedeterminedSTIMartifactdurationisequalto1.1ms inalmostallsubjectsatipsilateralrecordingelectrodes.Disthus largerthanthemaximumpossibleinterpolationduration.

Atcontralateralrecordingelectrodes,themedianSTIMartifact durationis1and0.9msat500and900pps,respectively.For stim-ulationat900pps,Discloseorequalto1.1msinsomesubjects (Fig.8).

3.3. Influenceofreferenceelectrodeandhemisphere

TheslopeandinterceptIoftheCIartifactAGFandtheSTIM artifact duration D are largest in theproximity of the implant (Fig.5).,IandDarelargerinthecontralateralhemispherefor averagereferencethanforreferenceelectrodeCz.

For stimulation at 500pps, a significant influence of ref-erence electrode on CI artifact AGF slopes was found in the ipsilateral(2(2)=7.8,p=0.021)andthecontralateralhemisphere (2(2)=6.8, p=0.034), see Fig. 9. In the ipsilateralhemisphere, largerCIartifactAGFslopeswerefoundfortheFpzreference elec-trodemontage. In thecontralateralhemisphere,more variation inCIartifactAGFslopeisobservedwhenreferenceelectrodeCz isusedcomparedtowhenreferenceelectrodeFpzischosen.For stimulationat900pps,asignificantinfluenceofreferenceelectrode onCIartifactAGFslopeswasfoundintheipsilateralhemisphere (2(2)=9,p=0.011)andinthecontralateralhemisphere(2(2)=7, p=0.030).

Forstimulationat500pps,asignificantinfluenceofreference electrodeonCIartifactAGFinterceptwasfoundinthe contralat-eral (2(2)=7, p=0.030), but not in the ipsilateral hemisphere (2(2)=1.0,p=0.607),seeFig.10.Inthecontralateralhemisphere, smallerCIartifactAGFinterceptswerefoundfortheFpzreference. For stimulationat 900pps, nosignificantinfluenceofreference electrodeonCIartifactAGFinterceptswasfoundintheipsilateral hemisphere(2(2)=1.75,p=0.417)orinthecontralateral hemi-sphere(2(2)=0.75,p=0.687).

Forstimulationat500pps,thereferenceelectrodewasfoundto haveasignificantinfluenceonSTIMartifactdurationonipsilateral (2(2)=6.1, p=0.048) and contralateral electrodes (2(2)=14.6, p<0.001).Inthecontralateralhemisphere,shorterSTIMartifact durationswerefoundfortheFpzreference.Intheipsilateral hemi-sphere,the STIMartifact duration is largerthan themaximum possibleinterpolationdurationforstimulationat900pps. There-fore the influence of reference electrode on the STIM artifact durationwasonlycheckedinthecontralateralhemisphere.The ref-erenceelectrodewasfoundtohaveasignificantinfluenceonSTIM artifact durations in the contralateral hemisphere (2(2)=13.0, p=0.002).ShorterSTIMartifactdurationswereagainfoundforthe Fpzreference.

For stimulation at 500pps there was a significant effect of hemisphere on CI artifact AGF slope, offset and STIM artifact duration (p=0.008, p=0.008, and p=0.008, respectively). Prior

(8)

−10 0 10 20 30 40 50 60 Ipsilateral

CI artifact AGF slope θ (degrees)

0 200 400 600 800 1000

CI artifact AGF intercept I (uV)

S1 S2 S3 S4 S5 S7 S8 S9 0 2 4 6 8 10 Contralateral S1 S2 S3 S4 S5 S7 S8 S9 0 200 400 600 800 1000 Subject

Fig.7.CIartifactAGFslopeandinterceptIforipsi-andcontralateralposteriorrecordingelectrodesforeachsubjectwithrecordingswithstimulationat900pps.Reference electrodeCz.

tothestatisticalanalysisresultsfor referenceelectrodesCz and Fpz were averaged. For these reference electrodes, the CI arti-fact AGF slope is smaller and STIM artifact duration is shorter in the contralateral hemisphere. For stimulation at 900pps, a significanteffectofhemispherewasfoundontheCIartifactAGF slope and intercept (p=0.016 and p=0.016, respectively),with smallerCIartifactAGFslopesandinterceptsinthecontralateral hemisphere. The effect of hemisphere on STIM artifact dura-tioncould not beinvestigated, as theSTIM artifact duration is

longerthanthemaximalinterpolationdurationintheipsilateral hemisphere.

3.4. Influenceofpulserate

NosignificantinfluenceofpulserateonCIartifactAGFslope wasfound,forneitherofthehemispheres(p=0.798andp=0.721 foripsi-andcontralateralhemisphere,respectively).Nosignificant influenceofpulserateonCIartifactAGFinterceptwasfound,for

0.6 0.8 1 1.2 1.4 1.6 1.8 2 500 pps Ipsilateral 900 pps S2 S4 S6 S7 S8 S9 S10 S11 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Contralateral S1 S2 S3 S4 S5 S7 S8 S9 Subject

STIM artifact duration D (ms)

Fig.8.STIMartifactdurationforipsi-andcontralateralposteriorrecordingelectrodesforeachsubjectwithrecordingswithstimulationat500and900pps.Reference electrodeCz.Dottedlinesindicatetheminimumandmaximumpossibleinterpolationdurationat500and900pps.

(9)

H.Deprezetal./BiomedicalSignalProcessingandControl31(2017)127–138 135

Fig.9. CIartifactAGFslopeperpulserate(500and900pps),hemisphere(ipsi-andcontralateral)andreferenceelectrode(averagereference,CzandFpz).Thesymbols*,

**,and***indicatethatp-valuesaresmallerthan0.05,0.01,and0.001,respectively. neitherofthehemispheres(p=0.235andp=0.328foripsi-and contralateralhemisphere,respectively).Nosignificantinfluenceof pulserateonSTIMartifactdurationwasfoundinthe contralat-eralhemisphere(p=0.343).STIMartifactdurationsforbothpulse ratescouldnotbecomparedintheipsilateralhemisphere,asthe STIMartifactdurationexceededthemaximumpossible interpola-tiondurationat900pps.

4. Discussion

Inthisstudy,theCIartifactwascharacterizedbasedonthree properties,namely, theCI artifactAGF slope and intercept and theSTIM artifact duration. The CI artifact AGF slope and STIM

artifactdurationdescribehowtheCIartifactscaleswithstimulation amplitudeandhowlongittakestheSTIMartifacttohavedecayed completely,respectively.SignificantlylargerCIartifactAGFslopes andinterceptsandSTIMartifactdurationsarefoundatipsilateral recordingelectrodesthanatcontralateralones.Forelectrodes pos-itionedatthecontralateralside,thereferenceelectrodelocation canhaveaninfluenceontheCIartifactAGFslopeandintercept(for stimulationat500pps)andSTIMartifactduration.Nosignificant influenceofpulserateonanypropertyhasbeenfound.Basedon theSTIMartifactdurations(Fig.8),itshouldbepossibletoremove STIMartifactsatcontralateralelectrodeswithalinear interpola-tionforstimulationat500pps.Forstimulationat900pps,more advancedmethodsareneeded.

(10)

Fig.11.STIMartifactdurationperpulserate(500and900pps),hemisphere(ipsi-andcontralateral)andreferenceelectrode(averagereference,CzandFpz).Dashedand

dottedlinesindicatethemaximumpossibleinterpolationdurationat500and900pps,respectively.Thedash-dottedlineindicatestheminimuminterpolationdurationused fortheanalysis.

Itisnotrecommendedtouseaveragereferencesubtractionwith CIstimulation.Whenthesubtractedreferencecontainsmore arti-factthanthechannel fromwhichit issubtracted,theresulting signalinthatchannelcouldcontainmoreCIartifactafter refer-encesubtractionthanbefore.LargeCIartifactsignalspresentat someelectrodeswillbiasthemeansignaloverchannels,resulting inlargeCIartifactsatallchannelsafterreferencesubtraction.

ThereferenceelectrodehasnotonlyaninfluenceontheCI arti-factcharacteristics,but alsoonthedetectedEASSR.Thesource oftheEASSRsisorientedalongadipole.Inordertorecord reli-ableEASSRswithmaximalamplitudes,theanalysisandreference electrodesshouldbeplacedonoppositesidesalongand perpen-diculartotheaxisofthisdipole.ThelocationoftheEASSRsource inthebrainvarieswithvaryingmodulationfrequencies.EASSRs tomodulationfrequenciesinthe40Hzrange(20–60Hz)originate fromsub-corticalsources[7].Whetheritispossibletoadequately recordEASSRswithaspecificcombinationofanalysisandreference electrodesthus dependsontheselected modulationfrequency. EASSRswerealsorecordedatsuprathresholdstimulationlevelsfor thesamesubjects,andforthemodulationfrequencieswetested inthe40Hzrange,itwasstillpossibletorecordreliableEASSRs whenreferenceelectrodeFpzwasselected(datanotpresented). ReferenceelectrodeFpzisalsooftenusedinclinicalABRandASSR measurementsininfants[44].Itshouldbenotedthat referenc-ingthedatatoFpz canleadtoincreasednoise levels,resulting in reduced EASSR detectionsor requiring longer measurement times.

OnlyonesubjecthadsymmetricCIartifacts,thatdidnotscale withincreasingstimulationamplitude.CIartifactshada contribu-tionatthemodulationfrequencyforallothersubjects.

TheamplitudeAmatthemodulationfrequency,consistingof contributions from the STIM artifact and the neural response, reduceswithincreasinginterpolationduration.TheAmdifference forsubsequentinterpolationdurationswascomparedtothenoise levelafteraveraging.TheSTIMartifactdurationisthe interpola-tiondurationforwhichthisdifferencebecomessmallerthanthe noiselevel.BecausewelookatthesaturationofAm,andnotat itsabsolutelevel,this methodcanalsobeappliedtorecordings

withstimulationatsuprathresholdlevels.Furthermore,thetimeT overwhichtheEEGsignalswereaveragedplaysanimportantrole here,sincethenoiselevelisdependentonthis.Thenoiselevelis reducedwithafactor√2eachtimetheaveragingtimeisdoubled. TheSTIMartifactdurationthusdetermineswhethertheSTIM arti-factcanberemovedbylinearinterpolationforrecordingtimeT.For longerrecordingtimes,thecontributionoftheSTIMartifactmay notbebelowthenoiselevelandtheSTIMartifactispossiblynot completelyremovedbyapplyinglinearinterpolation.

Forstimulationat500pps, theSTIMartifactcanberemoved atcontralateralrecordingelectrodeswithalinearinterpolation.In thecontralateralhemisphere,thevariabilityof(forstimulation at 500pps) and Dwassmallerfor more frontalreference elec-trodes,seeFigs.9and11.Therefore,forrecordingelectrodesinthe contralateralhemisphere,thechancethattheSTIMartifact dura-tionislongerthanthemaximumpossibleinterpolationdurationis reducedbychoosingamorefrontalreferenceelectrode.

Linearinterpolationisnotsufficienttoexamineresponsesat ipsilateralrecordingelectrodesorforstimulationpulserateshigher than500pps.Otherstimulationartifactremovalmethodsshould therefore be examined. Further modeling of CI artifacts could allowtemplatesubtractionoradaptivefilterdesignforCIartifact removal.Multichannelmethodscouldpossiblybeused,withthe disadvantage–forCIfittingpurposes–thattheserequireamore expensivesetupandmoresubjectpreparationtime.

OnlysubjectswithCochlearNucleus®implantsparticipatedin thisstudy.However,thestimulationartifactscausedbyimplants fromothermanufacturersshouldbeexamined,usingthemethods presentedhere.Differencescanbeexpected,asother manufactur-ersusedifferentclinicalparameters.

Inthisstudy,a64-channelrecordingset-upwasused,which allowedtoinvestigatetheinfluenceofreferenceelectrode posi-tionontheCIartifactcharacteristics.Setupswithlesschannelscan usuallybeoperatedathighersampleratesandhavelowpass fil-terswithhighercut-offfrequencies,whichcouldresultinshorter STIMartifactdurations.Themethodpresentedinthisstudycanstill beusedtodeterminetheSTIMartifactdurationandtherequired interpolationduration.

(11)

H.Deprezetal./BiomedicalSignalProcessingandControl31(2017)127–138 137 Inthisstudy,subjectswereonlytestedatsubthreshold

stim-ulation amplitudes. STIM artifact durations may be larger for suprathresholdstimulationamplitudes.Largerstimulation ampli-tudesmayresultinlargerCI artifactamplitudes.Assumingthat the decay constant doesnot change,it takes longer for larger CIartifact amplitudestodecaybelow thenoise level.However, 11subjectsweretested,wherethestimulationamplitudesused werejustbelowthesubject’sbehavioralTlevels.TherangeofT levelsobservedinthesesubjectsisquitediverse,resultingin max-imumstimulationpulseamplitudesusedbetween108and190cu, andbetween86 and167cuforstimulationat500and900pps, respectively.Wewouldarguethattheresultsfromthisstudyare representative,sinceawidevarietyofstimulationlevelswasused. Hereonlyonestimulationelectrodeinthemiddleofthearray wasused.Thestimulationelectrodeisnotexpectedtohavemuch influenceontheCIartifactcharacteristics.Futureresearchshould focus on the influence of stimulation electrode position on CI artifactcharacteristics,whichcanbeevaluatedwiththetools pre-sentedinthisstudy.

5. Conclusion

Inmostsubjects,theCIartifactwasatleastpartlycausedby theSTIMartifact.BasedonthedatapresentedinFigs.5and9–11, itisnotrecommendedtouseaveragereferenceforEASSR mea-surements.CIartifactAGFslopesandinterceptsandSTIMartifact durationsarelargerinthecontralateralhemispherefortheaverage referenceconfigurationthanCzorFpzreference.Inthe contralat-eralhemisphere,thereferenceelectrodehasasignificantinfluence ontheCIartifactAGFslopeandinterceptforstimulationat500pps andontheSTIMartifactduration.Inthecontralateralhemisphere, smallervariabilitiesinCIartifactAGFslopes(at500pps)andSTIM artifactdurationswereobservedwhenmorefrontalreference elec-trodeswereused.STIMartifactdurationswerebetween0.7and 1.7msand0.7and2ms,atcontralateralandipsilateralrecording electrodes,respectively.Thisshouldmakeitpossibletoremove theCIartifactatthecontralateralrecordingelectrodeswitha lin-earinterpolationinmostsubjects,forstimulationat500pps.For stimulationat900ppsorforstimulationat500ppsatipsilateral recordingelectrodes,moreadvancedCIartifactattenuation meth-odsareneeded.

Acknowledgments

Theauthorswouldliketothankallsubjectswhoparticipated inthestudy.Furthermore,aspecialthanksgoesouttoRobertLuke andTomFrancartfortheirvaluablefeedbackthroughoutthestudy. ThisresearchworkwascarriedoutintheframeofResearchProject FWOnr.G.066213‘Objectivemappingofcochlearimplants’,IWT Project(IWT,110722)‘Signalprocessingandautomaticfittingfor nextgenerationcochlearimplants’andKULeuvenResearchCouncil CoEPFV/10/002(OPTEC).Thesecondauthorissupportedwitha Ph.D.grantbytheHermesfonds(141243).Noneoftheauthorshave potentialconflictsofinteresttobedisclosed.

References

[1]J.C.Lilly,J.R.Hughes,E.C.Alvord,T.W.Galkin,Brief,noninjuriouselectric waveformforstimulationofthebrain,Science121(1955)468–469.

[2]T.Boons,J.P.L.Brokx,I.Dhooge,J.H.M.Frijns,L.Peeraer,A.Vermeulen,J. Wouters,A.vanWieringen,Predictorsofspokenlanguagedevelopment followingpediatriccochlearimplantation,EarHear.33(5)(2012) 617–639.

[3]C.J.Brown,M.L.Hughes,B.Luk,P.J.Abbas,A.Wolaver,J.Gervais,The relationshipbetweenEAPandEABRthresholdsandlevelsusedtoprogram thenucleus24speechprocessor:datafromadults,EarHear.21(2)(2000) 151–163.

[4]D.CafarelliDees,N.Dillier,W.K.Lai,E.vonWallenberg,B.vanDijk,F.Akdas, M.Aksit,C.Batman,A.Beynon,S.Burdo,J.-M.Chanal,etal.,Normative findingsofelectricallyevokedcompoundactionpotentialmeasurements usingtheneuralresponsetelemetryoftheNucleusCI24Mcochlearimplant system,Audiol.Neurotol.10(2)(2005)105–116.

[5]M.L.Hughes,C.J.Brown,P.J.Abbas,A.A.Wolaver,J.P.Gervais,Comparisonof EAPthresholdswithMAPlevelsintheNucleus24cochlearimplant:data fromchildren,EarHear.21(2)(2000)164–174.

[6]C.A.Miller,N.Hu,F.Zhang,B.K.Robinson,P.J.Abbas,Changesacrosstimein thetemporalresponsesofauditorynervefibersstimulatedbyelectricpulse trains,J.Assoc.Res.Otolaryngol.9(1)(2008)122–137.

[7]A.T.Herdman,O.Lins,P.VanRoon,D.R.Stapells,M.Scherg,T.W.Picton, Intracerebralsourcesofhumanauditorysteady-stateresponses,Brain Topogr.15(2)(2002)69–86.

[8]T.W.Picton,M.S.John,A.Dimitrijevic,D.Purcell,Humanauditory steady-stateresponses,Int.J.Audiol.42(4)(2003)177–219.

[9]R.A.Dobie,M.J.Wilson,Acomparisonofttest,Ftest,andcoherencemethods ofdetectingsteady-stateauditory-evokedpotentials,distortion-product otoacousticemissions,orothersinusoids,J.Acoust.Soc.Am.100(4)(1996) 54–71.

[10]M.Hofmann,J.Wouters,Electricallyevokedauditorysteadystateresponses incochlearimplantusers,J.Assoc.Res.Otolaryngol.11(2)(2010)267–282.

[11]X.Li,K.Nie,F.Karp,K.L.Tremblay,J.T.Rubinstein,Characteristicsofstimulus artifactsinEEGrecordingsinducedbyelectricalstimulationofcochlear implants,in:3rdInternationalConferenceonBiomedicalEngineeringand Informatics,2010,pp.799–803.

[12]M.Hofmann,J.Wouters,Improvedelectricallyevokedauditorysteady-state responsethresholdsinhumans,J.Assoc.Res.Otolaryngol.13(4)(2012) 573–589.

[13]R.J.Ilmoniemi,J.C.Hernandez-pavon,N.N.Mäkelä,J.Metsomaa,T.P.Mutanen, J.Sarvas,DealingwithartifactsinTMS-evokedEEG,in:AnnualInternational ConferenceoftheIEEEEngineeringinMedicineandBiologySociety,2015, pp.230–233.

[14]P.M.Gilley,A.Sharma,M.Dorman,C.C.Finley,A.S.Panch,K.Martin, Minimizationofcochlearimplantstimulusartifactincorticalauditoryevoked potentials,Clin.Neurophysiol.117(8)(2006)1772–1782.

[15]F.-C.Jeng,P.J.Abbas,C.J.Brown,C.A.Miller,K.V.Nourski,B.K.Robinson, Electricallyevokedauditorysteady-stateresponsesinGuineapigs,Audiol. Neurootol.12(2)(2007)101–112.

[16]B.A.Martin,Cantheacousticchangecomplexberecordedinanindividual withacochlearimplant?Separatingneuralresponsesfromcochlearimplant artifact,J.Am.Acad.Audiol.18(2)(2007)126–140.

[17]D.P.Allen,E.L.Stegemöller,C.Zadikoff,J.M.Rosenow,C.D.MacKinnon, Suppressionofdeepbrainstimulationartifactsfromthe

electroencephalogrambyfrequency-domainHampelfiltering,Clin. Neurophysiol.121(8)(2010)1227–1232.

[18]A.Santillán-Guzmán,U.Heute,M.Muthuraman,U.Stephani,A.Galka,DBS artifactsuppressionusingatime–frequencydomainfilter,in:Annual InternationalConferenceoftheIEEEEngineeringinMedicineandBiology Society,2013,pp.4815–4818.

[19]D.Sinkiewicz,L.Friesen,B.Ghoraani,Analysisofcochlearimplantartifact removaltechniquesusingthecontinuouswavelettransform,in:Annual InternationalConferenceoftheIEEEEngineeringinMedicineandBiology Society,2014,pp.5482–5485.

[20]M.Yochum,S.Binczak,Awaveletbasedmethodforelectricalstimulation artifactsremovalinelectromyogram,Biomed.SignalProcess.Control22 (2015)1–10.

[21]B.H.Boudreau,K.Englehart,A.D.C.Chan,P.Parker,Subthresholdtraining:a novelapproachtostimulusartifactcancellationinsomatosensoryevoked potentialrecordings,in:25thAnnualInternationalConferenceoftheIEEE EMBS,2003,pp.2659–2662.

[22]B.H.Boudreau,K.B.Englehart,a.D.C.Chan,P.a.Parker,Reductionofstimulus artifactinsomatosensoryevokedpotentials:segmentedversussubthreshold training,IEEETrans.Biomed.Eng.51(7)(2004)1187–1195.

[23]P.Grieve,P.Parker,B.Hudgins,K.Englehart,Nonlinearadaptivefilteringof stimulusartifact,IEEETrans.Biomed.Eng.47(3)(2000)389–395.

[24]S.Kohli,A.J.Casson,RemovaloftranscranialACcurrentstimulationartifact fromsimultaneousEEGrecordingsbysuperpositionofmovingaverages,in: AnnualInternationalConferenceoftheIEEEEngineeringinMedicineand BiologySociety,2015,pp.3436–3439.

[25]M.Mancini,M.C.Pellicciari,D.Brignani,P.Mauri,C.DeMarchis,C.Miniussi,S. Conforto,AutomaticartifactsuppressioninsimultaneoustDCS-EEGusing adaptivefiltering,in:AnnualInternationalConferenceoftheIEEEEngineering inMedicineandBiologySociety,2015,pp.2729–2732.

[26]V.Parsa,P.Parker,R.Scott,N.Brunswick,Convergencecharacteristicsoftwo algorithmsinnon-linearstimulusartefactcancellationforelectricallyevoked potentialenhancement,Med.Biol.Eng.Comput.36(2)(1998)202–214.

[27]L.M.Friesen,T.W.Picton,Amethodforremovingcochlearimplantartifact, Hear.Res.259(2010)95–106.

[28]M.McLaughlin,A.L.Valdes,R.B.Reilly,F.-G.Zeng,Cochlearimplantartifact attenuationinlateauditoryevokedpotentials.Asinglechannelapproach, Hear.Res.302(2013)84–95.

[29]D.A.Wagenaar,Real-timemulti-channelstimulusartifactsuppressionby localcurvefitting,J.Neurosci.Methods120(2)(2002)113–120.

[30]T.Wichmann,Adigitalaveragingmethodforremovalofstimulusartifactsin neurophysiologicexperiments,J.Neurosci.Methods98(1)(2000)57–62.

(12)

[31]L.F.Heffer,J.B.Fallon,Anovelstimulusartifactremovaltechniquefor high-rateelectricalstimulation,J.Neurosci.Methods170(2)(2008)277–284.

[32]U.Hoffmann,W.Cho,A.RamosMurguialday,T.Keller,Detectionandremoval ofstimulationartifactsinelectroencephalogramrecordings,in:Annual InternationalConferenceoftheIEEEEngineeringinMedicineandBiology Society,EMBS,2011,pp.7159–7162.

[33]D.D.E.Wong,K.A.Gordon,Beamformersuppressionofcochlearimplant artifactsinanelectroencephalographydataset,IEEETrans.Biomed.Eng.56 (12)(2009)2851–2857.

[34]I.Akhoun,C.M.McKay,W.El-deredy,Electricallyevokedcompoundaction potentialartifactrejectionbyindependentcomponentanalysis:technique validation,Hear.Res.302(2013)60–73.

[35]J.C.Hernandez-Pavon,J.Metsomaa,T.Mutanen,M.Stenroos,H.Mäki,R.J. Ilmoniemi,J.Sarvas,Uncoveringneuralindependentcomponentsfromhighly artifactualTMS-evokedEEGdata,J.Neurosci.Methods209(1)(2012) 144–157.

[36]R.J.Korhonen,J.C.Hernandez-Pavon,J.Metsomaa,H.Mäki,R.J.Ilmoniemi,J. Sarvas,Removaloflargemuscleartifactsfromtranscranialmagnetic stimulation-evokedEEGbyindependentcomponentanalysis,Med.Biol.Eng. Comput.49(4)(2011)397–407.

[37]J.Metsomaa,J.Sarvas,R.J.Ilmoniemi,Multi-trialevokedEEGandindependent componentanalysis,J.Neurosci.Methods228(2)(2014)15–26.

[38]N.C.Rogasch,R.H.Thomson,F.Farzan,B.M.Fitzgibbon,N.W.Bailey,J.C. Hernandez-Pavon,Z.J.Daskalakis,P.B.Fitzgerald,Removingartefactsfrom TMS-EEGrecordingsusingindependentcomponentanalysis:importancefor assessingprefrontalandmotorcortexnetworkproperties,NeuroImage101 (2014)425–439.

[39]R.Ruach,R.Mitelman,E.Sherman,O.Cohen,Y.Prut,Anassumption-free quantificationofneuralresponsestoelectricalstimulations,J.Neurosci. Methods254(2015)10–17.

[40]F.C.Viola,M.DeVos,J.Hine,P.Sandmann,S.Bleeck,J.Eyles,S.Debener, Semi-automaticattenuationofcochlearimplantartifactsfortheevaluationof lateauditoryevokedpotentials,Hear.Res.284(2012)6–15.

[41]F.C.Viola,J.D.Thorne,S.Bleeck,J.Eyles,S.Debener,Uncoveringauditory evokedpotentialsfromcochlearimplantuserswithindependentcomponent analysis,Psychophysiology48(11)(2011)1470–1480.

[42]J.Wolfe,E.Schafer,ProgrammingCochlearImplants,Tech.Rep.,2010.

[43]H.H.Jasper,The10–20electrodesystemoftheInternationalFederation, Electroencephalogr.Clin.Neurophysiol.10(2)(1958)371–375.

Referenties

GERELATEERDE DOCUMENTEN

Based on artificially generated data with recorded CI artifacts and simulated neural responses, we conclude that template subtraction is a promising method for CI artifact

The third method, based on template subtraction, reliably suppresses CI artifacts in ipsi- and contralateral channels for high-rate stimulation at comfort level in monopolar

The estimated CI artifact exibits the same properties as the CI artifact obtained by blanking for measurements in bipolar mode: the artifact is time-locked to the stimulus pulse

In experiment 1, the multi-track recordings for song 6 (see Table 1) including vocal, piano, guitar, bass guitar, and drums were combined in three confi gurations: a confi

To assess the improvement in music enjoyment with the music pre-processing scheme with different styles of music in comfortable listening environment (take- home study). To

For the 40 Hz MFTF dataset containing large EASSRs, ICA was capable of removing CI artifacts from all ipsilateral recording channels, without distorting the EASSR in the

In conclusion, our KF approach is able to estimate a linear model of neural re- sponse and stimulation artifact when using clinical stimulation parameters.. The advantages of KF

Keywords: Precision, Amplitude growth function; Cochlear implant; Electrically evoked compound action potential; Threshold; Fitting... 4