• No results found

Changes in total cerebral blood flow and morphology in aging Spilt, A.

N/A
N/A
Protected

Academic year: 2021

Share "Changes in total cerebral blood flow and morphology in aging Spilt, A."

Copied!
19
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Changes in total cerebral blood flow and morphology in aging

Spilt, A.

Citation

Spilt, A. (2006, March 9). Changes in total cerebral blood flow and morphology in aging. Retrieved from

https://hdl.handle.net/1887/4342

Version:

Corrected Publisher’s Version

(2)
(3)
(4)

1 Zahn RK. Alter und Altern. In: Schm idt R, Thews G , editors. Physiologie des M enschen. Berlin: Springer Verlag, 2005: 837-842.

2 Bennett DA, Schneider JA, Bienias JL, Evans DA, W ilson RS. M ild cognitive im pairm ent is related to Alzheim er disease pathology and cerebral infarctions. Neurology 2005; 64(5):834-841.

3 M eyer JS, Kawam ura J, Terayam a Y. W hite m atter lesions in the elderly. J Neurol Sci 1992; 110(1-2):1-7.

4 de Leeuw FE, de G root JC, Achten E, O udkerk M , Ram os LM P, Heijboer R et al. Prevalence of cerebral white m atter lesions in elderly people: a population based m agnetic resonance im aging study. The Rotterdam Scan Study. Journal of Neurology, Neurosurgery, and Psychiatry 2001; 70(1):9-14.

5 de Leeuw FE, de G root JC, O udkerk M , W ittem an JC, Hofm an A, van G ijn J et al. Aortic atherosclerosis at m iddle age predicts cerebral white m atter lesions in the elderly. Stroke 2000; 31(2):425-429.

6 Longstreth W T, Jr., M anolio TA, Arnold A, Burke G L, Bryan N, Jungreis CA et al. Clinical correlates of white m atter fi ndings on cranial m agnetic resonance im aging of 3301 elderly people. The Cardiovascular Health Study. Stroke 1996; 27(8):1274-1282.

7 de G root JC, de Leeuw FE, O udkerk M , van G ijn J, Hofm an A, Jolles J et al. Cerebral white m atter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol 2000; 47(2):145-151.

8 Breteler M M , Claus JJ, G robbee DE, Hofm an A. Cardiovascular disease and distribution of cognitive function in elderly people: the Rotterdam Study. Bm j 1994; 308(6944):1604-1608.

9 Hendrie HC, Farlow M R, Austrom M G , Edwards M K, W illiam s M A. Foci of increased T2 signal intensity on brain M R scans of healthy elderly subjects. AJNR Am J Neuroradiol 1989; 10(4):703-707.

10 Hunt AL, O rrison W W , Yeo RA, Haaland KY, Rhyne RL, G arry PJ et al. Clinical signifi cance of M RI white m atter lesions in the elderly. Neurology 1989; 39(11):1470-4.

(5)

12 Christiansen P, Larsson HB, Thomsen C, Wieslander SB, Henriksen O. Age dependent white matter lesions and brain volume changes in healthy volunteers. Acta Radiol 1994; 35(2):117-22.

13 Drayer BP. Imaging of the aging brain. Part I. Normal fi ndings. Radiology 1988; 166(3):785-96.

14 Nusbaum AO, Tang CY, Buchsbaum MS, Wei TC, Atlas SW. Regional and global changes in cerebral diffusion with normal aging. AJNR Am J Neuroradiol 2001; 22(1):136-142.

15 Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL. Age-related total gray matter and white matter changes in normal adult brain. Part II: quantitative magnetization transfer ratio histogram analysis. AJNR Am J Neuroradiol 2002; 23(8):1334-1341.

16 Bronge L, Bogdanovic N, Wahlund LO. Postmortem MRI and histopathology of white matter changes in Alzheimer brains. A quantitative, comparative study. Dement Geriatr Cogn Disord 2002; 13(4):205-212.

17 Rovaris M, Iannucci G, Cercignani M, Sormani MP, De Stefano N, Gerevini S et al. Age-related changes in conventional, magnetization transfer, and diffusion-tensor MR imaging fi ndings: study with whole-brain tissue histogram analysis. Radiology 2003; 227(3):731-738.

18 Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev 1990; 2(2):161-92.

19 Gill RW. Measurement of blood fl ow by ultrasound: accuracy and sources of error. Ultrasound Med Biol 1985; 11(4):625-41.

20 Bakker CJ, Kouwenhoven M, Hartkamp MJ, Hoogeveen RM, Mali WP. Accuracy and precision of time-averaged fl ow as measured by nontriggered 2D phase-contrast MR angiography, a phantom evaluation. Magn Reson Imaging 1995; 13(7):959-965.

21 Bakker CJ, Hartkamp MJ, Mali WP. Measuring blood fl ow by

(6)

22 Tarnawski M, Padayachee S, West DJ, Graves MJ, Ayton VT, Taylor MG et al. The measurement of time-averaged fl ow by magnetic resonance imaging using continuous acquisition in the carotid arteries and its comparison with Doppler ultrasound. Clin Phys Physiol Meas 1990; 11(1):27-36.

23 Enzmann DR, Marks MP, Pelc NJ. Comparison of cerebral artery blood fl ow measurements with gated cine and ungated phase-contrast techniques. J Magn Reson Imaging 1993; 3(5):705-12.

24 Hofman MB, Kouwenhoven M, Sprenger M, van Rossum AC, Valk J, Westerhof N. Nontriggered magnetic resonance velocity measurement of the time- average of pulsatile velocity. Magn Reson Med 1993; 29(5):648-655.

25 Marks MP, Pelc NJ, Ross MR, Enzmann DR. Determination of cerebral blood fl ow with a phase-contrast cine MR imaging technique: evaluation of normal subjects and patients with arteriovenous malformations. Radiology 1992; 182(2):467-476.

26 Buijs PC, Krabbe-Hartkamp MJ, Bakker CJ, de Lange EE, Ramos LM, Breteler MM et al. Effect of age on cerebral blood fl ow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology 1998; 209(3):667-674.

27 Frayne R, Holdsworth DW, Gowman LM, Rickey DW, Drangova M, Fenster A et al. Computer-controlled fl ow simulator for MR fl ow studies. J Magn Reson Imaging 1992; 2(5):605-12.

28 Holdsworth DW, Rickey DW, Drangova M, Miller DJ, Fenster A. Computer-controlled positive displacement pump for physiological fl ow simulation. Med Biol Eng Comput 1991; 29(6):565-570.

29 van der Geest RJ, Niezen RA, van der Wall EE, de Roos A, Reiber JH. Automated measurement of volume fl ow in the ascending aorta using MR velocity maps: evaluation of inter- and intraobserver variability in healthy volunteers. J Comput Assist Tomogr 1998; 22(6):904-911. 30 Bland JM, Altman DG. Statistical methods for assessing agreement

between two methods of clinical measurement. Lancet 1986; 1(8476):307-310.

(7)

32 Panerai RB. Assessment of cerebral pressure autoregulation in humans--a review of mehumans--asurement methods. Physiol Mehumans--as 1998; 19(3):305-338. 33 Box FM, Spilt A, van Buchem MA, Reiber JH, van der Geest RJ.

Automatic model based contour detection and fl ow quantifi cation of blood fl ow in small vessels with velocity encoded MRI. Proc ISMRM 7 Philadelphia 1999;571.

34 Burkart DJ, Felmlee JP, Johnson CD, Wolf RL, Weaver AL, Ehman RL. Cine phase-contrast MR fl ow measurements: improved precision using an automated method of vessel detection. J Comput Assist Tomogr 1994; 18(3):469-475.

35 Oyre S, Ringgaard S, Kozerke S, Paaske WP, Scheidegger MB, Boesiger P et al. Q uantitation of circumferential subpixel vessel wall position and wall shear stress by multiple sectored three-dimensional paraboloid modeling of velocity encoded cine MR. Magn Reson Med 1998; 40(5):645-655.

36 Hoogeveen RM, Bakker CJ, Viergever MA. MR phase-contrast fl ow measurement with limited spatial resolution in small vessels: value of model-based image analysis. Magn Reson Med 1999; 41(3):520-528. 37 Nichols WW, O’Rourke MF. McDonald’s Blood Flow in Arteries:

Theoretical, Experimental and Clinical Principles. 4th ed. London: Edward Arnold, 1998.

38 Gnasso A, Carallo C, Irace C, Spagnuolo V, De Novara G, Mattioli PL et al. Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects. Circulation 1996; 94(12):3257-3262.

39 Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. second ed. Cambridge: Cambridge University Press, 1996.

40 Pelc NJ, Sommer FG, Enzmann DR, et al. Accuracy and precision of phase-contrast MR fl ow measurements. Radiology. 1991; 181;189. 41 Fleiss JL. The design and analysis of clinical experiments. New York: John

Wiley & Sons, 1986.

(8)

43 Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 2002; 360(9346):1623-1630.

44 Rindt CC, Steenhoven AA. Unsteady fl ow in a rigid 3-D model of the carotid artery bifurcation. J Biomech Eng 1996; 118(1):90-96.

45 Sommer G, Corrigan G, Fredrickson J, Sawyer-Glover A, Liao JR, Myers B et al. Renal blood fl ow: measurement in vivo with rapid spiral MR imaging. Radiology 1998; 208(3):729-734.

46 Laffon E, Lecesne R, De L, V, Valli N, Couzigou P, Laurent F et al. Segmented 5 versus nonsegmented fl ow quantitation: comparison of portal vein fl ow measurements. Invest Radiol 1999; 34(3):176-180. 47 Gallix BP, Reinhold C, Dauzat M, Bret PM. Streamlined fl ow in the portal

vein: demonstration with MR angiography. J Magn Reson Imaging 2002; 15(5):603-609.

48 Davis CP, Liu PF, Hauser M, Gohde SC, von Schulthess GK, Debatin JF. Coronary fl ow and coronary fl ow reserve measurements in humans with breath-held magnetic resonance phase contrast velocity mapping. Magn Reson Med 1997; 37(4):537-544.

49 Spilt A, Box FM, van der Geest RJ, Reiber JH, Kunz P, Kamper AM et al. Reproducibility of Total Cerebral Blood Flow Measurements Using Phase Contrast Magnetic Resonance Imaging. JMRI 2002; 16:1-5.

50 Dahl A, Lindegaard KF, Russell D, Nyberg-Hansen R, Rootwelt K, Sorteberg W et al. A comparison of transcranial Doppler and cerebral blood fl ow studies to assess cerebral vasoreactivity. Stroke 1992; 23(1):15-9.

51 Friberg L, Kastrup J, Rizzi D, Jensen JB, Lassen NA. Cerebral blood fl ow and end-tidal PCO2 during prolonged acetazolamide treatment in humans. Am J Physiol 1990; 258(4 Pt 2):954-959.

52 Levine RL, Turski PA, Turnipseed WD, Dulli DA, Grist TM. Vasodilatory responses and magnetic resonance angiography. Extracranial and intracranial intravascular fl ow data. J Neuroimaging 1997; 7(3):152-158. 53 Petrella JR, DeCarli C, Dagli M, Duyn JH, Grandin CB, Frank JA et al.

(9)

54 Berthezene Y, Nighoghossian N, Meyer R, Damien J, Cinotti L, Adeleine P et al. Can cerebrovascular reactivity be assessed by dynamic susceptibility contrast-enhanced MRI? Neuroradiology 1998; 40(1):1-5. 55 Guckel FJ, Brix G, Schmiedek P, Piepgras Z, Becker G, Kopke J et

al. Cerebrovascular reserve capacity in patients with occlusive cerebrovascular disease: assessment with dynamic susceptibility

contrast-enhanced MR imaging and the acetazolamide stimulation test. Radiology 1996; 201(2):405-412.

56 Marstrand JR, Rostrup E, Rosenbaum S, Garde E, Larsson HB. Cerebral hemodynamic changes measured by gradient-echo or spin-echo bolus tracking and its correlation to changes in ICA blood fl ow measured by phase-mapping MRI. J Magn Reson Imaging 2001; 14(4):391-400. 57 Grossmann WM, Koeberle B. The dose-response relationship of

acetazolamide on the cerebral blood fl ow in normal subjects. Cerebrovasc Dis 2000; 10(1):65-69.

58 Demolis P, Florence G, Thomas L, Tran Dinh YR, Giudicelli JF, Seylaz J et al. Is the acetazolamide test valid for quantitative assessment of maximal cerebral autoregulatory vasodilation? An experimental study. Stroke 2000; 31(2):508-515.

59 Brauer P, Kochs E, Werner C, Bloom M, Policare R, Pentheny S et al. Correlation of transcranial Doppler sonography mean fl ow velocity with cerebral blood fl ow in patients with intracranial pathology. J Neurosurg Anesthesiol 1998; 10(2):80-5.

60 Webster MW, Makaroun MS, Steed DL, Smith HA, Johnson DW, Yonas H. Compromised cerebral blood fl ow reactivity is a predictor of stroke in patients with symptomatic carotid artery occlusive disease. J Vasc Surg 1995; 21(2):338-344.

61 Isaka Y, Okamoto M, Ashida K, Imaizumi M. Decreased cerebrovascular dilatory capacity in subjects with asymptomatic periventricular

hyperintensities. Stroke 1994; 25(2):375-81.

62 Yonas H, Smith HA, Durham SR, Pentheny SL, Johnson DW. Increased stroke risk predicted by compromised cerebral blood fl ow reactivity. J Neurosurg 1993; 79(4):483-489.

63 Molina C, Sabin JA, Montaner J, Rovira A, Abilleira S, Codina A.

(10)

64 Bakker SL, de Leeuw FE, de Groot JC, Hofman A, Koudstaal PJ, Breteler MM. Cerebral vasomotor reactivity and cerebral white matter lesions in the elderly. Neurology 1999; 52(3):578-583.

65 Yonas H, Pindzola RR. Physiological determination of cerebrovascular reserves and its use in clinical management. Cerebrovasc Brain Metab Rev 1994; 6(4):325-340.

66 Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990; 14(2):249-265.

67 Iadecola C, Pelligrino DA, Moskowitz MA, Lassen NA. Nitric oxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab 1994; 14(2):175-192.

68 Armstead WM. Role of nitric oxide, cyclic nucleotides, and the

activation of ATP-sensitive K+ channels in the contribution of adenosine

to hypoxia-induced pial artery dilation. J Cereb Blood Flow Metab 1997; 17(1):100-108.

69 Audibert G, Saunier CG, Siat J, Hartemann D, Lambert J. Effect of the inhibitor of nitric oxide synthase, NG-nitro-L-arginine methyl ester, on cerebral and myocardial blood fl ows during hypoxia in the awake dog. Anesth Analg 1995; 81(5):945-951.

70 Ishimura N, Kitaguchi K, Tatsumi K, Furuya H. Nitric oxide involvement in hypoxic dilation of pial arteries in the cat. Anesthesiology 1996; 85(6):1350-1356.

71 Blitzer ML, Lee SD, Creager MA. Endothelium-derived nitric oxide mediates hypoxic vasodilation of resistance vessels in humans. Am J Physiol 1996; 271(3 Pt 2):H1182-H1185.

72 Garthwaite J. The physiological roles of nitric oxide in the central nervous system. Handbook of Experimental Pharmacology: Nitric Oxide. Berlin: Springer Verlag, 2000: 259-275.

73 Kiss B, Dallinger S, Findl O, Rainer G, Eichler HG, Schmetterer L.

Acetazolamide-induced cerebral and ocular vasodilation in humans is independent of nitric oxide. Am J Physiol 1999; 276(6 Pt 2):R1661-R1667. 74 White RP, Deane C, Vallance P, Markus HS. Nitric oxide synthase

(11)

75 Evans AJ, Iwai F, Grist TA, Sostman HD, Hedlund LW, Spritzer CE et al. Magnetic resonance imaging of blood fl ow with a phase subtraction technique. In vitro and in vivo validation. Invest Radiol 1993; 28(2):109-115.

76 Bogren HG, Buonocore MH, Gu WZ. Carotid and vertebral artery blood fl ow in left- and right-handed healthy subjects measured with MR velocity mapping. J Magn Reson Imaging 1994; 4(1):37-42.

77 Levine RL, Turski PA, Holmes KA, Grist TM. Comparison of magnetic resonance volume fl ow rates, angiography, and carotid Dopplers. Preliminary results. Stroke 1994; 25(2):413-7.

78 Westendorp RG, Blauw GJ, Frolich M, Simons R. Hypoxic syncope. Aviat Space Environ Med 1997; 68(5):410-414.

79 Hudetz AG, Shen H, Kampine JP. Nitric oxide from neuronal NOS plays critical role in cerebral capillary fl ow response to hypoxia. Am J Physiol 1998; 274(3 Pt 2):H982-H989.

80 De Goede J, van der Hoeven N, Berkenbosch A, Olievier CN, van Beek JH. Ventilatory responses to sudden isocapnic changes in end-tidal O2 in cats. Modelling and Control of Breathing. New York: Elsevier Biomedical, 1983: 37-45.

81 Easton PA, Slykerman LJ, Anthonisen NR. Ventilatory response to sustained hypoxia in normal adults. J Appl Physiol 1986; 61(3):906-911. 82 Easton PA, Slykerman LJ, Anthonisen NR. Recovery of the ventilatory

response to hypoxia in normal adults. J Appl Physiol 1988; 64(2):521-528. 83 White RP, Hindley C, Bloomfi eld PM, Cunningham VJ, Vallance P, Brooks

DJ et al. The effect of the nitric oxide synthase inhibitor L-NMMA on basal CBF and vasoneuronal coupling in man: a PET study. J Cereb Blood Flow Metab 1999; 19(6):673-678.

84 Sasaki M, Dawson TM, Dawson VL. Nitric oxide in brain ischemia/ reperfusion injury. Handbook of Experimental Pharmacology: Nitric Oxide. Berling: Springer Verlag, 2000: 619-737.

(12)

86 de Man FH, Weverling-Rijnsburger AW, van der LA, Smelt AH, Jukema JW, Blauw GJ. Not acute but chronic hypertriglyceridemia is associated with impaired endothelium-dependent vasodilation: reversal after lipid-lowering therapy by atorvastatin. Arterioscler Thromb Vasc Biol 2000; 20(3):744-750.

87 Panza JA, Quyyumi AA, Brush JE, Jr., Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323(1):22-27.

88 Stroes ES, Koomans HA, de Bruin TW, Rabelink TJ. Vascular function in the forearm of hypercholesterolaemic patients off and on lipid-lowering medication. Lancet 1995; 346(8973):467-471.

89 Folkow B, Svanborg A. Physiology of cardiovascular aging. Physiol Rev 1993; 73(4):725-764.

90 Marin J. Age-related changes in vascular responses: a review. Mech Ageing Dev 1995; 79(2-3):71-114.

91 Toda N, Okamura T. The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol Rev 2003; 55(2):271-324. 92 Lyons D, Roy S, Patel M, Benjamin N, Swift CG. Impaired nitric

oxide-mediated vasodilatation and total body nitric oxide production in healthy old age. Clin Sci (Lond) 1997; 93(6):519-525.

93 Van Mil AH, Spilt A, van Buchem MA, Bollen EL, Teppema L, Westendorp RG et al. Nitric oxide mediates hypoxia-induced cerebral vasodilation in humans. J Appl Physiol 2002; 92(3):962-966.

94 Heistadt DD, Kontos HA. Cerebral circulation. In: Shepherd JT, Abboud FM, editors. Handbook of Physiology. The Cardiovascular System. Peripheral Circulation and Organ Blood Flow. Bethesda: American Physiology Society, 1983: 137-182.

95 Chabriat H, Vahedi K, Iba-Zizen MT, Joutel A, Nibbio A, Nagy TG et al. Clinical spectrum of CADASIL: a study of 7 families. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Lancet 1995; 346(8980):934-939.

(13)

97 Desmond DW, Moroney JT, Lynch T, Chan S, Chin SS, Mohr JP. The natural history of CADASIL: a pooled analysis of previously published cases. Stroke 1999; 30(6):1230-1233.

98 Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996; 383(6602):707-710. 99 Baudrimont M, Dubas F, Joutel A, Tournier-Lasserve E, Bousser MG.

Autosomal dominant leukoencephalopathy and subcortical ischemic stroke. A clinicopathological study. Stroke 1993; 24(1):122-125.

100 Brulin P, Godfraind C, Leteurtre E, Ruchoux MM. Morphometric analysis of ultrastructural vascular changes in CADASIL: analysis of 50 skin biopsy specimens and pathogenic implications. Acta Neuropathol (Berl) 2002; 104(3):241-248.

101 Skehan SJ, Hutchinson M, MacErlaine DP. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR fi ndings. AJNR Am J Neuroradiol 1995; 16(10):2115-2119.

102 Chabriat H, Levy C, Taillia H, Iba-Zizen MT, Vahedi K, Joutel A et al. Patterns of MRI lesions in CADASIL. Neurology 1998; 51(2):452-457. 103 Yousry TA, Seelos K, Mayer M, Bruning R, Uttner I, Dichgans M et al.

Characteristic MR lesion pattern and correlation of T1 and T2 lesion volume with neurologic and neuropsychological fi ndings in cerebral autosomal dominant arteriopathy with subcortical infarcts and

leukoencephalopathy (CADASIL). AJNR Am J Neuroradiol 1999; 20(1):91-100.

104 Cupini LM, Diomedi M, Placidi F, Silvestrini M, Giacomini P.

Cerebrovascular reactivity and subcortical infarctions. Arch Neurol 2001; 58(4):577-581.

105 Mellies JK, Baumer T, Muller JA, Tournier-Lasserve E, Chabriat H, Knobloch O et al. SPECT study of a German CADASIL family: a phenotype with migraine and progressive dementia only. Neurology 1998; 50(6):1715-1721.

(14)

107 Pfefferkorn T, Stuckrad-Barre S, Herzog J, Gasser T, Hamann GF, Dichgans M. Reduced cerebrovascular CO(2) reactivity in CADASIL: A transcranial Doppler sonography study. Stroke 2001; 32(1):17-21.

108 Bruening R, Dichgans M, Berchtenbreiter C, Yousry T, Seelos KC, Wu RH et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: decrease in regional cerebral blood volume in hyperintense subcortical lesions inversely correlates with disability and cognitive performance. AJNR Am J Neuroradiol 2001; 22(7):1268-1274.

109 Oberstein SA, Ferrari MD, Bakker E, van Gestel J, Kneppers AL, Frants RR et al. Diagnostic Notch3 sequence analysis in CADASIL: three new mutations in Dutch patients. Dutch CADASIL Research Group. Neurology 1999; 52(9):1913-1915.

110 Jungreis CA, Kanal E, Hirsch WL, Martinez AJ, Moossy J. Normal perivascular spaces mimicking lacunar infarction: MR imaging. Radiology 1988; 169(1):101-104.

111 Heier LA, Bauer CJ, Schwartz L, Zimmerman RD, Morgello S, Deck MD. Large Virchow-Robin spaces: MR-clinical correlation. AJNR Am J Neuroradiol 1989; 10(5):929-936.

112 Gridley T. Notch signaling in vertebrate development and disease. Mol Cell Neurosci 1997; 9(2):103-108.

113 Gridley T. Notch signaling during vascular development. Proc Natl Acad Sci U S A 2001; 98(10):5377-5378.

114 Uyttendaele H, Ho J, Rossant J, Kitajewski J. Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci U S A 2001; 98(10):5643-5648.

115 Chabriat H, Bousser MG, Pappata S. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a positron emission tomography study in two affected family members. Stroke 1995; 26(9):1729-1730.

(15)

117 Seitz J, Strotzer M, Schlaier J, Nitz WR, Volk M, Feuerbach S. Comparison between magnetic resonance phase contrast imaging and transcranial Doppler ultrasound with regard to blood fl ow velocity in intracranial arteries: work in progress. J Neuroimaging 2001; 11(2):121-128.

118 Longstreth WT, Jr., Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA et al. Clinical correlates of white matter fi ndings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke 1996; 27(8):1274-1282.

119 Grossman RI, Gomori JM, Ramer KN, Lexa FJ, Schnall MD. Magnetization transfer: theory and clinical applications in neuroradiology.

Radiographics 1994; 14(2):279-290.

120 van Buchem MA, Udupa JK, McGowan JC, Miki Y, Heyning FH, Boncoeur Martel MP et al. Global volumetric estimation of disease burden in multiple sclerosis based on magnetization transfer imaging. AJNR Am J Neuroradiol 1997; 18(7):1287-90.

121 Kucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM. Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology 1994; 192(2):521-529. 122 Scheltens P, Barkhof F, Leys D, Wolters EC, Ravid R, Kamphorst

W. Histopathologic correlates of white matter changes on MRI in Alzheimer’s disease and normal aging. Neurology 1995; 45(5):883-8. 123 Fazekas F, Kleinert R, Offenbacher H, Payer F, Schmidt R, Kleinert G

et al. The morphologic correlate of incidental punctate white matter hyperintensities on MR images. AJNR Am J Neuroradiol 1991; 12(5):915-921.

124 Braffman BH, Zimmerman RA, Trojanowski JQ, Gonatas NK, Hickey WF, Schlaepfer WW. Brain MR: pathologic correlation with gross and histopathology. 2. Hyperintense white-matter foci in the elderly. AJR Am J Roentgenol 1988; 151(3):559-566.

125 Silver NC, Barker GJ, MacManus DG, Tofts PS, Miller DH. Magnetisation transfer ratio of normal brain white matter: a normative database spanning four decades of life. J Neurol Neurosurg Psychiatry 1997; 62(3):223-8.

(16)

127 Dousset V, Grossman RI, Ramer KN, Schnall MD, Young LH, Gonzalez-Scarano F et al. Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 1992; 182(2):483-491.

128 Bosma GP, Rood MJ, Zwinderman AH, Huizinga TW, van Buchem MA. Evidence of central nervous system damage in patients with neuropsychiatric systemic lupus erythematosus, demonstrated by magnetization transfer imaging. Arthritis Rheum 2000; 43(1):48-54.

129 van Buchem MA, Grossman RI, Armstrong C, Polansky M, Miki Y, Heyning FH et al. Correlation of volumetric magnetization transfer imaging with clinical data in MS. Neurology 1998; 50(6):1609-17.

130 van Buchem MA, McGowan JC, Kolson DL, Polansky M, Grossman RI. Quantitative volumetric magnetization transfer analysis in multiple sclerosis: estimation of macroscopic and microscopic disease burden. Magn Reson Med 1996; 36(4):632-6.

131 Hofman PA, Kemerink GJ, Jolles J, Wilmink JT. Quantitative analysis of magnetization transfer images of the brain: effect of closed head injury, age and sex on white matter. Magn Reson Med 1999; 42(4):803-806. 132 Rovaris M, Iannucci G, Cercignani M, Sormani MP, De Stefano N,

Gerevini S et al. Age-related changes in conventional, magnetization transfer, and diffusion-tenser MR imaging Findings: Study with Whole-Brain Tissue Histogram analysis. Radiology 2003; 227:731-738.

133 Tanabe JL, Ezekiel F, Jagust WJ, Schuff N, Fein G. Volumetric method for evaluating magnetization transfer ratio of tissue categories: application to areas of white matter signal hyperintensity in the elderly. Radiology 1997; 204(2):570-5.

134 Tanabe JL, Ezekiel F, Jagust WJ, Reed BR, Norman D, Schuff N et al. Magnetization transfer ratio of white matter hyperintensities in subcortical ischemic vascular dementia. AJNR Am J Neuroradiol 1999; 20(5):839-844.

135 Wong KT, Grossman RI, Boorstein JM, Lexa FJ, McGowan JC.

Magnetization transfer imaging of periventricular hyperintense white matter in the elderly. AJNR Am J Neuroradiol 1995; 16(2):253-8. 136 Hanyu H, Asano T, Sakurai H, Iwamoto T, Takasaki M, Shindo H et

(17)

137 Mehta RC, Pike GB, Enzmann DR. Measure of magnetization transfer in multiple sclerosis demyelinating plaques, white matter ischemic lesions, and edema. AJNR Am J Neuroradiol 1996; 17(6):1051-1055.

138 Firbank MJ, Minnett T, O’ Brien JT. Changes in DWI and MRS associated with white matter hyperintensities in elderly subjects. Neurology 2003; 61:950-954.

139 Breteler MM, van Amerongen NM, van Swieten JC, Claus JJ, Grobbee DE, van Gijn J et al. Cognitive correlates of ventricular enlargement and cerebral white matter lesions on magnetic resonance imaging. The Rotterdam Study. Stroke 1994; 25(6):1109-1115.

140 Wahlund LO, Basun H, Almkvist O, Andersson LG, Julin P, Saaf J. White matter hyperintensities in dementia: does it matter? Magn Reson Imaging 1994; 12(3):387-394.

141 O’Brien JT, Ames D. White matter lesions in depression and Alzheimer’s disease. Br J Psychiatry 1996; 169(5):671.

142 Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993; 43(9):1683-1689.

143 Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. [Review] [114 refs]. Stroke 1997; 28(3):652-659.

144 Ylikoski A, Erkinjuntti T, Raininko R, Sarna S, Sulkava R, Tilvis R. White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke 1995; 26(7):1171-1177.

145 Sze G, De Armond SJ, Brant ZM, Davis RL, Norman D, Newton TH. Foci of MRI signal (pseudo lesions) anterior to the frontal horns: histologic correlations of a normal fi nding. AJR Am J Roentgenol 1986; 147(2):331-337.

146 Pollay M, Curl F. Secretion of cerebrospinal fl uid by the ventricular ependyma of the rabbit. Am J Physiol 1967; 213(4):1031-1038.

(18)

148 Roman GC. A historical review of the concept of vascular dementia: lessons from the past for the future. Alzheimer Dis Assoc Disord 1999; 13 Suppl 3:S4-S8.

149 Maurer K, Volk S, Gerbaldo H. Auguste D and Alzheimer’s disease. Lancet 1997; 349(9064):1546-1549.

150 Tanzi RE, Bertram L. New frontiers in Alzheimer’s disease genetics. Neuron 2001; 32(2):181-184.

151 Selkoe DJ. Presenilin, Notch, and the genesis and treatment of

Alzheimer’s disease. Proc Natl Acad Sci U S A 2001; 98(20):11039-11041. 152 Pathological correlates of late-onset dementia in a multicenter,

community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 2001; 357(9251):169-175.

153 de la Torre JC. Alzheimer disease as a vascular disorder: nosological evidence. Stroke 2002; 33(4):1152-1162.

154 Van der Flier WM, Van den Heuvel DM, Weverling-Rijnsburger AW, Bollen EL, Westendorp RG, van Buchem MA et al. Magnetization Transfer Imaging in Normal Aging, Mild Cognitive Impairment, and Alzheimer’s Disease. Ann Neurol 2002; 52:62-67.

155 van Exel E, de Craen AJM, Gussekloo J, Houx P, Bootsma-van der Wiel A, MacFarlane PW et al. Association between high-density lipoprotein and cognitive impairment in the oldest old. Ann Neurol 2002; 51:716-721. 156 Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J et al.

Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet 1998; 351(9106):857-861.

157 Brand N, Jolles J. Learning and retrieval rate of words presented auditorily and visually. J Gen Psychol 1985; 112(2):201-210.

(19)

159 Nakane H, Ibayashi S, Fujii K, Sadoshima S, Irie K, Kitazono T et al. Cerebral blood fl ow and metabolism in patients with silent brain infarction: occult misery perfusion in the cerebral cortex. J Neurol Neurosurg Psychiatry 1998; 65(3):317-321.

160 Breteler MM, van Swieten JC, Bots ML, Grobbee DE, Claus JJ, van den Hout JH et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study. Neurology 1994; 44(7):1246-1252.

161 Meyer JS, Rogers RL, Judd BW, Mortel KF, Sims P. Cognition and cerebral blood fl ow fl uctuate together in multi-infarct dementia. Stroke 1988; 19(2):163-9.

162 Garde E, Mortensen EL, Krabbe K, Rostrup E, Larsson HB. Relation

between age-related decline in intelligence and cerebral white- matter hyperintensities in healthy octogenarians: a longitudinal study. Lancet 2000; 356(9230):628-634.

Referenties

GERELATEERDE DOCUMENTEN

Angst voor protocollering binnen de geneeskunde berust op de angst zelf aangeleerde gewoonten, niet gestoeld op wetenschappelijke onderbouwing, te moeten verlaten.. Het vastroesten

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of

Age-rel ated changes in norm al -appearing brain tissue and white m atter hyperintensities: m ore of the sam e or som ething.

To assess the functional relevance of WMH, atrophy, MTI measures of cerebral lesion load (including changes in NAWM), and total cerebral blood fl ow in normal aging

The fl ow values are then calculated by the multiplication of the actual velocity values and the area of the automatically segmented region of interest (ROI). The second,

The main fi nding of the study is that acute hypoxia induced an increase in total CBF that could be blunted by the competitive nitric oxide synthase inhibitor L-NMMA, providing

Second, in contrast to young subjects, in old age basal CBF is depending on the intactness of the nitric oxide pathway, suggesting that cerebral auto regulation

The authors used phase-contrast M RI in 40 NO TCH3 mutation carriers (mean age 45 ± 10 years) and 22 nonmutated family members (mean age 39 ± 12 years), to