• No results found

Departures from local thermodynamic equilibrium in HID lamps

N/A
N/A
Protected

Academic year: 2021

Share "Departures from local thermodynamic equilibrium in HID lamps"

Copied!
111
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Departures from local thermodynamic equilibrium in HID lamps

Citation for published version (APA):

Mullen, van der, J. J. A. M., Nimalasuriya, T., Flikweert, A. J., Harskamp, van, W. E. N., Zhu, X-Y., Vries, de, N., Beks, M. L., Haverlag, M., & Stoffels, W. W. (2008). Departures from local thermodynamic equilibrium in HID lamps. In Proceedings of the 10th biennial European Plasma Conference 2008, 7-11 July 2008, Patras, Greece (pp. HTPP10-1/110).

Document status and date: Published: 01/01/2008

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

(2)

Departures from

Local Thermodynamic Equilibrium

in HID lamps

Joost van der Mullen

Technische Universiteit Eindhoven

Universidad de Cordoba

HTPP10 Patras

(3)

Outline

1) Introduction: Plasma type: High Intensity Discharge lamps

2) (non-) Equilibrium aspects;

3) Polydiagnostics

4) Results

Thermal equilibrium Te versus Ta Ionisation equilibrium

Time dependence

5) Discussion

(4)
(5)
(6)
(7)

HID

HID lamps: High Intensity Discharge Lamps

Lighting Streets, Stadiums, Sport fields Car head lights

UHP 200 bar 100 Watt

Metal Halide 10-50 bar 100 Watt

(8)

Typical parameters

R < 1 cm L < 20 cm P ~ 100 W Power density 109 W/m3 ne ~ 10 22 m-3 Te ~ 6000 K

(9)

The plasma in MH lamps

10 bar Hg

Color non-uniformity

Segregation

10 mbar addition DyI3

color rendering better

(10)

Metal Halide Lamps

COST project 529 Efficient lighting of the 21-th century Many lamp types; electrons and materials

Low- & high pressure lamps

COST standard lamp Philips + TUE (Eindhoven)

Arges project Used in space ISS April 2004 !!

(11)
(12)

Productivity

Xiaoyan Zhu 2005 Tanya Nimalasuriya Mark Beks

(13)
(14)
(15)
(16)

TU/e

TUE (EPG) TUE (GTD and BLN) Philips (CDL)

Gerrit Kroesen, Mark Bax, Danny van den Akker, Guido Schiffelers, Pim Kemps, Frank van den Hout, Marc van

Kemenade, Job Beckers, Arjan Flikweert, Tanya Nimalasuriya, Winfred Stoffels, Joost van der Mullen, Xiao-Yan Zhu,

Charlotte Groothuis, Anette Sezin, Rina Boom, Johan Meulensteen

Peer Brinkgreve, Erwin Dekkers, Jovita Moerel, Rob de Kluijver, Hans Wijtvliet, Ruud de Regt, Fred van Nijmweegen, Roel Smeets, Gerard Harkema, Klaas Kopinga, Paul Beijer, Meindert Janszen, N.N.1, N.N.2, … , N.N. 15

Marco Haverlag, Rob Keijser, Jos Eijsermans, Jacques Claassens, Paul Huijbregts, Wally Dekkers, Jacques Heuts, Jan Peeraer, John Etman, Joop

Geijtenbeek, Folke Nörtemann, Cees

Reynhout, Bruno Smets, Hans Wernars

External consultants

Dutch Space: Ron Huijser, Jan Doornink, Geert Brouwer, Fons van Wijk, King Lam, Luc van den Bergh

Kayser-Threde: Roland Seurig, Andreas Kellig Verhaert: Piet Rosiers Bradford: Gerard Maas

(17)
(18)
(19)

Equilibrium concept

LTE: Local Thermal Equilibrium or better ?

LTE: Local ThermoDynamics Equilibrium or

LTCE: Local Thermal and Chemical Equilibrium

(20)

Plasma Artist Impression

Input and Output

Intermediated by

(21)

Global Structure

Inlet

Outlet

Internal Activity

(22)

Thermodynamic Equilibrium:

Collection of Bilateral Relations

TE

Equilibrium in (violet) thermal dynamics

DB Equilibrium on any

level

for any process-couple along the same route

α

β

Nαααα

ν

ν

ν

ν

f Nββββ

ν

ν

ν

ν

b In m-3s-1 or J m-3s-1

(23)

Disturbance of BR by an Efflux

α

β

φ

t

= N

β

υ

t Nββββ

ν

ν

ν

ν

b Nαααα

ν

ν

ν

ν

f

Equilibrium Condition: υ

t

b

<< 1 or υ

t

τ

b

<< 1

(24)

EEK

Are electrons the primary agents ??!!

(25)

Underlying PROPER Balances

α={e} β={H}

Kinetic Energy Transfer

Maxwell Te = Th Excitation = Deexcitation Boltzmann α= “1” β = “2Ionization = Recombin Saha α= “1” β = “+

(26)

TU/e

Equilibrium Disturbance

nen1Sheat(kTe - kTh) = λ/R2 T h

ν

t

τ

b = λ/(R2 n en1k Sheat )-1 large huge << 1 α={e} β={H} heat wall

T

e

= T

h ?

(27)

α β

Radiation escape Griem’s criterion

y(

α

α

α

α

) = y(

β

β

β

β

)[1+ (

υ

υ

υ

υ

t

ττττ

b)B ] with (

υ

υ

υ

υ

t

ττττ

b)B = A/ne K(2,1)

Large n

e

: small departure

Escape of Photons

Distrurbed Proper balance Boltzmann

(28)

α=1 β=+

Distortion of Saha

y(1) =y(+) (1 + νt

ττττ

b) or

δb(1) ≡

b(1) -1 = (νt

ττττ

b )S Escape of radicals Ion/electron pairs y(1)/y(+) ≡ b(1) Saha disturbed

(29)

If Ambipolar Diffusion Dominates

α=1 β=+

ν

ν

ν

ν

t = Da /R2

φ

t = n+

ν

t =

.n+ w+ n+ w+ = -Da

.n Diffusion

δ

δ

δ

δ

b(1) = (

ν

ν

ν

ν

t/

ν

ν

ν

ν

b)s =

ν

ν

ν

ν

t/ (ns(1) Sion)

Cb (A) x 108 Da (neR)-2

Large ne, very small Da

(30)

General Structure ASDF in full LSE

η

s

(p) =

η

+

η

e

V

e

exp (I

p

/kT

e

)

I

p

η

V e = [h3/(2πme kTe )3/2]

η

e

V

e Slope ~ 1/kT

(31)

Polydiagnostics

Passive Absolute Line Intensity

Active Thomson scattering Xray absorption

(32)

Spectral Impression: grass field

Line identification: not trivial

400 450 500 550 600 650 700 0 10000 20000 30000 40000 50000 60000 70000 In te n s it y ( c o u n ts ) Wavelength

(33)

Results Construction ASDF

ASDF constructed in Hg Dy I DyII

Plasma parameters Slopes give T

Saha jump ne

Results in general agreement

with other methods

However deviations in slope Dy II

(34)

General Structure ASDF in full LSE

η

s

(p) =

η

+

η

e

V

e

exp (I

p

/kT

e

)

I

p

η

V e = [h3/(2πme kTe )3/2]

η

e

V

e Slope ~ 1/kT

(35)

ASDF in Dysprosium

3 19 10 3⋅ − = m nground 1 2 3 4 5 6 7 8 9 10 34 36 38 40 42 ln (n /g ) E up (eV ) DyI DyII Note Steeper Slope

ASDF: image {e} but blurred

(36)

The infuence of charge number Z ?

y(

α

α

α

α

) = y(

β

β

β

β

)[1+ (

υ

υ

υ

υ

t

ττττ

b)B ] with (

υ

υ

υ

υ

t

ττττ

b)B = A/ne K(2,1) A∝∝∝∝ Z4 K∝∝∝∝ Z-2 (

υ

υ

υ

υ

t

ττττ

b)B Z6/n e

(37)

General Structure ASDF in full LSE

I

p

η

A∝∝∝∝ Z 4 K∝∝∝∝ Z-2 (

υ

υ

υ

υ

t

ττττ

b)B Z6/n e

(38)

Comparison with EUV plasmas in Sn wanted 92eV radiation

(ne/2) [h3/(2

π

m ekTe)3/2] And so on 1 2 3 4 5 6 7 8 40eV 76,5 96 116.5 137.8 7+ 6+ 5+ 4+ 92ev

(39)

If Saha remains present

(ne/2) [h3/(2

π

m ekTe)3/2] And so on 1 2 3 4 5 6 7 8 40eV 76,5 96 116.5 137.8 7+ 6+ 5+ 4+ 92ev

(40)

Influence radiation

(ne/2) [h3/(2

π

m ekTe)3/2] And so on 1 2 3 4 5 6 7 8 40eV 76,5 96 116.5 137.8 7+ 6+ 5+ 4+ 92ev

(41)

For increasing Z

there will be a stage for which radiation escape will disturb the ASDF

However these states are already low populated No change in light generating properties

(42)

Presence of T

e

= T

g

Relevant question for modeling One- or two-Temperature plasma

Wanted two methods: Te Tg

Thomson Sc Xray absorption

(43)

X-ray absorption

Xiaoyan Zhu, Tanya Nimalasuriya Marco Haverlag; Evert Ridderhof

X-ray CCD Cooling plate + shielding frame d1 d2 x-ray source L

(44)

TU/e

Procedure

Hg is dominant ∇p /p <<1

(n T)any pos = (n T)wall

Pyrometer

Tg on any position

(45)

XRA on Helios lamp • Exposure time: 200s

.

on off 258 464 788 852 1012

(46)

Thomson scattering:

expensive but always surprise surprise

Expensive: Laser system + Spectrograph+ ICCD

Results: Interpretation independent non-equi model

Scattering on electron gas: Real ne and T e

(47)

General structure set-up

Laser Spect Detector

1972 Ruby Mono PMT-array (7)

Xxx xxx xxxx xxxx

1994 YAG Mono IPDA (1064)

2000 YAG TGS (1eV) ICCD (500x700)

2005 YAG (200 ps) TGS (30eV) ICCD () plasma

Academic Industrial

(48)

Thomson Scattering hν ⇒ ⇒ ⇒ ⇒ scattering of photons on free electrons in a plasma

Doppler broadening ∆λ λ0 Te Te More direct measurement ne ne Scattering intensity

(49)

λ0 λ0 In te n s it y In te n s it y Real spectrum (ideal spectrograph) Recorded spectrum (real spectrograph)

Redistribution of monochromatic light:

(50)

Nd:YAG @ 532nm dichroic mirrors plano-convex lens Ar DC discharge beam dump θ=π/2 achromatic lenses image rotator grating 1 mask grating 2 intermediate slit grating 3 polariser iCCD d λ entrance slit

Triple Grating Spectrograph

(51)

Mask

Entrance slit

Exit slit

Dispersing grating Cross-dispersing grating

Lens Mask λ T(λ) Transmission function

Home-made Filter

(52)

Experimental Version QL

600 mm 600 mm 110 mm Quartz-glass transition Brewster window RF coil (2.65 MHz, 85 W)

Amalgam Water hose

Cupper tube

• Extension tubes

•Quartz, Brewster angle windows

•Heating

(53)

“Real” Lamp

400W high pressure Hg lamp Inner diameter is 20 mm.

Note

(54)

Results 07 Willem-Jan van Harskamp Nienke de Vries

(55)
(56)
(57)
(58)
(59)

Deviation from equilibrium

Usual philosophy: high pressures

high reaction frequencies; forward/backward low diffusion velocities

so LTE present.

Type of departure: Thermal: Te ≠ Tg

(60)

Comparison TS and XRA

-0.008 -0.004 0.000 0.004 0.008 1000 2000 3000 4000 5000 6000 7000 TS XRA T e (K ) Radial position 250 W 15 mg Hg Agreement

(61)

Saha equilibrium

A1 ←→ A1+ + e

If Saha equilibrium present n1 = n1s = [n e/2] [n+/g+] {h3/(2πmekTe)3/2} exp (I1/kT) TS TS n1 = p/kTg XRA b1 = n1/n1s = 1 ??

(62)

Strange

(63)

Chemical Equilibrium: b

1

-factor

different gas fillings

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 10 100 1000 b 1 r [mm] 15 mg 30 mg 50 mg 70 mg Increasing p Deviations larger!!

(64)

Meaning b

1

> 1

1 +

b1 > 1 implies n1 > n1s ionization > 2e-recombination

The ground state is relatively over-populated The continuum is relatively under-populated

(65)

Possible Non- 2e-recombination

1 +

radiation

diffusion

(66)

The Role of Molecules

Hg2+ Hg+ Hg+ + Hg + e → Hg 2+ + e Hg+ + Hg + X → Hg 2+ + X

Followed by diss recom DR

Hg2+ + e → Hg* + Hg

(67)

• Alternating Current: sine wave • Radial profiles of ne and Te

– different phases of the current

Time dependence TS

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.00E+021 2.00E+021 3.00E+021 4.00E+021 5.00E+021 6.00E+021 7.00E+021 ϕ = 1/8 ϕ = 1/4 ϕ = 3/8 n e [ m -3 ] r [mm] -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 3000 4000 5000 6000 7000 8000 9000 ϕ = 1/8 ϕ = 1/4 ϕ = 3/8 T e [ m -3 ] Variation in ne not in Te

(68)

TU/e

What keeps the electrons hot??

Demand: High {e} heating

Known DR fast Solution: Cyclic Process Ar+ Ar* {e} DR {e}/{h} Inversion Ar2+ Heating during 1) Recombination 2) Super-elastics

(69)

Considerations

Although electrons {e} are primary agents

They form a minority at boundaries and afterglows

The {h} heat reservoir is much large 3/2N kT During association inversion possible

(70)

Transport

By radiation In space

(71)

EEK

Are electrons the primary agents ??!!

(72)

Competing Agents

{e} EEK: Electron Excitation Kinetics

{f} REK: Radiation Excitation Kinetics

(73)

Heating by radiation

Take 254 nm line I λ From edge Question How deep?

(74)

Irradiation of the plasma edge

1 2 {e} {e} Local trapping Planck Balance Forced to equi Radiation temperature Impose Boltzmann balance Quasi equi Plasma center 1 2 Plasma Edge

(75)

Molecular states

Known at the wall or afterglow in time

in space

High population of highly vib states

Low Tvib

High Tvib

Association via

(76)

The Sulfur lamp

Harm van der Heijden 2003 Colin Johnston 2003 A microwave plasma p = 10 bar

P = 1k Watt

Experimental: not (laser) accessible

only passive spectroscopy Modeling: LTE microwave power coupling

heat conductivity

(77)
(78)
(79)
(80)

Radiation: Ray Tracing

dI

ν

(ν)/ds = j

ν

- k(ν)I

ν

(ν)

Evolve

•For different lines •Different υ -values

•Compute plasma irradiation •Solve Fluid equation

•Find new k(υ) and jυ(υ)

•Evolve Radtrans eqn again •Etc.

(81)
(82)
(83)
(84)

Semi-classical valid In LTE: τ << 1

(85)

Main result

The IR excess can (only) be explained

By a non-equi distribution of the rot-vib population B-Molecules are formed in higher states

During coll-decay to lower state radiation takes place Inversion in the B molecule !!

(86)

Evidences for high-pressure non-LTE

CO2 and CO lasers. Sulfur lamp

Ball-lightening Pink Afterglow N2

(87)

Concluding

High pressure does not guarantee Equilibrium.

Thomson scattering difficult but of high value

Electrons principal agents in center/initiation

where they create radiation

and heavy internal states: Side/after/behind glow ruled in many case by

heavies photons

(88)

Outlook

T P P Thermal Plasma Processes H T P P High Tech Plasma Processes Equilibrium departure a challenge

(89)
(90)

XRF

Tanya Nimalasuriya (TU/e) Evert Ridderhof (TU/e)

John J. Curry (NIST)

Craig J. Sansonetti (NIST) Sharvjit Shastri (APS)

(91)

XRF sketch

4 cm X-ray Beam Ge Detector 7 cm Ion Chamber Pb shield W slits W slits burner jacket

The x-ray beam is produced by the Sector 1 Insertion Device beam line at the Advanced Photon Source at the Argonne National Laboratory

(92)

XRF advantages

• X-ray induced fluorescence:

- determines elemental densities of Dy,Hg - is effective anywhere in the burner

• No inversion technique is needed

(93)

Diffusion versus (radial) convection

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1E-4 1E-3 0.01 6.7% 21 % 36 % 50 % R a ti o D y /H g

(94)

Temperature profile from Hg density

XRF

140 W XRA 142 W, X.Y. Zhu

-1.0 -0.5 0.0 0.5 1.0 1000 1500 2000 2500 3000 3500 4000 4500 5000 T ( K )

normalised radial position

6.7% 21 % 36 % 50 % 64 % 79 % 93 % -1.0 -0.5 0.0 0.5 1.0 1000 1500 2000 2500 3000 3500 4000 4500 5000 T ( K )

normalised radial position

85% 65% 55% 30% 10%

(95)

Example pLPE

α=1

β=2

Intense laser irradiates transition:

Proper balance Absorption St.Emission

Look for comparable TE situation

T →∞: exp-∆E/kT=1 → (1) = η(2)

(96)

I 1 0 b p real distribution pLSE Saha distribution lo g ( e le m e n ta ry o cc u p a tio n ) I p Ground state Ion state Ionization flow Outflux Influx

Ion Efflux Effecting the ASDF

pLSE settles for Ip →→→→ 0 since (υυυυtυυυb)S 0

b = n/ns

(97)

Example pLSE

Ground state Ion state Ionization flow Outflux Influx Approaching continuum:

Equi. restoration rates increase

Look for comparable TE situation

Saha equation ruled by electrons from continuum

(98)

The efficiency

Take : σ = 6.65 10-29 m2

ne = 1020m-3

L = 1 cm = 10-2

τ = 10-10

How many photons detected ?

ξ

= Fscat Fcoll Fdet

τ = kd = neσ d

Fscat the scatter-fraction d

Combined

Absorption

(99)

The collected fraction

The collected fraction: possible 1 dm2 lens at 1 m

Ω = A/d2

Ω = A/d2 = 10-2sr

Solid angle fraction χ = Ω/(4π) = 10-3

Fcoll = 10-3

A = 1 dm2

(100)

The detected fraction

The detection fraction Fdet = 10-2

ξ

= Fscat Fcoll Fdet = 10-10 10-3 10-2 = 10-15 !!!

Laser needed

Several TS competitors CollectivityRayleigh scattering

False stray light, vessels Plasma photons

Laser produced plasma

(101)

The competitors

Collectivity

Rayleigh scattering

False stray light, vessels

Plasma photons

Laser produced plasma

Change of Gaussian

At λ0 At λo

At λo and in ∆ λ - TS A different plasma

(102)

The competitors

Collectivity

Rayleigh scattering

False stray light, vessels

Plasma photons

Laser produced plasma

Change of Gaussian

At λ0 At λo

At λo and in ∆ λ - TS A different plasma

(103)

α = 0 . 2 α = 0 . 4 α = 0 α = 0 . 6 α = 0 . 8 α = 1 . 0 α = 1 . 5 α = 2 . 0

(104)

The competitors

Collectivity

Rayleigh scattering

False stray light, vessels

Plasma photons

Laser produced plasma

Change of Gaussian

At λλλλ0 At λλλλo

At λo and in ∆ λ - TS A different plasma

(105)

Plasma Background Light 1

(106)

The competitors

Collectivity

Rayleigh scattering

False stray light, vessels

Plasma photons

Laser produced plasma

Change of Gaussian

At λ0 At λo

At λλλλo and in ∆∆∆∆ λλλλ - TS

(107)

150W Hg lamp 150W Hg+CeI3 lamp

(108)

Laser Produced Plasma

Laser power: 4mJ.

Focal length:15cm.

(109)

The competitors

Collectivity

Rayleigh scattering

False stray light, vessels

Plasma photons

Laser produced plasma

Change of Gaussian

At λ0 At λo

At λλλλo and in ∆∆∆ λ∆ λλλ - TS

(110)

Solution Plasma light

Avoid LPP: Pulse energy < 1 mJ:

no extra plasma

Compress laser pulse period

Method employed by Erik Kieft ASML

Using the Ekspla τ < 0.2 ns !! Instead of “normal” τ < 8 ns

(111)

α

β

Nαααα

ν

ν

ν

ν

f Nββββ

ν

ν

ν

ν

b

Equilibrium Departure

Non-Equilibrium Nαααα

ν

ν

ν

ν

f = Nββββ

ν

ν

ν

ν

b + Nββββ

ν

ν

ν

ν

t Equilibrium Nααααeq

ν

ν

ν

ν

f = Nββββ eq

ν

ν

ν

ν

b y(αααα) = y(ββββ)[1 + υυυυtττττb ] y = N/Neq

Referenties

GERELATEERDE DOCUMENTEN

De donkerrood ingetekende structuren zijn de gegevens afkomstig van een luchtfoto genomen vóór de Tweede Slag van Ieper (de exacte datum is niet gekend): de volle

[r]

t  is de wijzer helemaal rond gegaan en nog 18 minuten. De periode van de kleine wijzer is

Changing from a bilateral, i.e., a dual-monaural, hearing aid configuration, to a binaural noise reduction algorithm, i.e., generating an output signal for both ears by using all

Omdat de voortgezette rijopleiding ‘VRO Risico’ van de Koninklijke Nederlandse Motorrijders Vereniging (KNMV) alle eigenschappen lijkt te hebben van een goede voortgezette

The reduction of the breakdown voltage for lamps, not taking into account the reduction of the overvoltage caused by statistical lag, is in its essence a search for the way to

The experiment results show that car headlamps observed at nighttime by car drivers in highway without barriers, scored 3~5 (disturbing~acceptable) on the de Boer scale; while