• No results found

systems and ternary binary oxides as NO storage and reduction(NSR) NO storage and reduction pathways on zirconia and titaniafunctionalized Catalysis Today

N/A
N/A
Protected

Academic year: 2022

Share "systems and ternary binary oxides as NO storage and reduction(NSR) NO storage and reduction pathways on zirconia and titaniafunctionalized Catalysis Today"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Catalysis Today

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

NO x storage and reduction pathways on zirconia and titania

functionalized binary and ternary oxides as NO x storage and reduction (NSR) systems

Zafer Say, Merve Tohumeken, Emrah Ozensoy

DepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

a r t i c l e i n f o

Articlehistory:

Received22October2013 Receivedinrevisedform 17December2013 Accepted19December2013 Availableonline28January2014

Keywords:

Zirconia Titania Pt NOx

LNT NSR

a b s t r a c t

Binaryand ternaryoxidematerials, ZrO2/TiO2 (ZT)andAl2O3/ZrO2/TiO2 (AZT),aswellastheirPt- functionalizedcounterpartsweresynthesizedandcharacterizedviaXRD,Ramanspectroscopy,BET, insituFTIRandTPDtechniques.IntheZTsystem,astronginteractionbetweenTiO2andZrO2domains athightemperatures(>973K)resultedintheformationofalowspecificsurfacearea(i.e.26m2/gat 973K)ZTmaterialcontainingahighlyorderedcrystallineZrTiO4phase.IncorporationofAl2O3inthe AZTstructurerendersthematerialhighlyresilienttowardcrystallizationandordering.Aluminaactsas adiffusionbarrierintheAZTstructure,preventingtheformationofZrTiO4andleadingtoahighspecific surfacearea(i.e.264m2/gat973K).NOxadsorptionontheAZTsystemwasfoundtobesignificantly greaterthanthatofZT,duetoalmostten-foldgreaterSSAoftheformersurface.WhilePtincorporation didnotalterthetypeoftheadsorbednitratespecies,itsignificantlyboostedtheNOxadsorptiononboth Pt/ZTandPt/AZTsystems.ThermalstabilityofnitrateswashigherontheAZTcomparedtoZT,mostlikely duetothedefectivestructureandthepresenceofcoordinativelyunsaturatedsitesontheformersur- face.Ptsitesalsofacilitatethedecompositionofnitratesintheabsenceofanexternalreducingagentby shiftingthedecompositiontemperaturestolowervalues.PresenceofPtalsoenhancespartial/complete NOxreductionintheabsenceofanexternalreducingagentandtheformationofN2andN2O.Inthe presenceofH2(g),reductionofsurfacenitrateswascompletedat623KonZT,whilethiswasachieved at723KforAZT.NitratereductionoverPt/ZTandPt/AZTviaH2(g)undermildconditionsinitiallyleads toconversionofbridgingnitratesintomonodentatenitrates/nitritesandtheformationofsurface OH and NHxfunctionalities.N2O(g)wasalsocontinuouslygeneratedduringthereductionprocessasan intermediate/byproduct.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Automobileindustryhasbeenforcedbynew,morestringent regulationstoinventnoveltechnologiesfortheeliminationofthe environmentalimpactofexhaustemissions.Sincethree-waycat- alystsare not efficient under lean conditions, NOx storage and reduction(NSR)catalystshavebeendevelopedbyToyotaMotor Companyasapromisingafter-treatmentprocess[1,2].Theoper- ationalprincipleofNSRcatalystsreliesonthefactthatNO(g)is initiallyoxidizedtoNO2(g)onthepreciousmetalsiteunderlean conditionsfollowedbystorageintheformofnitritesandnitrates onaNOxstoragedomainsuchasBaOorK2O[3–8].Finally,stored NOxspeciesarereducedtoN2(g)intherichoperationalcycle[3].

ForadetaileddiscussiontheNOxstorageandreductiontechnology,

∗ Correspondingauthor.Tel.:+903122902121.

E-mailaddress:ozensoy@fen.bilkent.edu.tr(E.Ozensoy).

readerisreferredtotwocomprehensivereviewsbyRoyetal.[3]

andEplingetal.[4].

However,NSR materialshavetwo majordrawbacksnamely, sulfurpoisoning[9,10]andthermalaging[5,11,12].Senturketal.

investigatedtheeffectofTiO2promotionontheBaO/Al2O3binary oxideanddemonstratedthatthesulfuruptakeandreleaseproper- tiesoftheTiO2-promotedBaO/Al2O3materialsweresignificantly enhanced[13].Matsumotoetal.[14]alsoreportedthatTiO2could beusedasapromoteragainstsulfurpoisoningduetoitshighacid- ity.However,ithasbeenalsoreportedthattitaniacanreadilylose itsfunctionalityduetothermaldeteriorationathightemperatures andvarioussolid-phasereactionsbetweenNOxstoragedomains, promotersandthesupportmaterial[11,12,15].Therefore,ZrO2is typicallyusedtogetherwithTiO2inanattempttostabilizethetita- niacomponent[16,17].Anothercriticalfactorthatfavorstheusage ofZrO2/TiO2asamixedmetaloxidecomponentisitshighersurface acidityascomparedtoeitherZrO2orTiO2,alone[18,19].

ZrO2/TiO2 and Al2O3/ZrO2/TiO2 mixed oxides have recently beenthoroughlystudiedwithaparticularemphasisonthesulfur 0920-5861/$seefrontmatter©2014ElsevierB.V.Allrightsreserved.

http://dx.doi.org/10.1016/j.cattod.2013.12.037

(2)

tolerance,materialpreparation,NOxstoragecapacityandthermal stabilityaspects.Takahashietal.[20]investigatedtheinfluenceof therelativeabundanceofTiO2andZrO2componentsandfoundthat theNSRsystemthatwascomprisedof70wt%ZrO2and30wt%TiO2 exhibitedthebestsulfurtolerance.Imagawaetal.[21,22]reported adetailedcharacterizationstudyrelatedtotheAl2O3/ZrO2/TiO2 ternaryoxidesystememphasizingtheimpactofAl2O3incorpora- tionintotheZrO2/TiO2 mixedoxidewhereitwasindicatedthat nano-compositeAl2O3/ZrO2/TiO2hadahigherNOxstoragecapac- ityandahigherthermalresistanceascomparedtothephysically mixedAl2O3andZrO2/TiO2.

Thus,inthecurrentstudy,weaimedtoprovideamechanistic viewintotheNOxstorageandreductionpathwaysofbinaryand ternarymixedoxidesbymonitoringthenitratereductionviaH2at themolecularlevelbymeansofinsituFTIRandTPD.

2. Experimental 2.1. Materialpreparation

ZrO2/TiO2 binary and Al2O3/ZrO2/TiO2 ternary oxides were synthesizedusingtheconventionalsol–gelmethod.Forthesyn- thesisofthebinaryoxides,zirconiumpropoxide(SigmaAldrich, ACSReagent,70wt%in1-propanol)andtitanium(IV)isopropoxide (SigmaAldrich,ACSReagent,97%)precursorswereinitiallydis- solvedin100mlof2-propanol(SigmaAldrich,ACSReagent>99.5%) andstirred for40minunder ambientconditions.Thisstepwas followedby thedrop-wiseadditionof3mLof0.5Mnitricacid solution(SigmaAldrich,ACSReagent,65%)in ordertoobtaina gel.Similarly,thesynthesisoftheternaryoxidewascarriedout bymixingzirconiumisopropoxide,titaniumisopropoxideandalu- minumsec-butoxide(SigmaAldrich,ACSReagent,97%)followed by the addition of 100mL of 2-propanol. Next, theslurry was stirredfor 60min underambient conditions and gel formation wasachievedbydrop-wiseadditionof9mLof0.5Mnitricacid solution.Inthebinaryoxide,thecompositionratioofZrO2:TiO2 was70:30bymass.Thisspecificratiohasbeenreportedasthe optimumcandidateforthehighestNOxremovalabilityandthe highesttoleranceagainstsulfur-poisoning[20].Finally,themate- rialswere driedunderambientconditions for48hfollowed by calcinationinairwithin323–1173K.Relativecompositionofthe ternaryoxidesystem(i.e.Al2O3/ZrO2/TiO2)bymasswas50:35:15 [20].1wt%platinum-incorporatedbinaryandternaryoxidemate- rialsweresynthesizedbyincipientwetnessimpregnationmethod usingasolutionofPt(NH3)2(NO2)2 (Aldrich,diamminedinitrito- platinum(II),3.4wt% solutionin diluteNH3(aq)). PriortothePt addition,ZrO2/TiO2andAl2O3/ZrO2/TiO2wereinitiallycalcinedin airat773Kfor150mininordertoremovetheorganicfunction- alitiesintheprecursors.Finally,eachmaterialwassubsequently calcinedinairat973Kfornitrite/nitratecontenteliminationand structuralstabilization.Inthecurrenttext,synthesizedZrO2/TiO2, Al2O3/ZrO2/TiO2,Pt/ZrO2/TiO2,Pt/Al2O3/ZrO2/TiO2sampleswillbe abbreviatedasZT,AZT,Pt/ZTandPt/AZT,respectively.

2.2. Instrumentation

Detaileddescriptionoftheinstrumentationused inthecur- rentlypresented experimentsinvolvingX-raydiffraction(XRD), Ramanspectroscopy,BETsurfaceareaanalysis,temperaturepro- grammeddesorption(TPD)andinsituFTIRcanbefoundelsewhere [8].Briefly, in situ FTIRspectroscopic measurementswere per- formed in transmission mode using a Bruker Tensor 27 FTIR spectrometerwhichwasmodifiedtohouseabatch-typespectro- scopicreactorcoupledtoaquadrupolemassspectrometer(QMS, StanfordResearchSystems,RGA200)forTPDmeasurements.

EachsynthesizedmaterialwasexposedtoNO2(g)whichwas preparedbymixingNO(g)(AirProducts,99.9%)andexcessO2(g) (LindeGmbH,Germany,99.999%).Freeze–thaw-pumpcycleswere appliedfortheremoval ofcontaminations andunreactedgases intheNO2(g).The materialsurfaceswereinitiallyflushed with 1.0TorrofNO2(g)for5minandsubsequentlyannealedto973K witha12K/minheating rateundervacuum.Then, fortheFTIR analysis,material surfaces wereexposed to NO2(g) at 323K in a stepwise fashion from low to higher pressures where each exposure takes 1min. Finally, surface saturation was achieved by the introduction of 5.0Torr NO2(g) over the samples for 10minat323Kfollowedbyevacuationtoapressurelowerthan 10−2Torr.

Nitratereductionexperiments forthePt-freematerialswere carriedoutbyexposingtheNO2(g)-saturatedmaterialsurfaceto 15.0TorrofH2(g)(LindeGmbH,Germany,>99.9%)at323K,fol- lowedbygradualheatingataconstantrateof12K/minuntilthe desiredtemperature.ForthePt-containingmaterials,15.0Torrof H2(g)wasintroducedovertheNO2-saturatedmaterialat323Kand thetime-dependentFTIRspectrawereacquiredfor2h.After2hof reductionat323K,samplewasheatedupto473Kinthepresence ofH2(g)forthecompletereductionandremovalofadsorbedNOx. AlloftheFTIRspectragiveninthisstudywereobtainedat323K.

InTPDexperiments,eachsamplewassaturatedbyNO2(g)as describedabove.Subsequently,saturatedmaterialswereheated upto973Kwithalinearheatingrateof12K/mininvacuum.FTIR spectraofthecorrespondingsurfaceswerealsorecordedbefore andaftertheTPDexperiments.

3. Resultsanddiscussion

3.1. Structuralcharacterizationofthesynthesizedmaterials

Fig.1illustratesexsituXRDanalysisfortheZTandAZTmateri- alsrecordedaftercalcinationatvarioustemperaturesintherange of323–1173K.AsshowninFig.1a,theamorphousstructureof ZTbinaryoxidepersistsupto773Kfollowed bytheformation of crystalline phases above 773K, namely tetragonal ZrO2 and ZrTiO4. The structural evolution of AZT is also shown by XRD inFig.1bwhere theternary oxidesystembehavesquitediffer- entlycomparedtothebinaryoxide.AZTpreserveditsamorphous natureupto973K withoutrevealing anywell-resolveddiffrac- tionsignals.Alongtheselines,AZTshowedonlypoorlydiscernible diffractionsignalsat2=30.48,50.50,60.91correspondingto tetragonalZrO2(JCPDS80-2155)at1173K.Apparently,theaddi- tion of an alumina component to the ZT system elevates the ordering/crystallizationtemperaturesandsuppressestheforma- tionofZrTiO4 (JCPDS 34-415).It isworthmentioningthatXRD analysiswasalsoperformedforthePt/ZTand Pt/AZT materials (SupportingInformationFig.1),whereitwasobservedthatPtaddi- tiondidnotleadtoamajorcrystallographicchangeovertheZTand AZTsystemsbesidesthepresenceofdiffractionsignalsassociated withmetallicPtparticles.

Thetemperature-dependentRamanspectraofZTandAZTare illustrated in Fig.2. ZrTiO4,one of the main crystallinephases detectedforZTsamplesinXRD,hasanorthorhombicsymmetry withaPbcnspacegroupandammmpointgroup.Thisphasehas33 opticallyactivemodes,18ofwhichareRamanactive[23,24].How- ever,intheRamandatacorrespondingtotheZTsamplepresented inFig.2a,onlysixofthesevibrationalfeaturesat135,259,320,391, 565and778cm−1arediscernible.Thiscanbeassociatedwiththe bandbroadeningandsignaloverlapduetotherandomdistribution ofZr4+andTi4+ionsinthecrystallattice[23,24].Ramanshiftsat 467and622cm−1inFig.2acorrespondingtotheZTsampleare mostlikelyassociatedwiththetetragonalZrO2phase,whilethe

(3)

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 623K

773K 973K 1173K

2 theta 2 theta

Intensity (arb. u.)

ZrO2/TiO2 (b) Al2O3/ZrO2/TiO2 )

a (

2500 2500

323K

623K 773K 973K 1173K

323K ZrTiO4

t-ZrO2

ZrTiO4 t-ZrO2

Fig.1. XRDpatternscorrespondingto(a)ZrO2/TiO2and(b)Al2O3/ZrO2/TiO2materialsuponcalcinationattemperatureswithinof323–1173K.

featureat391cm−1canbeattributedtothepresencezirconium titanatephase[25,26].

AscomparedtotheZTbinaryoxide,Ramanspectracorrespond- ingtotheAZTternaryoxidesample(Fig.2b)revealedmuchweaker signalsduetothepoorcrystallinityandthelackofatomicorderin thelattersample.InFig.2b,threeweakRamanfeatureslocatedat 320,465and625cm−1arevisiblewhichcanbeattributedtothe tetragonalzirconiaphase.Thisrevealsthatbesidesthetetragonal ZrO2phase,XRDandRamandatadonotprovideanyclearindi- cationsforthepresenceofadditionalorderedphasesintheAZT system,suchasZrTiO4.Theseobservationsareinlinewithstud- iesreportedbyEscobaretal.[27]whosuggestedthatintheZT binarysystemZrO2canprovideZr4+ionswhichmaydiffuseinto theTiO2latticeintheabsenceofaluminumoxide,formingZrTiO4. However,intheAZTternarysystem,XRDandRamandatagiven inFigs.1and2suggestthatAl2O3actsasadiffusionbarrierpre- ventingdiffusionofZr4+ionsintotheTiO2lattice,preventingthe orderingofthecrystallatticeandtheformationZrTiO4.

Fig.3presentstheBETspecificsurfacearea(SSA)valuesforthe synthesizedmaterialswhichwerecalcinedat773,973and1173K.

Fig.3indicatesthattheAZTternaryoxidesystemhasamuchhigher

surfaceareacomparedtotheZTbinaryoxidesystemforallcalci- nationtemperatures.Whiletheternaryoxidesystemhasalmost two-foldgreatersurfaceareaat773K,thisgapwasobservedto extenduptoaten-fold differenceat973K.Theseresultsarein very good agreementwiththecurrent XRD and Ramanresults suggestingamoredisorderedstructurefortheAZTsystem.Crys- tallizationoftheZTbinaryoxideleadstorelativelyorderedand largerparticlesat973K,whiletheternary systempreservesits ratheramorphousstructureandsmallparticlesizeevenat1173K.

ItisworthmentioningthatonaccountofthedifferentTiandZr precursorsused inthecurrent work,synthesizedternary oxide material(i.e.Al2O3/ZrO2/TiO2)hasahighersurfacearea(i.e.SSA 264m2/g)comparedtothenano-compositeternaryoxidemate- rialwithaSSA∼200m2/gwhichwasreportedinarecentstudy [20].BETSSAanalysiswasalsoperformedforPt-containingsam- pleswhichwerepreparedasdescribedintheexperimentalsection.

ThesemeasurementsshowedthatalthoughPtadditionandsubse- quentcalcinationat973Kdidnothaveasignificantinfluenceon theSSAvaluesoftheZTsystem(26m2/gversus37m2/gforZT andPt/ZT,respectively),SSAvaluesoftheAZTsystemsignificantly decreasedinthepresenceofPt(264m2/gversus191m2/gforAZT

200 400 600 800

x3

200 400 600 800

135 259 320 391 467 622 778

200

Raman Shift (cm-1)

465 625

320

Raman Shift (cm-1)

5

973K 1173K

Intensity (arb. u)

ZrO2/TiO2 Al2O3/ZrO2/TiO2

(a) (b)

ZrTiO4 t-ZrO2

ZrTiO4 t-ZrO2

Fig.2. ExsituRamanspectracorrespondingto(a)ZrO2/TiO2and(b)Al2O3/ZrO2/TiO2materialsuponcalcinationattemperatureswithin773–1173K.

(4)

1200 1100

1000 900

800 0 50 100 150 200 250 300 350 400

264

342 113

177 26 3

SBET(m2/g)

Temperature (K) ZrO2/TiO2 Al2O3/ZrO2/TiO2

Fig.3. BETspecificsurfaceareavaluesfor(a)ZrO2/TiO2(black)andAl2O3/ZrO2/TiO2

(red)aftercalcinationattemperatureswithin773–1173K.

andPt/AZT,respectively).Alongtheselines,itcanbearguedthatPt sitesfacilitatetheoxidationoftheAZTmatrixduringthecalcina- tioncarriedoutat979K,whichresultsinamoreorderedternary oxidesystemwithlargerZrO2andTiO2crystallites.Howeverthese crystallitesstillseemtobesmallenoughtobeelusiveinXRD(Sup- portingInformationFig.1).Furtherevidenceforthisargumentwill beprovidedalongwiththediscussionoftheTPDresultsfortheAZT andPt/AZTsamplesgiveninthenextsection.

3.2. NO2(g)adsorptionanddesorptiononZrO2/TiO2and Al2O3/ZrO2/TiO2

Fig. 4 represents the FTIR spectra corresponding to NO2(g) adsorption on both of the binary and ternary oxide materials (alreadycalcinedat973K)at323Kforincreasingexposures.Five particularvibrationalfeaturesweredetectedforZTwhichwere locatedat1644,1578,1550,1280and1209cm−1 asillustrated in Fig.4a. The spectral regionbetween1700 and 1200cm−1 is

characteristicforthenitrateandnitritespeciescoordinatedonTiO2 andZrO2[28–30].Theobservedfrequenciesat1644and1209cm−1 canbeattributedtobridgingnitrates,whilethefeaturesat1578, 1550and1280cm−1canbeassignedtobidentatenitrates[8,31].

SimilarabsorptionfeaturesalsoappearedfortheAZTternaryoxide systemas shown in Fig. 4b. However, theposition of bridging nitrates(1639and1244cm−1)ontheAZTternaryoxideisdifferent whencomparedtotheZTbinaryoxidesystem.Probably,themost prominentaspectofFig.4isthedissimilarityintherelativeFTIR intensitiesofAZTandZTsystems.ItisclearthattheNOxadsorption ontheAZTternaryoxideissignificantlyhigherthanthatoftheZT binaryoxideduetoaten-foldhigherspecificsurfaceareaandthe significantlygreaterIRabsorptionintensityuponNOxadsorption oftheformersurfaceat973K.

MorequantitativeinsightintothetotalNOxadsorptioncapabil- ityandthermalstabilityofadsorbednitratespeciescanbeobtained bycombining FTIRand TPDresults. TPD profilesrelated tothe ZTandAZTsystemsobtainedafterNO2(g)saturation(5.0Torrfor 10min)at323KarepresentedinFig.5aandb,respectively.Com- parisonoftheTPDlineshapesforZTandAZTsystemsimmediately revealsthedissimilarNOxdesorptioncharacteristicsoneachmate- rial.WhilemostoftheNOxdesorptioniscompletedbelow800K fortheZTsample,thisisnottrueforAZTwhereevenat1000K, NOxdesorptionisstillincomplete.NO(m/z=30)desorptionsignal fortheZTsample(Fig.5a)showstwomajorfeaturesatof640and 750Krelatedtothenitratedecomposition.Inthefirstdesorption stateof640K,nitratedecompositiontakesplacebysimultaneous evolutionofNO,O2,N2OandNO2correspondingtom/zsignalsat 30,32,44and46,respectively.Ontheotherhand,thehightem- peraturenitratedesorptionstate(750K)oftheZTsystemreveals primarilyNOandN2OwithalessercontributionfromO2andNO2. NO(m/z=30)desorptionsignalfortheAZTsysteminFig.5b indicatesthatwithinthetemperaturewindowofthecurrentTPD experiments(i.e.323–973K),NOxdesorptionwasnotcompleted.

Thistrendindicatesthattherelativethermalstabilityofthestored NOxspecies(i.e.nitrates)ontheAZTsurfaceismuchhigherthan that of the ZT surface. Thiscan at least bepartially attributed totheexistenceofa largeconcentrationofsurface defectsand coordinativelyunsaturatedadsorptionsiteswhicharepresenton thedisordered/poorlycrystallineAZTsurfacerevealinga higher SSA. Furthermore, comparison of the TPD signalintensities for ZTandAZTsamplesrevealsthattheNOxadsorptionoftheAZT ternaryoxideisfargreaterthanthatoftheZTbinaryoxide(i.e.

thetotal integrated NOx-uptakerelated desorptionsignal com- prisedofNO+NO2+N2+N2Odesorptionchannelsis%143greater forAZT.ReaderisreferredtotheSupportingInformationsection forthedetailsoftheTPDintegratedsignalanalysis).Inaddition, Fig.5balsosuggeststhatthenitratedecomposition ontheAZT

1800 1700 1600 1500 1400 1300 1200 1100 1000 1800 1700 1600 1500 1400 1300 1200 1100 1000

1644 1578 1550 1280 1209 1639 1582 1555 12441283

) b ( )

a

( ZrO2/TiO2 Al2O3/ZrO2/TiO2

Absorbance (arb. u.)

Wavenumber (cm-1) Wavenumber(cm-1)

0.5 0.5

Fig.4.FTIRspectracorrespondingtothestepwiseNO2(g)adsorptionat323Kon(a)ZrO2/TiO2and(b)Al2O3/ZrO2/TiO2surfaces.Thebold(red)spectrumineachpanel correspondstotheNOx-saturated(5.0TorrNO2(g)for10minat323K)surface.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothe webversionofthearticle.)

(5)

300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000 )

K ( e r u t a r e p m e T )

K ( e r u t a r e p m e T

QMS Intensity (arb. u.)

Fig.5.TPDprofilesobtainedfrom(a)ZrO2/TiO2and(b)Al2O3/ZrO2/TiO2samplesaftersaturationwith5TorrNO2(g)at323Kfor10min.Theinsetineachpanelpresentsthe FTIRspectraofthesurfacesbefore(black)andafter(red)TPDanalysis.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtotheweb versionofthearticle.)

surfaceoccursviaevolutionofmostlyNO,O2andNO2witharel- ativelyinsignificantcontributionfromotherdesorptionchannels.

TheseTPDresultsareinperfectagreementwiththecorrespond- inginsituFTIRdatapresentedasinsetsinFig.5aandb.Inthese insets,blackcurvescorrespondtoNO2-saturatedsurfacesbefore theTPDexperiments,whiletheredcurvescorrespondtotheZTand AZTsurfacesaftertheTPDanalysis(i.e.afterannealingundervac- uumat973K).FTIRdataclearlyshowthatwhilecompletenitrate eliminationwasachievedonZrO2/TiO2aftertheTPDexperiment, asignificantamountofnitratespeciesobservedtoberemainingon theAZTsurfaceaftertheTPDrun.

TheeffectofPtincorporationonNOxadsorptiongeometryand storagecapacitywasalsoinvestigatedviainsituFTIRspectroscopy and TPD. FTIR studies involving NOx adsorption experiments onPt/ZrO2/TiO2andPt/Al2O3/ZrO2/TiO2(SupportingInformation Fig.2)leadustoconcludethatthepresenceofPthasnosignif- icantinfluence ontheNOxadsorptiongeometries.Fig.6 shows theTPD profilesobtainedafter NO2 saturationonPt/ZrO2/TiO2

and Pt/Al2O3/ZrO2/TiO2 at 323K. InFig. 6a, two NOdesorption statesthatbelongtoPt/ZrO2/TiO2at630and755Karevisible,as inthecaseofZrO2/TiO2(Fig.5a).However,thehightemperature desorptionstatelocatedat755Kissignificantlysuppressedinthe presenceofplatinum.ThisimpliesthatonthePt/ZrO2/TiO2 sur- face,Ptsitesfacilitatethedecompositionofstronglyboundnitrate species,shiftingtheirdecompositiontemperaturestolowervalues.

Furthermore,comparisonoftheTPDdatagiveninFigs.5aand6a suggeststhatPtadditionsignificantlyincreasestherelativedesorp- tionofN2andN2OforthePt/ZrO2/TiO2.Thiscanpossiblybedue tothePt-catalyzeddirectpartial/totalreductionoftheadsorbed nitratesonthePt/ZrO2/TiO2sampleintoN2andN2O,particularly at755K.LackofasignificantO2desorptionsignalat755K,indi- catesthattheoxidizingspeciessuchasatomicoxygenordiatomic oxygengeneratedduringthepartial/totalreductionofnitratesare possiblycapturedbythePt/ZrO2/TiO2systemwheretheymayoxi- dizePtsitesand/ortitrateoxygendefectsinthetetragonalZrO2or ZrTiO4phases.Itisalsoworthmentioningthatcomparisonofthe integratedTPDdesorptionsignalsfortheZrO2/TiO2(Fig.5a)and Pt/ZrO2/TiO2(Fig.6a)indicatesthatPtadditiontotheZTsystem significantlybooststheNOxadsorption.Numerically,Ptaddition totheZTsystemincreasestheintegratedNOdesorptionsignalby about32%andincreasesthetotalintegratedNOx-uptakerelated desorptionsignalassociatedwithNO+NO2+N2+N2Oby101%(see SupportingInformationsectionfordetails).Notethatthesenum- bersdonotcorrespondtoNOxstoragecapacity(NSC)valuesand usedmerelyforthesemi-quantitativecomparisonoftherelative NOxuptakesoftheinvestigatedsurfaces.

Investigationof theTPD datagiven in Fig.6b indicatesthat theinfluenceofthePtsitesonthenitratedecompositionismuch moreprominentfortheAZTsystem.Firstly,Ptincorporationseems to promote more facile thermal nitrate decomposition on the Al2O3/ZrO2/TiO2 ternary oxidesystem,wheretheNO (m/z=30) desorptionmaximaaresignificantlyshiftedtolowertemperatures.

Moreinterestingly,NOdesorptionmaximaforthePt/AZTsystem (640and730K,Fig.6b)arealmostidenticaltothatofZT(640and 750K,Fig.5a)andPt/ZT(630and730K,Fig.6a)andquiteunlike AZT(740,800,855K,Fig.5b).Combiningthisobservationwiththe SSA valuesobtainedforthesesystems discussedearlierimplies thatalthoughAZTsystemiscomprisedofaquitedisorderedand aratherdefectiveternaryoxidesystem,Pt/AZTsystemconsistsof moreorderedfinelydispersedsmallparticlesofZrO2,TiO2,ZrTiO4

andAl2O3.Theseparticlesarepossiblyformedduringthecalci- nationstep,wherePtsitesoxidizetheAZTsurface,increasingthe crystallographicorderofthesurfacetoacertainextent,whichis elusivetodetectviabulkcharacterizationtechniquessuchasXRD (SupportingInformationFig.1).PresenceofAl2O3domainsonthe Pt/AZTsurfaceisalsosupportedbytheexistenceoftheNOdesorp- tionshoulderat400–450KinFig.6b(concomitanttoaNO2signal whichalsoappearsatthesametemperaturewindow)whichisa characteristicfeatureofNO2TPDfrom␥-Al2O3[32]Althoughthis 400KNOxdesorptionfeatureisabsentforZTandPt/ZTsamples (Figs.5aand6),itisvisible(thoughwithamuchsmallerintensity) fortheAZTsample,suggestingthatthealuminadomainsontheAZT samplearemuchlessfullyoxidized/ordered.SincetheNOxdesorp- tion/decompositionwasincompletefortheAZTsamplewithinthe thermalwindowoftheTPDanalysis,itisdifficulttomakeaquanti- tativecomparisonfortheNOxuptakeofAZTversusPt/AZTsystems.

Howeveranalysisof theintegratedTPD signalsassociated with AZT(Fig.5b)andPt/AZT(Fig.6b)samplesshowsthatPtaddition totheAZTsystemincreasestheintegratedNOdesorptionsignal more than 288% and increasesthetotal integratedNOx-uptake relateddesorptionsignalassociatedwithNO+NO2+N2+N2Oby morethan50%.Itcanalsobenotedthatalthoughthe640KNOx

desorptionfromthePt/AZTsurfaceoccursintheformofNO,O2

andNO2;NOxdesorptionat730Ktakesplacewiththeevolutionof NOandO2only.

Ontheotherhand,relativeNOxadsorptionamountsshouldbe alsoassessedconsideringtherelativespecificsurfaceareavalue foreachmaterial.OurcalculationsindicatethatPtincorporation totheZTbinaryoxidesystemincreasesthetotalintegratedNOx- uptake/m2by41%.Moreover,intheAZTternaryoxidesystem,Pt playsamuchmoreeffectiveroleinincreasingthetotalintegrated NOxuptake/m2by109%.

(6)

300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000

) K ( e r u t a r e p m e T )

K ( e r u t a r e p m e T

Fig.6.TPDprofilesobtainedfrom(a)Pt/ZrO2/TiO2and(b)Pt/Al2O3/ZrO2/TiO2samplesaftersaturationwith5TorrNO2(g)at323Kfor10min.Theinsetineachpanelshows theFTIRspectraofthesurfacesbefore(black)andafter(red)TPDanalysis.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtotheweb versionofthearticle.)

TrendsobservedfortheTPDdatagiveninFig.6areinverygood agreementwiththecorrespondingFTIRspectraobtainedbefore andaftertheTPDrunswhicharegivenasinsetsofFig.6.Particu- larly,theinsetofFig.6bshowshowPtplaysasignificantroleinthe nitratedecompositionperformanceoftheAZTternaryoxidesys- tem.AsshownintheinsetofFig.6b,Pt/AZTsurfacewascompletely freeofadsorbedNOxspeciesaftertheTPDrun(i.e.afterannealing at973K)whilethiswasnotthecaseforthePt-freeAZTcounterpart (insetofFig.5b).

CurrentresultsdiscussedaboveallowsustoconsidertheAZT systemasapromisingcandidatematerialforlow-temperatureNSR applications.ComparedtotheconventionalPt/20wt%BaO/Al2O3 system,Pt/AZT materialcalcined at973Khasa specificsurface areaof191m2/g, whileconventional Pt/20wt%BaO/Al2O3 hasa SSAof125m2/g.Ontheotherhand,althoughPt/20wt%BaO/Al2O3 hasalowersurfacearea,ithas19%greaterintegratedtotalNOx

desorptionsignalthanPt/AZT70obtainedviaidenticaladsorption experiments(datanotshown).InfluenceoftheBaOdomainsonthe NOxadsorptionandreleasepropertiesofZTandAZTsystemsisan interestingaspectwhichwillbediscussedindetailinaforthcoming report[33].

3.3. NOxreductiononbinaryandternaryoxidesystemsviaH2(g)

AswellastheNOxstoragecharacteristicsofZTandAZTmateri- als,theirNOxreduction/regenerationperformancesunderreducing conditionsshouldalsobetakenintoconsiderationforthesakeof NSRapplications.ReductionresistanceofnitratespeciesonPt-free

ZTandAZTmaterialswasinvestigatedviaFTIRspectroscopyinthe presenceofanexternalreducingagent(i.e.H2(g)),asillustratedin Fig.7aandb,respectively.Priortonitratereduction,thematerial surfacesweresaturatedwith5.0TorrNO2(g)for10minat323K.

AfterthesaturationofthesurfacewithNO2(g),15.0TorrofH2(g) wasintroducedoverthesamplesurface.Temperature-dependent FTIRspectrawereobtainedafterannealingtheNO2-saturatedsur- facesat373,473, 573,623,673,723KinthepresenceofH2(g).

AdsorbednitratesonZT(Fig.7a)fullysurvivedunderreducingcon- ditionsupto473KwithonlyminorIRintensitychanges.However, theIRsignalintensitiesstartedtodecreaseat573K,wheresig- nificantamountsofnitrateswerelostfromthesurface.Itisalso apparentinFig.7athatbidentatenitrates(1580cm−1)arerelatively more stablethan bridging nitrates (1649cm−1)under reducing conditionsonthebinaryoxidesystem.Finally,completeremovalof nitratesontheZTsurfaceunderH2(g)environmentwasachievedat 623K(correspondingtotheredspectruminFig.7a);atemperature thatiscompatiblewiththethermalwindowofrealisticexhaust emissioncontrolsystems.

SimilarexperimentswerealsoperformedontheAZTternary oxidesystem(Fig.7b).Asdiscussedabove,adsorbednitratesonAZT revealaveryhighthermalstabilityinaH2-freeenvironment.Even underreducingconditions,nitratesonAZTsurfacewerefoundto bequitestableevenat573K(Fig.7b).FTIRanalysisclearlyindicates thatunderreducingconditions,allofthenitratespeciesonAZTcan becompletelyreducedat723K.

Our preliminary experiments (data not shown) related to elevated-temperature nitrate reduction on Pt-containing

1800 1700 1600 1500 1400 1300 1200 1100 1000 1800 1700 1600 1500 1400 1300 1200 1100 1000

1649 1582 1554 1280 1206 1647 1583 1554 12381281

) b ( )

a

( ZrO2/TiO2 Al2O3/ZrO2/TiO2

Absorbance (arb. u.)

Wavenumber (cm-1) Wavenumber(cm-1)

0.5 0.5

373K 623K

373K 723K

573K 673K

Fig.7.FTIRspectracorrespondingtothetemperature-dependentnitratereductionvia15.0TorrofH2(g)on(a)ZrO2/TiO2and(b)Al2O3/ZrO2/TiO2surfaces.Thetopmost spectrumineachpanelcorrespondstotheNOx-saturated(5.0TorrNO2(g)for10minat323K)surface.Theseriesofblackspectraineachpanelwerecollectedatdifferent temperatureswithin323–723K.Thebottommost(red)spectrumineachpanelcorrespondstothehighestreductiontemperatureexploited(i.e.623KforZTand723Kfor AZT).(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

(7)

1800 1600 1400 1200 1000 1800 1600 1400 1200 1000

1646 1580 1511 1291 1205

(a) Pt/ZrO2/TiO2

Absorbance (arb. u.)

Wavenumber (cm-1) Wavenumber (cm-1)

1422

1st

2nd

3rd

0-40 min

50-120 min

373-473K

0.25 1643 1582 1511 1299 1232

(b) Pt/Al2O3/ZrO2/TiO2

1411

1st

2nd

3rd

0-80 min

90-120 min

373-473K

0.75

Fig.8. FTIRspectracorrespondingtothetime-dependentnitratereductionvia15.0TorrofH2(g)on(a)Pt/ZrO2/TiO2and(b)Pt/Al2O3/ZrO2/TiO2surfaces.Thetopmost spectrumineachpanelcorrespondstotheNOx-saturated(5.0TorrNO2(g)for10minat323K)surface.Theseriesofspectrainthe“1st”and“2nd”intervalswerecollectedas afunctionoftimeduringtheinitial120minofreductionat323K.“1st”intervalcorrespondstothe0–40minor0–80minoftheinitialreductionperiodsforPt/ZrO2/TiO2and Pt/Al2O3/ZrO2/TiO2,respectively;whilethe“2nd”intervalcorrespondstotheremainingtimeevolutionuntil120minofreduction.FTIRspectrainthe“3rd”intervalwere collectedaftertheinitial120minreductionat323Kbyincreasingtotemperatureto373,423and473KinthepresenceofH2(g).

materials (i.e. Pt/ZT and Pt/AZT) revealed extremely fast reac- tionevenatrelativelylowertemperatures,renderingmechanistic comparisonofthesetwosystemsratherdifficult.Therefore,time- dependentexperimentswerecarriedoutwithslowerkineticsat lowtemperatures(i.e.323K)inordertomonitorandelucidatethe temporalchangesinthesurfacefunctionalgroupsonmaterialsur- facesuponreductionbyH2(g).Fig.8illustratesthecorresponding FTIRspectraforPt/ZTandPt/AZTrecordedasafunctionoftime afterNOxsaturated(5.0TorrNO2for10min)materialsurfacewas exposedto15.0TorrofH2(g).Forthesakeofclarity,eachpanelin Fig.8isdividedintothreetimeintervals.Thefirstintervalofthe datasetinFig.8aisrelatedtotheinitialreductionperiodof40min at323K.Inthefirstperiod,whiletheintensitiescharacteristicfor bridgingnitrates(1646and1205cm−1)diminish,othervibrational features at1511and 1291cm−1 correspondingtomonodentate nitratespeciessimultaneouslystarttoemerge[31].Anothergrow- ingfeaturein thisperiodobservedat1422cm−1 (together with 1291cm−1)canbeassignedtonitrites[34].Forthesecondtime intervalbetween50 and120min,initiallyformedmonodentate nitratesandnitritesconcurrentlyattenuateuponinteractionwith H2(g)togetherwithallothernitratespeciessuchasbridgingand bidentatenitrates.Since theNOx reductiononPt/ZThasmostly ceasedafter120min(Fig.8a),inthethirdstage,thematerialwas annealedtohigher temperaturesinH2(g)inorder toeliminate anyremainingNOxspeciesonthesurface.Thespectrainthethird intervalcorrespondingtothereductionofnitritesandnitrateson thematerialsurfacewerecollectedat373,423and473K.These resultsallowustoobtainabetterinsight regarding thenitrate reductionmechanismonthePt/ZTsurfaceunderH2(g)atmosphere whichinitiallytakesplaceviatransformationofbridgingnitrates intomonodentatenitratesandnitritesfollowedbythecomplete removalofallNOxspeciesaround473K.

Anidentical set of experimentswas also performedfor the Pt/AZTsurface(Fig.8b).AsthereducingagentH2(g)isintroduced

overtheNOx-saturatedsurface,theintensitiesofthevibrational features at 1643 and 1232cm−1 (bridging nitrates) attenuate togetherwithincreaseintheintensitiesof1511and1299cm−1 (monodentate nitrates)as wellas 1411cm−1 (nitrites).A note- worthydifferencebetweenthebinaryandternarysystemsisthat whileallnitrate-relatedstretchingsignalsdiminishinthesecond timeintervalat323KonPt/ZT(Fig.8a),nospectralchangeswere observedinthesecondtimeinterval(90–120min)ofthePt/AZT system(Fig.8b).Theseobservationsareinharmonywithprevious TPDandFTIRresultsindicating thatadsorbedNOxspecies typi- callypossessahigherstabilityontheAZTsurfacethanZT.Similar totheZTsystem,almostalloftheadsorbedNOxspeciescanbe eliminatedfrom thePt/AZT surfacein thepresence ofH2(g)at 473K.ItisworthmentioningthatcomparisonoftheNOxreduction capabilitiesofthePt/AZTsystemwithconventionalNSRsystems thatwehaveinvestigatedinthepastsuchasPt/20wt%BaO/Al2O3 andPt/20wt%BaO/20wt%CeO2/Al2O3[8],revealsthatreductionof adsorbedNOxspecieswithH2(g)at473Koccursinamorefacile manneronthePt/AZTsurface.

Fig.9illustratestheregionoftheinsituFTIRspectraassociated withthe OHand NHx stretchingregionsofthePt/ZTsystem, whichwereacquiredduringthetime-dependentreductionexper- imentsdescribed abovealong withthedatapresentedinFig.8.

Fig.9aandbshowstheevolutionoftheinsituFTIRspectraforthe first(0–40min)andthesecond(50–120min)timeintervalsofthe nitratereductionviaH2(g),respectively.UponNO2(g)introduction tothePt/ZTsurface(5.0TorrNO2(g)for10min),negativefeaturesat 3722and3678cm−1wereobserved(Fig.9a).Whiletheformerfea- turehasbeenassignedtolinear(type-I) OHspecies,thelatterone ischaracteristicsforthree-fold(type-III)hydroxyls[35–42]which disappear from the surface upon interaction/coordination with adsorbednitratesand nitrites.Anotherbroadandhighlyconvo- lutedfeaturecenteredat3512cm−1canbeattributedtoH-bonded surfacehydroxylspecies[38,39].InFig.9a,theinteractionofH2

(8)

3800 3600 3400 3200 3000 3800 3600 3400 3200 3000

3722 3678 3512 3350 3256

0.1

(a)

0-40 minutes

3722 3678 3512 3350 3256

(b)

50-120 minutes

Absorbance (arb. u.)

Wavenumber (cm-1) Wavenumber (cm-1)

0.05

Pt/ZrO2/TiO2 Pt/ZrO2/TiO2

Fig.9. OH/ NHstretchingregionoftheinsituFTIRspectracorrespondingtoNO2adsorptionandsaturation(5.0TorrNO2(g)for10minat323K)followedbysubsequent reductionwith15.0TorrofH2(g)onPt/ZrO2/TiO2at323Kduring(a)0–40minofreductionand(b)50–120minofreduction.Bold(red)spectrumineachpanelcorresponds tothelastspectrumobtainedattheendofthegiventimeinterval.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversion ofthearticle.)

withnitratespeciesonthePt/ZrO2/TiO2 surfaceinthefirsttime intervalcanbefollowedbythegraduallyemergingvibrationalfre- quenciesat3350and3256cm−1 relatedto NHstretchingsand thegrowing featureat 3512cm−1 related toH-bonded surface

hydroxyls[43,44].Thereforeinthefirsttimeinterval(0–40min), itisapparentthatthenitratereductionmechanisminvolvescon- versionofbridgingnitratesintomonodentatenitratesandnitrites togetherwiththeformationofH-bondedsurfacehydroxylgroups

3800 3600 3400 3200 3000 3800 3600 3400 3200 3000

3719 3678 3515 3365 3278

0.1

(a)

0-80 minutes

3719 3515 3365 3278

0.1

(b)

90-120 minutes

Absorbance (arb. u.)

Wavenumber (cm-1) Wavenumber (cm-1)

Pt/Al2O3/ZrO2/TiO2 Pt/Al2O3/ZrO2/TiO2

Fig.10.OH/–NHstretchingregionoftheinsituFTIRspectracorrespondingtoNO2adsorptionandsaturation(5.0TorrNO2(g)for10minat323K)followedbysubsequent reductionwith15.0TorrofH2(g)onPt/Al2O3/ZrO2/TiO2at323Kduring(a)0–80minofreductionand(b)90–120minofreduction.Bold(red)spectrumineachpanel correspondstothelastspectrumobtainedattheendofthegiventimeinterval.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredto thewebversionofthearticle.)

(9)

222 5

(a) (b)

Absorbance (arb. u.)

Wavenumber (cm

-1

) Wavenumber (cm

-1

) Pt/ZrO

2

/TiO

2

Pt/Al

2

O

3

/ZrO

2

/TiO

2

222 5

1 min 120 min

1 min 120 min

0.005 0.005

2225 2125 2225 2125

Fig.11. Time-dependentinsitugasphaseFTIRspectracorrespondingtonitrate reductionvia15.0TorrofH2(g)on(a)Pt/ZrO2/TiO2and(b)Pt/Al2O3/ZrO2/TiO2at 323Kfor120min.Redspectrumineachpanelcorrespondstothelastspectrum obtainedattheendofthegiventimeinterval.(Forinterpretationofthereferences tocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

and NH functionalitieswhich mightbeassociatedwith NH2, NH3, OH···NHxor OH···NOxspecies[8,43,44].

InsituFTIRdatapresentedinFig.9bshowsadditionalsignif- icantspectralchangesin thecourseofthesecondtime interval (50–120min)of reduction, during which a largeportionofthe nitrategroupswerereducedbyH2.Duringthisperiod,whilethe isolatedterminalandbridging OHspecies(initiallypresentnega- tivefeaturesat3722and3678cm−1)wereregenerated,thefeature at3512cm−1relatedtoH-bondedsurfacehydroxylspeciesdimin- ished.Inotherwords,asthenitrateswereeliminatedfromthe surface, OH···NHxor OH···NOxinteractionsseizedtoexistand someofthesurface OHfunctionalitieswereconvertedintoiso- latedhydroxyls.

Fig.10illustratesthesamesetofexperimentsperformedonthe Pt/AZTsystem.SimilartoPt/ZT,inthefirsttimeintervalofH2(g) interaction(0–80min) withtheNOx-saturated surfacerevealsa gradualincreaseofthevibrationalintensitiesat3515cm−1related toH-bondedhydroxylspeciesandnewlyformedfeaturesat3365 and3278cm−1relatedto NHxstretchingsindicatingamechanism ofNOxreductionoverPt/AZTwhichissimilartothatofPt/ZT.We shouldalsonotethattheformationof NHxspecies,whichisan indicationofnitratereduction,occursatalatertimeonthePt/AZT system(Fig.10a)comparedtoPt/ZT(Fig.9a).Thisisinverygood agreementwiththecurrentFTIRandTPDresultsdiscussedearlier indicatingthatnitratespeciesonthePt/AZTternaryoxidesystem possessahigherstabilityandahigherresilienceagainstreduction withrespecttothatofthePt/ZTbinaryoxidesurface.Thisargument isalsoinlinewiththeobservationthatunlikethePt/ZTbinaryoxide

system(Fig.9b),nospectralchangeswereobservedforthePt/AZT ternaryoxidesurface(Fig.10b)after80minofreduction.

3.4. MonitoringtheNOxreductionproductsinthegasphase

GasphaseproductsformedduringtheNOxreductionviaH2(g) overPt/ZTandPt/AZTsurfaceswerealsomonitoredbymeansof gas-phaseinsituFTIRspectroscopy.Inthesesetofexperiments, catalyst sampleswerelifted abovetheIRbeamin thespectro- scopicreactor,sothattheincomingIRphotonswereonlyabsorbed bythegasphase species.Abackgroundspectrumwasobtained immediatelyaftertheintroductionoftheH2(g)intothereactor overtheNO2-saturatedcatalystsurfaces.Allgas-phaseinsituFTIR spectragiveninFig.11wereacquiredusingtheaforementioned backgroundspectra.Theevolutionofgas-phasereductionproducts fromPt/ZTandPt/AZTsurfacesover120minisshowninFig.11a andb,respectively.Thegasphasespectraforbothmaterialsreveal theimmediateformationofN2O(g)(i.e.2225cm−1feature)even afterthefirstminuteofH2(g)exposure,indicatingthatN2Oisan earlyintermediate/byproductofthenitratereductionmechanism overPt/ZTandPt/AZTsystems.Itisworthmentioningthatother possiblegasphasereductionfeaturesinadditiontoN2O(g)suchas NH3(g),waselusivetodetectingas-phaseFTIRspectroscopydueto theoverwhelmingintensityoftheH2O(g)absorptionenvelopeat 1620cm−1whichappearedinthespectraastheIRbeamtraveled throughambientconditionsafterexitingthespectroscopicreactor.

4. Conclusions

In the current work, binary and ternary oxide materials, ZrO2/TiO2 (ZT) and Al2O3/ZrO2/TiO2 (AZT), as wellas their Pt- functionalized counterparts were synthesized by the sol–gel methodandcharacterizedbymeansofXRD,Ramanspectroscopy andBETtechniques.TheNOxstoragecapacity(NSC)andreduction performanceofeachmaterialwereinvestigatedandthecharac- teristicbehaviorsofsurfacenitratefunctionalgroupsuponH2(g) interactionweremonitoredviainsituFTIRandTPDanalysis.Our findingscanbesummarizedasfollows:

• IntheZTbinaryoxidesystem,astronginteractionbetweenTiO2 andZrO2domainswereobservedathightemperatures(>973K), whichresultedintheformationofahighlyorderedcrystalline ZrTiO4phaseandalowspecificsurfacearea(i.e.26m2/gat973K).

• IncorporationofAl2O3 intheAZTstructurerendersthemate- rialhighlyresilienttowardcrystallization andorderingwhere AZTmaterialwasfoundtobemostlyamorphousevenat1173K.

Moreover,aluminaactsasadiffusionbarrierintheAZTstruc- ture,preventingtheformationofZrTiO4andleadingtoavery highspecificsurfacearea(i.e.264m2/gat973K).

• NOxadsorptioncapabilityoftheAZTternaryoxidesystemwas foundtobesignificantlygreaterthanthatofZT,inlinewiththe almostten-foldgreaterSSAoftheformersurface.

• The interactionof NO2(g) withZT and AZT surfacesrevealed adsorbednitratespecieswithsimilargeometries.WhilePtincor- porationdidnotalterthetypeoftheadsorbednitratespecies,it significantlyboostedtheNOxadsorptionamountonbothPt/ZT andPt/AZTsystems.Thermalstabilityofnitrateswashigheron theAZTcomparedtoZT,mostlikelyduetothedefectivestruc- tureandthepresenceofcoordinativelyunsaturatedsitesonthe formersurface.

• Ptsiteswerefoundtoassistthepartialordering/crystallization oftheAZTsystem.Ptsiteswerealsoobservedtofacilitatethe decompositionofnitratesintheabsenceofanexternalreduc- ingagentbyshiftingthedecompositiontemperaturestolower valuesandbyboostingtheformationofN2andN2O.

Referenties

GERELATEERDE DOCUMENTEN

€ 10 (In Dulch) This report IS Rlrt of Ihe project ACCident patterns anel accl dent rates per road type This part of the Prolect descr bes the me hod of calculat /1g

This paper describes the results obtaine~ in an attempt to extend the theory concerning optimal strategies in two person zero sum Markov games, as deve- loped

Les constructeurs avaient déposé, sur le sol tourbeux, des troncs d'arbre simpie- ment ébranchés, l'un contre l'autre et parfois l'un sur l'autre, pratiquement

dit deel twee rijen palen aanwezig zijn, kan er toch niet van een driebeukige constructie gesproken worden. Zij zijn immers te licht voor dragende elementen en wijzen mogelijk op

The explanation of the FoPtNHa transition state labilization in terms of electronic effects caused by solvent donor interaction with coordinated NH3 is favoured

samenhangend de rotor gel ijkmatig roteert. Bij een elektrische stappen- motor daarentegen worden de statorspoelen door een logische stuureen- held gestuurd, waarbij

Center-level (panel A) and population-level (panel B) calibration slopes of the standard logistic regression model (circles), the conditional linear predictor of the random

In [7], by iterative estimation of the actual steering vector based on conventional robust Capon beamforming (RCB) formulation, iterative robust Capon beamformer (IRCB) with