• No results found

Operando SXRD : a new view on catalysis Ackermann, M.D.

N/A
N/A
Protected

Academic year: 2021

Share "Operando SXRD : a new view on catalysis Ackermann, M.D."

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Operando SXRD : a new view on catalysis

Ackermann, M.D.

Citation

Ackermann, M. D. (2007, November 13). Operando SXRD : a new view on catalysis.

Retrieved from https://hdl.handle.net/1887/12493

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

(2)

O PERANDO SXRD:

A N EW V IEW ON C ATALYSIS

(3)
(4)

iii

O PERANDO SXRD:

A N EW V IEW ON C ATALYSIS

P ROEFSCHRIFT

TER VERKRIJGING VAN

DE GRAAD VAN

D

OCTOR AAN DE

U

NIVERSITEIT

L

EIDEN

,

OP GEZAG VAN

R

ECTOR

M

AGNIFICUS PROF

.

MR

. P.F.

VAN DER

H

EIJDEN

,

VOLGENS BESLUIT VAN HET

C

OLLEGE VOOR

P

ROMOTIES TE VERDEDIGEN OP DINSDAG

13

NOVEMBER

2007,

KLOKKE

16.15

UUR

DOOR

M ARCEL D AVID A CKERMANN

GEBOREN TE

C

LAMART

(F)

IN

1980

(5)

Promotiecommissie:

Promotor:

Prof. Dr. Joost W.M. Frenken (Universiteit Leiden)

Referent:

Prof. Dr. Edvin Lundgren (Universiteit Lund, Zweden)

Overige leden van de Commissie:

Prof. Dr. Salvador Ferrer (CELLS, Barcelona, Spanje)

Prof. Dr. Marc T.M. Koper (LIC, Universiteit Leiden)

Prof. Dr. Bernard E. Nieuwenhuys (LIC, Universiteit Leiden en

Technische Universiteit Eindhoven)

Prof. Dr. Elias Vlieg (Radboud Universiteit Nijmegen)

Dr. ir. Sense Jan van der Molen (LION, Universiteit Leiden)

Dr. Alfons M. Molenbroek (Haldor Topsøe, Lyngby, Denemarken)

Operando SXRD: A New View on Catalysis, M.D. Ackermann

ISBN 978-90-9022489-3

A digital version of this thesis is available at

http://www.physics.leidenuniv.nl/sections/cm/ip

The work presented in this Thesis has been made possible by financial support

from the Dutch Foundation for Fundamental Research on Matter (Stichting

FOM) and the European Synchrotron Radiation Facility (ESRF). The work has

been performed at the Leiden Institute of Physics (LION), and the ID03

Beamline of the ESRF

(6)

v

(7)
(8)

vii

TABLE OF CONTENT:

I: INTRODUCTION AND THEORY 11

1.1:INTRODUCTION 12

1.2:HETEROGENEOUS CATALYSIS 14

1.2.1: Catalysts 14

1.2.2: Reaction mechanisms 15

1.3:THE PRESSURE GAP: 19

1.3.1: Surface Science at elevated pressure and temperature 19 1.3.2: Chemical potential: influence on surface structure 19 1.3.3: Kinetic barriers: Low versus high temperature and pressure 21

1.4:THE MATERIALS GAP 23

1.5:TECHNIQUES FOR STUDYING SURFACES UNDER ELEVATED PRESSURE

CONDITIONS 24

1.5.1: The conflict of surface sensitivity and elevated pressures 24

1.5.2: Hard X-Rays 25

1.5.3: (High Pressure) Scanning Tunneling Microscope 26 1.5.4: A short path through the gas phase 27 1.5.5: Polarization (filtering) 27 1.5.6: Density Functional Theory 28 1.6:SURFACES OF METALS ON THE ATOMIC SCALE 29 1.6.1: Unit cells and the bulk structure of crystals 29 1.6.2: Cuts through crystal structures 31 1.6.3: Low index planes 32 1.6.4: Surface reconstructions 33 1.6.5: High index planes 35 1.6.6: Altering surfaces: adsorption and growth 35

1.7:SURFACE X-RAY DIFFRACTION 39

1.7.1: SXRD from perfect crystal surfaces 39 1.7.2: Non perfect crystals and surfaces: CTRs 43 1.7.3: Calculating structures from SXRD 46 II: STRUCTURE AND REACTIVITY OF SURFACE OXIDES ON PT(110)

DURING CATALYTIC CO OXIDATION 51

2.1:INTRODUCTION 52

2.2:CRYSTAL PREPARATION 52

2.3:EXPOSURE TO HIGH PRESSURE OF O2 54

(9)

2.4:REACTIVITY OF THE PT SURFACE IN CO OXIDATION 58 2.4.1: Reactivity on the PtO2 surface 59 2.5:SURFACE MORPHOLOGY OF THE -PTO2 SURFACE 63 2.6:SWITCH FROM OXIDE TO METAL INDUCED BY CO PULSE 69 2.6.1: Rate Limiting step on the metallic surface 70 2.7:‘SPONTANEOUS SWITCH TO HIGH REACTIVITY 70 2.8:INTERMEDIATE STRUCTURE: COMMENSURATE (1X2) 71 2.8.1: The (1x2)-structure: DFT calculations 73 2.8.2: Mixed coverage and stability of (1x2)-structure 75

2.9:CONCLUSIONS 81

III: INTERACTION BETWEEN PT(111), O2 AND CO AT ELEVATED

PRESSURE AND TEMPERATURE 83

3.1:INTRODUCTION 84

3.2:EXPERIMENTAL 84

3.3:EXPOSURE TO O2 86

3.3.1: Low pressures of O2 86 3.3.2: High pressure of O2 86

3.3.2.1: Orientation and commensurability 87

3.3.2.2: Thickness 89

3.3.2.3: Growth oscillations 93

3.3.2.4: Beam effect 99

3.4:EXPOSURE OF -PTO2 TO CO 100

3.5:REACTION RATE AND REACTIVITY OF -PTO2 104 3.5.1: Pulses “d” and “e” 106 3.5.2: Surface Structure and reactivity at pulse “f” 108

3.6:2X2 COMMENSURATE STRUCTURE 109

3.7:CONCLUSIONS 113

IV: SXRD STUDY OF PD SINGLE CRYSTAL SURFACES AS MODEL CO

OXIDATION CATALYSTS 115

4.1:INTRODUCTION 116

4.2:PD(001) OXIDATION 116 4.2.1: Low pressure structures 117

4.2.2: Bulk-like PdO 119

4.3:REACTIVITY 123

4.4:SWITCHING BEHAVIOR AND SELF SUSTAINED OSCILLATIONS 129 4.5:PD(553): STRUCTURE AND REACTIVITY 131

4.5.1: Introduction 131

(10)

ix

4.6:CONCLUSIONS 135

V ATOMIC STEPS AS A MOTOR FOR REACTION OSCILLATIONS 137

5.1:INTRODUCTION 138

5.2:EXPERIMENTAL 139

5.2.1: Surface roughness and the metal-to-oxide transition 139 5.2.2: Switching point: PCO vs. Roughness 143 5.3:SELF-SUSTAINED REACTION OSCILLATIONS:ROUGHNESS MODEL 145 5.3.1: Numerical model 150

5.4CONCLUSIONS: 154

APPENDIX A: INSTRUMENTATION 157

A.1:THE ID03BEAMLINE 158

A.2:THE HIGH PRESSURE /UHVCHAMBER 159

A.3:THE GAS MANIFOLD 162

A.4:6-CIRCLE DIFFRACTOMETER 165

A.5:A NEW SETUP FOR SXRD AT ELEVATED PRESSURE CONDITIONS 165 BIBLIOGRAPHY 171 SUMMARY 179

SAMENVATTING VOOR DE LEEK 180

SUMMARY (LAYMENS TERMS) 185

(11)

Referenties

GERELATEERDE DOCUMENTEN

iii A quick look at the example given above shows that to match the chemical potential of an experiment performed a 1000 mbar and room temperature (300 K) one would need to go to

The mixed coverage of the (1x2)-layer and the oxide at any moment during the experiment is hence the correct equilibrium structure for the present gas mixture, and not an unstable or

At pulse “f” (see also zoomed panel) the reactivity changes drastically. It is much slower than expected for the linear reaction rate dependence, and it does no longer show an

The surface diffraction peak of Pd(001) at (0 1 0.2), that had completely disappeared in the oxidized state, reappears (figure 4, bottom left panel), and the oxide peaks, both

Our high-pressure Surface X-Ray Diffraction (SXRD) experiment on a palladium model catalyst shows that a high density of steps strongly alters the conditions required for

The chamber is equipped with 1 cold cathode pressure gauge (figure 1, 8) and 2 capacitive pressure gauges (not shown) which cover the full range of pressure from UHV up until

Door deze kennis kan niet alleen uitgelegd worden waarom een katalysator het beter of slechter doet onder bepaalde omstandigheden, ook kan men op basis van die kennis

The increased reaction rate on the oxidized surface and the link between the roughness and the oscillations, are both novel observations, which are in a large part in contradiction