• No results found

ISSUES TO ADDRESS...

N/A
N/A
Protected

Academic year: 2022

Share "ISSUES TO ADDRESS..."

Copied!
34
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ISSUES TO ADDRESS...

• When we combine two elements...

what is the resulting equilibrium state?

• In particular, if we specify...

-- the composition (e.g., wt% Cu - wt% Ni), and -- the temperature (T)

then...

How many phases form?

What is the composition of each phase?

What is the amount of each phase?

What is the structure of each phase

Chapter 9: Phase Diagrams

Phase B Phase A

Nickel atom Copper atom

Phase Behavior Laughlin p. 67

(2)

• Components:

The elements or compounds which are present in the alloy (e.g., Al and Cu)

• Phases:

The physically and chemically distinct material regions that form (e.g., α and β).

Aluminum-Copper Alloy

Components and Phases

β (darker phase)

α (lighter phase)

1µm

Optical Mettalography

(3)

Solubility Limit

Question: What is the

solubility limit for sugar in water at 20ºC?

65

• Solubility Limit:

Maximum concentration for which only a single phase solution exists.

Sugar/Water Phase Diagram

Temperature (ºC)

0 20 40 60 80 100

Composition (wt% sugar)

L

(syrup)

Solubility

Limit L

(liquid)

+ S

(solid sugar) 20

40 60 80 100

• Solution – solid, liquid, or gas solutions, single phase

• Mixture – more than one phase

Problem 9.2: At 170°C, what is the maximum solubility (a) of Pb in Sn? (b) of Sn in Pb?The lead-tin phase diagram is shown in the Animated Figure 9.8.

(4)

Isomorphous Binary Phase Diagram

• System is:

-- binary

2 components: Cu and Ni.

-- isomorphous

i.e., complete solubility of one component in another

Cu-Ni phase diagram

wt% Ni

20 40 60 80 100 10000

1100 1200 1300 1400 1500 1600

T(ºC)

L (liquid)

α solid solution

L + α

liquidus solidus

(5)

Criteria for Solid Solubility: Hume–Rothery rules

Crystal Structure

electroneg r (nm)

Ni FCC 1.9 0.1246

Cu FCC 1.8 0.1278

Same crystal structure

Similar electronegativities

Similar atomic radii

Ni and Cu are totally soluble in one another for all proportions.

(6)

Structure

BCC

FCC

(7)

Periodic Table

(8)

Cu-Ni phase diagram

wt% Ni

20 40 60 80 100 10000

1100 1200 1300 1400 1500 1600

T(ºC)

L

α L + α

Determination of phases present

If we know T and Co, then we know which phases are present.

• Examples:

A(1100ºC, 60 wt% Ni):

1 phase: α

B(1250ºC, 35 wt% Ni):

2 phases: L + α B (

1250ºC,35)

A(1100ºC,60)

(9)

Determination of phase compositions: Lever Rule

What fraction of each phase?

Think of the tie line as a lever (teeter-totter)

ML Mα

R S



M x S  ML x R

L L L

L L L

C C

C C

S R WR C

C

C C

S R

S M

M WM

0

0

wt% Ni

20 1200 1300

T(ºC) L

α

30 40 50

L + α TB B

tie line

C0

CL Cα

S R

Tie line –– also sometimes called an isotherm

(10)

wt% Ni

20 1200 1300

30 40 50

1100

L

α T(ºC)

35 C0

L: 35wt%Ni

C0 = 35 wt% Ni alloy

Slow Cooling of a Cu-Ni Alloy

35 46 32 43

: 43 wt% Ni L: 32 wt% Ni α: 46 wt% NiL: 35 wt% Ni

L: 24 wt% Ni

: 36 wt% Ni

24 36

(11)

Last  to solidify:

< 35 wt% Ni

Cored vs Equilibrium Structures

Uniform C: 35 wt% Ni

First α to solidify:

46 wt% Ni

wt% Ni

20 1200 1300

30 40 50

1100

L

α T(ºC)

35 C0

35 46 32 43

24 36

(12)

Mechanical Properties: Cu-Ni System

• Effect of solid solution strengthening on:

-- Tensile strength (TS) -- Ductility (%EL)

Tensile Strength (MPa)

Composition, wt% Ni

Cu0 20 40 60 80 100Ni 200

300 400

TS for pure Ni TS for pure Cu

Elongation (%EL)

Composition, wt% Ni

Cu0 20 40 60 80 100Ni 20

30 40 50 60

%EL for pure Ni

%EL for pure Cu

(13)

2 components =low melting

Binary-Eutectic Systems

• 3 single phase regions (L, α, β)

Ex.: Cu-Ag system

L (liquid)

α L + α L+

β β

α + β

wt% Ag

20 40 60 80 100

2000 1200

400 600 800 1000

CE

TE 8.0 779ºC 71.9 91.2

Ag) wt%

1.2 9 ( Ag)

wt%

.0 8 ( Ag)

wt%

9 . 71

(   

L cooling

heating

Eutectic Phase Reaction:

Cu-Ag system

(14)

• For alloys for which C0 < 2 wt% Sn

• Result: at room temperature

-- polycrystalline with grains of a phase having

composition C0

Microstructural Development in Eutectic Systems I

0

L+ α

200

T(ºC)

wt% Sn

10 2

20 C0

300

100

L α

30

α+β

400

(room T solubility limit)

TE

Pb-Sn

αL L: C0 wt% Sn

α: C0 wt% Sn

(15)

• For alloys for which

2 wt% Sn < C0 < 18.3 wt% Sn

• Result:

at temperatures in α + β range -- polycrystalline with a grains and small β-phase particles

Microstructural Development in Eutectic Systems II

L + α

200

T(ºC)

C, wt% Sn

10

18.3 20

0 C0

300

100

L

α

30

α+ β

400

(sol. limit at TE) TE

(sol. limit at Troom)2

L α L: C0 wt% Sn

αβ

a: C0 wt% Sn

(16)

• For alloy of composition C0 = CE

• Result: Eutectic microstructure (lamellar structure) -- alternating layers (lamellae) of α and β phases.

Microstructural Development in Eutectic Systems III

160μm

Micrograph of Pb-Sn eutectic microstructure

200

T(ºC)

wt% Sn

20 60 80 100

0

300

100

L

α β

L+ α

183ºC

40 TE

18.3

α: 18.3 wt%Sn

97.8

β: 97.8 wt% Sn

CE 61.9

L: C0 wt% Sn

(17)

Lamellar Eutectic Structure

(18)

• For alloys for which 18.3 wt% Sn < C0 < 61.9 wt% Sn

• Result: α phase particles and a eutectic microconstituent

Microstructural Development in Eutectic Systems IV

18.3 61.9

S R

97.8 R S

primary α eutectic α

eutectic β

WL = (1- Wα) = 0.50 Cα = 18.3 wt% Sn CL = 61.9 wt% Sn

S R+ S

Wα = = 0.50

• Just above TE :

• Just below TE :

Cα = 18.3 wt% Sn Cβ = 97.8 wt% Sn

S R+ S

Wα = = 0.73 Wβ = 0.27

200

T(ºC)

wt% Sn

20 60 80 100

0

300

100

L α

L+

α

40 TE

L: C0 wt% Sn L

α

(19)

L+α

L+β α +β

200

C, wt% Sn

20 60 80 100

0 300

100

L

α β

TE

40

System)

Hypoeutectic & Hypereutectic

160 mm eutectic micro-constituent

hypereutectic: (illustration only)

β β β

β β

β

175 mm

α α

α α α

α

hypoeutectic: C0 = 50 wt% Sn

T(ºC)

61.9 eutectic

eutectic: C0=61.9wt% Sn

(20)

Intermetallic Compounds

Mg

2

Pb

Note: intermetallic compound exists as a line - not an area – because stoichiometry (i.e. composition of a compound) is fixed.

(21)

• Eutectoid –all solid phases S2 S1+S3

ϒ α+ Fe3C (For Fe-C, 727ºC, 0.76 wt% C)

intermetallic compound - cementite

cool heat

Eutectic, Eutectoid, & Peritectic

• Eutectic - liquid transforms to two solid phases

L Sheatcool 1+S3 (For Pb-Sn, 183ºC, 61.9 wt% Sn)

cool heat

• Peritectic - liquid and one solid phase transform to a second solid phase

S1 + L S2

δ + L ϒ (For Fe-C, 1493ºC, 0.16 wt% C)

• Peritectoid – all solid phases S1 + S2 S3

(22)

Eutectoid & Peritectic

Eutectoid transformation δ γ + ε

Peritectic transformation γ + L δ

Cu-Zn Phase diagram

(23)

Iron-Carbon (Fe-C) Phase Diagram

- Eutectoid (B):

γ → α + Fe3C

- Eutectic (A):

L → γ + Fe3C

Fe 3C (cementite)

1600 1400 1200

1000 800

600

4000 1 2 3 4 5 6 6.7

L γ

(austenite)

γ+L

γ+Fe3C

α+Fe3C α+γ

δ

(Fe) wt% C

1148ºC

T(ºC)

α 727ºC = Teutectoid

4.30

Result: Pearlite = alternating layers of

α and Fe3C phases

120 mm 0.76

B

γ γγ γ

A L+Fe

3C

Fe3C (cementite-hard) α (ferrite-soft)

(24)

Hypereutectoid Steel

1600 1400 1200 1000 800

600

4000 1 2 3 4 5 6 6.7

L γ

(austenite)

γ+L

γ +Fe3C

α +Fe3C

L+Fe3C

δ

(Fe) C, wt%C

1148ºC

T(ºC)

a

0.76 C0

Fe3C

γ γ γ γγ γγ

proeutectoid Fe3C

60 μm

pearlite

pearlite

(25)

1600 1400 1200 1000 800

600

4000 1 2 3 4 5 6 6.7

L γ

(austenite)

γ+L

γ +Fe3C

α +Fe3C

L+Fe3C

δ

(Fe) C, wt% C

1148ºC

T(ºC)

α

727ºC

C0

0.76

Hypoeutectoid Steel

proeutectoid ferrite pearlite

100 μm

γ γγ γ

α

pearlite

γ γ γ

α γ

For a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following:

a) The compositions of Fe3C and ferrite (α).

b) The amount of cementite (in grams) that forms in 100 g of steel.

c) The amounts of pearlite and proeutectoid ferrite (α) in the 100 g.

(26)

Solution to Example Problem



WFe

3C R

R  S C0 C CFe

3C C 0.40 0.022

6.70 0.022  0.057

b) Wight Fraction of cementite

a) The compositions of Fe3C and ferrite (α).

RS tie line just below the eutectoid

Cα = 0.022 wt% C CFe

3C = 6.70 wt% C

Fe 3C (cementite)

1600 1400 1200 1000 800 600

4000 1 2 3 4 5 6 6.7

L

γ

(austenite) γ+L

γ +Fe3C

α +Fe3C

L+Fe3C

δ

C, wt% C

1148ºC

T(ºC)

727ºC

C0

R S

CFe C Cα 3

Amount of Fe3C in 100 g

= (100 g)WFe3C

= (100 g)(0.057) = 5.7 g

pearlite

(27)

The amounts of pearlite in the 100 g.

c) Using the VX tie line just above the eutectoid and realizing that

C0 = 0.40 wt% C Cα = 0.022 wt% C

Cpearlite = Cγ = 0.76 wt% C

Fe 3C (cementite)

1600 1400 1200 1000 800 600

4000 1 2 3 4 5 6 6.7

L (austenite)γ

γ+L

γ +Fe3C

α+Fe3C

L+Fe3C

δ

C, wt% C

1148ºC

T(ºC)

727ºC

C0 V X

Cγ Cα



Wpearlite V

V  X C0 C C C 0.40 0.022

0.76 0.022  0.512

Amount of pearlite in 100 g

= (100 g)Wpearlite

= (100 g)(0.512) = 51.2 g

α

pearlite

(28)

Alloying with Other Elements

• Teutectoid changes:

T Eutectoid C)

wt. % of alloying elements

Ti

Ni

Mo Si

W

Cr Mn

• Ceutectoid changes:

wt. % of alloying elements C eutectoid (wt% C)

Ni

Ti

Cr

Si Mn

Mo W

(29)

VMSE: Interactive Phase Diagrams

Change alloy composition

Microstructure, phase compositions, and phase fractions respond interactively

(30)

• Phase diagrams are useful tools to determine:

-- the number and types of phases present, -- the composition of each phase,

-- and the weight fraction of each phase

given the temperature and composition of the system.

• The microstructure of an alloy depends on

-- its composition, and

-- whether or not cooling rate allows for maintenance of equilibrium.

• Important phase diagram phase transformations include eutectic, eutectoid, and peritectic.

Summary

(31)
(32)

70 80 100 60

40 20

0

Temperature (ºC)

C = Composition (wt% sugar)

L

(liquid solution i.e., syrup)

20 100

40 60 80

0

L

(liquid)

+ S

(solid sugar)

Effect of Temperature & Composition

• Altering T can change # of phases: path A to B.

Altering C can change # of phases: path B to D.

D (100ºC,C = 90)

2 phases

B (100ºC,C = 70)

1 phase

A (20ºC,C = 70)

2 phases

(33)

L

L+β

α + β

200

T(ºC)

18.3

wt% Sn

20 60 80 100

0 300

100

L (liquid)

α 183ºC

61.9 97.8 β

• For a 40 wt% Sn-60 wt% Pb alloy at 150ºC

Pb-Snsystem

EX 1: Pb-Sn Eutectic System

-- the relative amount of each phase

150

40 C0 11

Cα

99 Cβ

R S

Cα = 11 wt% Sn Cβ = 99 wt% Sn

Wα = Cβ - C0 Cβ - Cα

= 99 - 40

99 - 11 = 59

88 = 0.67 S

R+S =

Wβ = C0 - Cα Cβ - Cα R =

R+S

= 29

88 = 0.33

= 40 - 11 99 - 11

(34)

Ca = 17 wt% Sn

L+β

a + b

200

T(ºC)

wt% Sn

20 60 80 100

0 300

100

L

α β

L+ α

183ºC

• For a 40 wt% Sn-60 wt% Pb alloy at 220ºC

EX 2: Pb-Sn Eutectic System

the relative amount of each phase

Wa = CL - C0

CL - Cα = 46 - 40 46 - 17

= 6

29 = 0.21 WL = C0 - Cα

CL - Cα = 23

29 = 0.79

40 C0

46 CL 17

Cα

220 R S

CL = 46 wt% Sn

Referenties

GERELATEERDE DOCUMENTEN

verdere uitbr eiding van die ossewabrandwag se bedr ywighede het plaasgevind deur die stigting van diesnlaers in aile kommando' s onder Ie id ing va n die O.B...

Clearly one key reason why investors seek to diversify their portfolios is to gain protection against synchronized poor performance in a bear market However, as

This study used qualitative frame analysis to investigate how Drum magazine framed the 1976 Soweto Uprisings and the 2015 #FeesMustFall protests.. The deductive frames

DEFINITIEF | Farmacotherapeutisch rapport safinamide (Xadago®) als adjuvante behandeling naast levodopa alleen of in combinatie met andere antiparkinsonmiddelen bij patiënten

SWOV is in command of road safety knowledge for The Netherlands, helps the Ministry of Transport to design research projects and carries out scientific research itself.. The

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

middel van enkele grote kijkvensters onderzocht werden konden geen verdere sporen of structuren aangesneden worden die zoude kunnen wijze op de aanwezigheid van een

Als h afnemend dalend is moet de afgeleide van h onder de x-as liggen en stijgend zijn.. Dat betekent dat de grafiek van f’ altijd positief is en dus dat de helling