• No results found

Ilse Bosklopper

N/A
N/A
Protected

Academic year: 2021

Share "Ilse Bosklopper"

Copied!
54
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Ilse Bosklopper

Student Number:

1968645

MSc. Program:

Technology & Operations Management

Institution:

University of Groningen

Company:

Trelleborg

Supervisor:

Dr. J. Riezebos

Co-assesor:

Dr. N.D. van Foreest

(2)

1

ABSTRACT

Purpose – The goal of study is to examine whether the planners choice of aggregation level,

within an MRP system, influences the relationship between routing uncertainty and lead times.

Design/methodology/approach – The data supporting this case study is obtained from

interviews, observations and simulation experiments.

Findings – According to this study high-level MRP is better able to cope with routing

uncertainty, and should be the preferred method of planning in an MTO/ETO environment.

Furthermore, the participant of the experiment appreciated the reduced complexity of his tasks in

the high-level MRP.

Practical implications – Especially in MTO/ETO environments planning is important yet

extremely difficult. The variability, which is inevitable in these environments, can obstruct the

usability of MRP systems. Increasing the aggregation level can enhance the implementation

ability of MRP systems in MTO/ETO environments without having to develop more complex

planning algorithms.

Originality/value – This paper uses experiments to evaluate the performance results of different

aggregation levels. However, this study also observed and interviewed the planners during the

experiments to assess the impact of aggregation level on their tasks.

Keywords – MRP, ETO/MTO environments, Lead times, Planning Aggregation level,

simulation

(3)

2

PREFACE

As the closing chapter of my master in Technology and Operations Management at the

University of Groningen, writing this thesis has challenged me more than any other part of the

master. However, I am satisfied with the results and overexcited to hand in the final results of my

Master Thesis.

This results would never been accomplished without the help of others. First, I would like to

thank Jan Riezebos for giving me the chance to do this research. His feedback, positivity and

especially his patience have helped me a lot to keep challenging myself.

The work presented in this thesis was carried out at Trelleborg Ridderkerk. I am very grateful for

being able to perform my research project there. It gave me the chance to connect theory with

practice. I would very much like to thank my supervisor at Trelleborg, Eric-Jan Dregmans for his

enthusiasm, the in-depth discussions and his eagerness to help me. Moreover, I would like to

thank all my colleagues at Trelleborg. Without their time and information contributions it would

not have been possible to finish this paper.

Finally, I would like to thank my family and friends for heir support, feedback but especially for

their encouraging words.

(4)

3

INDEX

Abstract  

1  

Preface  

2  

Index  

3  

1  Introduction  

4  

2  Theoretical  background  

7  

2.1  MRP  Systems   7

 

2.2  Routing  uncertainty  in  MTO/ETO  environments   9

 

2.3  MRP  adjustments  to  cope  with  routing  uncertainty   12

 

2.4  Human  influence   14

 

2.5  Research  questions   15

 

3  Methodology  

16  

3.1  Research  design   16

 

3.2  Measurements   16

 

3.3  Case  organization  selection  and  description   17

 

4  Simulation  design  

19  

4.1  General  design   19

 

4.2  MRP  Tool   19

 

4.3  Production  simulation   20

 

4.4  Experimental  Design   22

 

4.5  Verification  and  validation   23

 

4.6  Experimental  settings:   24

 

5  Findings  

26  

5.1  Framework  for  specifying  planned  lead-­‐times   26

 

5.2  Influence  of  uncertainty  on  lead-­‐time   29

 

5.3  Influence  of  aggregation  level  on  lead-­‐time  performance   31

 

5.4  Human-­‐system  interaction   32

 

6  Discussion  

34  

6.1  Planned  lead-­‐times   34

 

6.2  Lead-­‐time  performance   34

 

6.3  Implications  for  human  scheduler   35

 

7  Conclusion  

36  

7.1  Theoretical  implication   36

 

7.2  Practical  implications   36

 

8  Limitations  and  Further  research  

37  

9  References  

38  

Appendix  A:  Production  simulation  model  

42  

Appendix  B:  Workstation  settings  

43  

Appendix  C:  Welch’s  Method  

49  

Appendix  D:  Confidence  interval  method  

49  

Appendix  E:  Normallity  tests  

50  

Appendix  F:  Influence  of  PLT  method  

51  

Appendix  G:  Influence  of  uncertainty  on  lead-­‐times  

51  

Appendix  H:  Average  difference  in  Lead-­‐time  

52  

(5)

4

1 INTRODUCTION

The  current  market  demand  for  customised  products  is  argued  to  be  greater  than  ever  before.  This  has   led  to  a  large  growth  in  the  number  of  MTO  and  ETO  companies,  which  produce  non-­‐repetitive,  high-­‐ variety  and  bespoke  products.  Resulting  in  an  increase  in  competition  among  them  (Aslan  et  al.  2012;   Van   Nieuwenhuyse   et   al.   2011;   Stevenson,   L.   C.   Hendry,   et   al.   2005).   With   this   increased   competition   between  MTO/ETO  companies,  the  response  time  to  customer  orders  has  become  more  important  for   obtaining   competitive   advantages.   In   MTO/ETO   environments   the   response   time   consists   of   order   processing   time   (i.e.   engineering,   designing)   and   lead-­‐time.   Lead-­‐time   is   defined   as   the   time   between   authorization  of  production  to  the  completion  of  processing,  at  which  point  the  material  is  ready  to  fill  a   customer  order  (Yücesan  &  de  Groote  2000).  For  MTO/ETO  companies,  shorter  lead-­‐times  means  faster   customer  response,  less  cost  due  to  work-­‐in-­‐process  (WIP)  and  higher  efficiency  (Pahl  et  al.  2007;  Wedel   &  Lumsden  1995;  Suri  2010).    

Not  only  the  physical  flow  influences  the  lead-­‐time  of  an  order,  but  also  the  planning  plays  an  important   role   (Wedel   &   Lumsden   1995).   Organizations   often   use   an   MRP   system   to   support   the   scheduler   in   making  the  production  planning,  and  determining  when  orders  are  released  to  the  shop  floor  (Jonsson  &   Mattsson  2006;  Mabert  2007;  Pahl  et  al.  2007).  MRP  assumes  infinite  capacity  and  static  bill-­‐of-­‐materials   (BOM)  with  known  product  routings.  It  treats  lead-­‐times  as  static  input  data,  called  planned  lead-­‐times   (PLTs),  representing  the  amount  of  time  allowed  for  orders  to  flow  through  the  task/facility  (Ioannou  &   Dimitriou   2012;   Jodlbauer   &   Reitner   2012;   Ioannou   &   Dimitriou;   Ho   &   Chang   2001a;   Bertrand   &   Muntslag  1993).  PLTs  play  an  important  role  in  the  actual  lead-­‐time  performance  of  the  system,  as  they   influence  the  order  release  moment.  Setting  PLTs  too  high  causes  orders  to  be  released  too  early,  which   increases  the  level  of  WIP  and  results  in  a  self-­‐fulfilling  extension  of  lead-­‐time  (Karmarkar  1989;  Pahl  et   al.   2007;   Selçuk   et   al.   2006;   Wedel   &   Lumsden   1995).   On   the   contrary,   if   PLTs   are   too   tight   and   the   orders   are   released   to   the   shop   floor   too   late,   it   is   not   possible   to   meet   the   due   date   (Ho   &   Chang   2001b).  These  relationships  show  the  importance  of  having  accurate  PLTs  for  attaining  short  actual  lead-­‐ times.    

(6)

5

al.  2011).  However,  actual  lead-­‐times  are  not  purely  the  effect  of  capacity  loading,  but  also  of  several   other  factors  often  highly  present  in  MTO/ETO  companies.  While  MRP  assumes  a  static-­‐BOM  with  known   product  routing,  MTO/ETO  companies  are  often  characterized  by  high  flexibility  and  variety  in  product   routing.   This   routing   uncertainty   can   result   in   a   gap   between   how   the   MRP   system   models   the   production   processing   of   the   product,   and   how   the   product   is   processed   in   reality.   MRP   systems   are   vulnerable  to  uncertainty,  and  research  indicates  that  uncertainty  has  a  damaging  effect  on  the  accuracy   of  PLTs.  Driven  by  the  still  increasing  power  of  computers,  research  focused  on  adjusting  MRP  systems   towards   MTO/ETO   environments   has   been   concentrated   on   extending   the   MRP   logic   with   complex   algorithms  to  capture  the  processes  and  its  variables  more  precisely  and  correctly.  However,  as  actual   lead-­‐times  are  influenced  by  many  factors,  including  all  of  these  factors  in  an  algorithm  will  be  a  very   complex   task   and   the   presence   of   uncertainty   will   make   it   imposable   to   capture   the   actual   process   perfectly.  Moreover,  complex  algorithms  are  often  not  well  understood  by  the  scheduler  (Pandey  et  al.   2000),  which  makes  it  hard  for  the  planner  to  keep  overview  and  to  have  meaningful  interaction  with  the   system.  Therefore,  in  this  paper  we  propose  a  different  method  for  adjusting  MRP  towards  MTO/ETO,   and  preserve  one  of  the  most  important  strengths  of  MRP  logic;  its  simplicity.    

(7)

6

companies  by  limiting  our  attention  on  the  aggregation  level  of  an  MRP  system,  and  do  not  revise  any  of   the  other  elements  of  MRP  calculations.  While  several  researchers  have  suggested  a  more  aggregated   MRP   system,   little   research   is   done   about   the   effects   it   has   on   specifying   lead-­‐time   and   lead-­‐time   performance.  Therefore,  we  have  chosen  to  perform  an  exploratory  case  study  at  a  company  producing   a  mix  of  MTO  and  ETO  products.  The  goal  of  this  exploratory  case  study  is  to  create  more  insight  in  the   ability   of   aggregation   to   cope   with   routing   uncertainty,   and   the   reflection   this   has   on   lead-­‐times.   The   research  question  guiding  this  case  study  is:  

How   does   the   planner’s   choice   of   the   aggregation   level   of   MRP   influence   the  

relationship  between  routing  uncertainty  and  lead-­‐times?  

(8)

7

2 THEORETICAL BACKGROUND

This   theoretical   framework   will   give   an   overview   of   applicable   literature   regarding   MRP   production   planning.   We   will   start   with   describing   how   MRP   works.   Then,   we   will   discuss   the   routing   uncertainty   that  is  present  in  MTO/ETO  companies  and  how  this  influences  both  the  planning  and  the  performance.   Then,  we  will  discuss  how  scholars  have  tried  to  cope  with  the  characteristics  of  MTO/ETO  companies   and  we  will  discuss  an  alternative  solution,  we  will  look  at  how  these  methods  have  affected  the  human   scheduler.  In  the  last  section  the  research  questions  we  will  answer  in  this  paper  are  presented.  

2.1  MRP  Systems  

MRP  is  developed  as  a  solution  to  the  problem  of  how  the  right  component  parts  can  be  received  in  the   right  quantity,  at  the  right  time  (Ioannou  &  Dimitriou  2012;  Murthy  &  Ma  1991;  Ho  &  Chang  2001b).  The   scope  and  usage  of  MRP  systems  has  grown  since  the  1970’s  (Orlicky  1975;  Wight  1984;  AMR  1995),  but   in   this   research   MRP   refers   to   the   content   and   processes   in   software   programs   used   to   make   a   production   planning.   MRP   systems   assume   a   known   BOM,   predetermined   fixed   product   routings,   and   infinite   capacity   (Jodlbauer   &   Reitner   2012;   Ioannou   &   Dimitriou;   Ho   &   Chang   2001a;   Bertrand   &   Muntslag  1993).    

The   BOM   shows   the   relationship   between   end   items   and   their   constituent   parts   (Hopp   &   Spearman   2011).    In  MRP  systems,  PLTs  are  specified  for  each  level  of  the  BOM.  PLTs  represent  the  amount  of  time   allowed  for  orders  to  flow  through  the  specific  task(s).  PLTs  determine  when  an  order  is  released  to  the   shop  floor,  by  subtracting  the  total  PLT  of  the  due  date  of  the  product,  after  which  the  material  is  pushed   through  all  subsequent  work  centres.  An  MRP  system  is  often  complemented  by  dispatching  rules,  which   arrange  the  queues  in  front  of  the  workstations  (Vandaele  et  al.  2008).  Examples  of  these  dispatching   rules  are:  First-­‐in-­‐First-­‐out  (FIFO),  Last-­‐in-­‐First-­‐out  (LIFO)  and  Earliest-­‐Due-­‐Date  (EDD).  The  order  release   policy  of  an  MRP  system  can  be  seen  as  an  input  control  mechanism,  as  it  releases  jobs  to  the  shop  floor   without  taking  into  account  the  system  status  (Fernandes  &  do  Carmo-­‐Silva  2006).    

(9)

8

be   used   as   protection   against   demand   quantity   uncertainty,   and   safety   lead   times   should   be   used   to   cover  completion  time  uncertainty.  Their  research  does  not  mention  safety  capacity,  which  also  applies   to  most  research  about  buffering  in  MRP  systems.  On  the  contrary,  extensive  research  has  been  done   about   safety   stock,   and   a   modest   amount   of   research   has   focused   on   safety   lead-­‐times   (Dolgui   &   Prodhon  2007).    

PLTs   are   fixed   input   parameters   that   need   to   be   specified   by   the   planning   department   (Suri   2010).   Although   it   is   long   known   that   actual   lead-­‐times   are   heavily   influence   by   PLTs,   prescriptive   ways   of   setting  either  have  not  been  adequately  developed  (Enns  2001).  According  to  Enns  (2001)  PLTs  should  be   based   on   actual   lead-­‐times,   yet   he   recognizes   the   complexity   of   doing   this   due   to   the   stochastic   and   dynamic   capacity   constrained   production   characteristics.   Hoyt   (1978)   argues   that   planned   lead-­‐times   should  be  set  on  the  basis  of  the  average  flow  times  being  observed.  This  method  seems  not  appropriate   for  the  stochastic  real  world.  It  can  lead  to  a  high  deviation  between  the  due  date  and  the  production   completion  date,  as  processing  requirements  can  vastly  differ  between  products.  This  results  in  both  a   high  amount  of  products  waiting  for  shipment,  and  a  low  service  level.  If,  for  example  the  lead-­‐times  are   normally   distributed,   half   of   the   products   will   be   too   late   and   the   other   half   will   be   too   early.   This   is   made  visible  in  figure  2.1.  

FIGURE 2.1 NORMALLY DISTRIBUTED LEAD-TIME  

(10)

9

MTO/ETO  job  shops  are  complex  dynamic  systems,  for  which  future  conditions  cannot  be  anticipated  by   analysing   only   current   performance   (Fabrycky   &   Onur   1987).   Another   approach   is   used   by   Dolgiu   &   Prodhon  (2007),  who  state  that  the  PLT  is  the  sum  of  the  theoretical  lead-­‐time  and  the  safety  lead-­‐times.   They  refer  to  Melnyk  &  Piper  (1981),  who  have  proposed  that  the  safety  lead-­‐time  should  be  determined   by  k  times  the  standard  deviation  of  the  lead-­‐times.  There  are  a  lot  of  different  opinions  about  how  PLTs   should  be  set,  and  no  consensus  has  been  reached  on  the  best  method.  However,  it  is  known  that  the   PLT  should  incorporate  the  estimated  processing  time,  the  waiting  time  and  an  appropriate  buffer.   Even   though   it   is   clear   that   a   deep   understanding   on   the   effects   of   PLTs   on   lead-­‐time   performance   is   needed,  literature  is  lacking  in  a  clear  guidance  on  to  how  to  specify  accurate  PLTs.  A  good  system  must   result   in   acceptable   due   date   performance,   without   incurring   excessive   inventory   overall   (Enns   2001).   Important  relations  are:  

• Increasing  planned  lead  times  result  in  higher  WIP  inventory  due  to  queues  (Enns  2001)  

• Lead-­‐times  increase  non-­‐linear  long  before  resource  utilization  reaches  100%  (Pahl  et  al.  2007;   Ioannou  &  Dimitriou  2012)  

•  Several   amplifiers   (variability,   uncertainty,   capacity   and   demand   dynamics,   heterogeneity   of   product  mix)  negatively  influence  lead-­‐times  (Pahl  et  al.  2007;  Ioannou  &  Dimitriou  2012).   • Lot  sizing  is  about  balancing  the  desire  to  reduce  inventory  (by  using  smaller  lots)  and  increasing  

capacity   (by   using   larger   lots   to   avoid   setups)   and   can   have   severe   effects   on   lead-­‐time   performance  (Enns  2001;  Hopp  &  Spearman  2011).  

In   MTO/ETO   companies   the   product   mix   is   very   dynamic,   this   results   in   high   variation   in   machine   utilization,   regularly   updating   of   PLTs   is   thus   necessary.   In   the   next   section   we   will   more   specifically   address   uncertainty   within   MTO/ETO   environments,   and   how   to   buffer   against   it.   Moreover,   the   particular  challenges  for  implementing  and  using  an  MRP  system  are  discussed.  

2.2  Routing  uncertainty  in  MTO/ETO  environments  

(11)

10

(Bertrand  &  Muntslag  1993;  Hong  &  Kim  2002).  To  understand  the  problems  associated  with  using  an   MRP   system   in   an   MTO/ETO   environment,   it   is   necessary   to   explore   the   characteristics   of   these   environments.  

In  MTO/ETO  companies  the  goods  flow  consists  of  both  a  non-­‐physical  (order  processing)  and  a  physical   stage   (Bertrand   &   Muntslag   1993).   However,   in   this   research   we   are   only   concerned   with   the   characteristics  of  the  physical  flow  and  in  factors  influencing  this  physical  flow.  This  is  appropriate  since   this   paper   is   concerned   with   the   planning   and   lead-­‐times   of   the   physical   stage   of   the   flow.   Important   characteristics   of   MTO/ETO   companies   are:   the   important   role   of   the   customer   order,   the   customer   specific   product   specifications,   and   product   and   production   variability   and   uncertainty   (Bertrand   &   Muntslag   1993;   Ioannou   &   Dimitriou   2012).   These   characteristics   have   their   reflection   on   routing   uncertainty,  but  also  on  the  methods  that  can  be  used  to  buffer  against  this  uncertainty.  

(12)

11

ETO/MTO   products   it   is   impossible   to   keep   an   end-­‐item   inventory,   as   the   specifications   are   unknown   prior  to  the  order.  

Not  only  does  the  role  of  the  customer  orders  effect  the  uncertainty  in  product  routing,  the  shop  floor   configuration  adds  up  to  that  routing  uncertainty.  Many  MTO/ETO  environments  can  still  be  classified  as   a  job  shop  due  to  the  flexible  nature  of  this  configuration  (Hendry  &  Muda  2003;  Stevenson,  L.  Hendry,   et  al.  2005).  In  this  configuration  the  routing  is  often  somewhat  flexible  and  can  be  changed  by  operators   if  that  fits  the  current  shop  floor  conditions,  or  if  it  fits  the  product  requirements.  If  for  example,  a  job  is   planned  on  machine  A,  but  there  is  a  long  queue  in  front  of  this  machine  an  operator  can,  if  possible,   decide   to   use   machine   B   for   certain   jobs.   While   this   flexibility   is   one   of   the   selling   points   of   this   configuration,   it   has   consequences   for   the   production   planning   as   variability   and   uncertainty   often   causes  control  problems  (Soepenberg  et  al.  2012).    The  consequences  are  especially  prevalent  with  long   routings  and  even  when  both  processing  times  and  routings  are  known  beforehand,  predicting  the  future   state  of  an  order  is  nearly  impossible.  Only  a  small  disruption  of  an  order  at  a  station  or  a  deviation  of   the   routing   can   have   consequences   for   the   progress   of   the   order   itself   and   for   many   other   orders   (Soepenberg   et   al.   2012).   Another   variable   adding   to   the   routing   uncertainty   is   the   possibility   to   outsource  the  production  or  part  of  the  production  while  the  product  was  already  released  to  the  shop   floor.  Outsourcing  can  have  various  reasons,  regulation  of  capacity  through  outsourcing  can  be  one  of   the   reasons   (Riezebos,   2001),   The   actual   lead-­‐times   can   be   both   negatively   and   positively   affected   by   outsourcing.      

In  an  MRP  system  without  buffers,  whenever  a  routing  is  changed  which  negatively  affects  the  lead-­‐time,   due  dates  are  not  met  and  the  lead-­‐time  will  be  expanded.  On  the  contrary,  in  the  same  MRP  system   when  a  routing  is  changed  that  positively  affects  the  lead-­‐time,  this  will  only  result  in  finished  products   waiting  at  the  Finished  Goods  Inventory  (FGI)  till  its  due  date.  Especially  in  capital-­‐intensive  MTO/ETO   companies  this  is  considered  a  problem.  Safety  lead-­‐time  buffering  can  be  used  to  avoid  missing  the  due   date;  however  it  can  lead  to  high  FGI.  These  two  should  thus  be  balanced,  depending  on  the  context.   However,  in  order  to  attain  the  desired  service  level,  it  is  often  necessary  to  buffer  against  uncertainty   (Koh  &  Saad  2003).    

(13)

12

nervousness  of  the  system  or  because  no  feedback  mechanisms  are  present.  Companies  thus  settle  with   out-­‐dated  routing  information,  and  base  new  order  releases  on  old  information.    

 

2.3  MRP  adjustments  to  cope  with  routing  uncertainty  

The  robustness  of  a  production  plan  relies  heavily  on  the  possibility  of  modifying  the  routing  of  a  product   with  no  penalty  in  terms  of  lead-­‐time  performance  in  the  companies’  objectives  (Alfieri  et  al.  2012).  Due   to   the   high   product   routing   uncertainty   in   MTO/ETO   companies,   it   is   clear   that   a   production   planning   should  be  able  to  incorporate  a  certain  degree  of  anticipation  to  these  uncertain  events,  while  providing   a  robust  schedule  for  the  execution  of  activities  and  utilization  of  resources.    

In   the   battle   to   make   MRP   systems   more   veracious,   most   papers   focus   on   the   relationship   between   capacity   loading   and   actual   lead-­‐times,   and   propose   a   variable   PLT   that   is   based   on   the   shop   floor   condition.  Examples  are  dynamic  lead  time  estimation  (Jodlbauer  &  Reitner  2012;  Ioannou  &  Dimitriou   2012),  Advanced  Resource  Planning  (Vandaele  &  De  Boeck  2003)  and  Workload  dependent  lead  times   (Pahl   et   al.   2007).   These   examples   all   base   the   PLTs   on   the   system’s   actual   workload.   The   main   advantage  of  these  approaches  is  that  they  effectively  take  into  account  the  congestion  that  is  caused  by   the  interference  of  different  products  in  the  shop  floor.  These  authors  however,  do  not  include  other   factors   that   influence   actual   lead-­‐times   in   their   model.   It   can   even   be   argued   that   introducing   these   extensions  of  MRP  systems  can  make  the  influence  of  uncertainty  and  flexibility  in  product  routings  more   severe   as   the   planned   lead-­‐time   of   an   order   will   be   based   on   the   position   of   orders   in   production   according   to   the   production   planning.   Due   to   the   uncertainty   and   variability   in   product   routing   this   information  can  be  incorrect.  Besides,  the  robustness  of  the  production  plan  will  probably  be  low  when   routings  are  modified  on  a  regular  basis,  as  the  PLT  will  fluctuate  even  more  heavily  than  in  a  standard   MRP  system.    

(14)

13

(2011)  propose  the  use  of  a  heuristic  to  deal  with  re-­‐routing,  to  support  planning  decisions  However,  in   MTO/ETO  environments  implementing  a  heuristic  like  this    requires  a  lot  of  information  to  be  available  in   time.  While  this  could  be  done  by  implementing  and  integrating  manufacturing  execution  systems,  this  is   often  expensive  and  difficult  to  accomplish  in  job  shop  environments  (Saenz  de  Ugarte  et  al.  2009).   Another  approach  suggested  in  literature  to  make  MRP  more  suitable  for  MTO/ETO  companies  is  high-­‐ level  MRP  (HL/MRP).  The  idea  behind  this  approach  is  reflected  in  for  example  Period  Batch  Control  and   QRM  (Suri  2010;  Riezebos  2001).  It  suggests  that  the  planning  system  does  not  need  to  prescribe  who   will  work  at  the  various  tasks  and  when  they  have  to  start  within  a  period,  it  suffices  to  know  that  there   will  be  enough  capacity  at  the  planning  level  to  accomplish  all  tasks  that  are  scheduled  within  this  period   (Burbidge   1996;   Riezebos   2013).   In   HL/MRP   the   amount   of   BOM   levels   is   reduced   by   combining   tasks   into  one  level.  In  a  detailed  MRP  system  the  planning  department  has  to  specify  PLTs  per  task,  in  a  more   aggregated  MRP  this  has  to  be  done  per  subset  of  tasks.  The  rest  of  the  logic  of  MRP  remains  unchanged   in  HL/MRP.  

In  detailed  MRP  systems,  every  small  change  in  the  routing  should  be  adjusted  in  the  MRP  system  if  one   wants  to  prevent  a  gap  between  the  real  process  and  the  modelled  process.  These  changes  often  lead  to   nervous  behaviour  of  the  system,  which  influences  the  performance  of  the  plant  negatively.  By  reducing   the  level  of  detail,  and  specifying  PLTs  for  sets  of  operations  that  are  performed  within  a  department  or   team,  small  changes  will  not  effect  the  planning.  This  is  illustrated  with  the  following  example:  Station  1   to  4  forms  a  group  within  the  HL/MRP  and  the  group  has  a  PLT  of  5  hours.  Product  A  is  planned  to  flow   through  station  1  and  station  2,  with  both  a  processing  time  of  2  hours.  In  a  HL/MRP  system  the  planning   does   not   have   to   be   updated   when   the   routing   has   been   changed   to   station   3   and   4,   with   differing   process  times,  because  the  new  routing  belongs  to  the  same  group.  A  change  within  the  routing  of  the   department  or  team  does  not  influence  the  planning  within  HL/MRP.  Reducing  the  level  of  detail,  using   subsets   of   resources   is   comparable   to   the   time-­‐bucket   approach   as   for   example   discussed   by   Taal   &   Wortmann   (1997).   They   state   that   if   aggregated   information   is   used,   nervousness   of   a   plant   can   be   greatly  reduced.  

(15)

14

time  on  one  workstation  can  be  compensated  by  a  shorter  lead-­‐time  in  another  workstation  (Vandaele  &   De  Boeck  2003).  Pooling  variability  tends  to  dampen  the  overall  variability  by  making  it  less  likely  that  a   single  occurrence  will  dominate  performance  (Hopp  &  Spearman  2011).  Due  to  the  variability  pooling,   HL/MRP  needs  lower  buffers.    

We  propose  that  by  reducing  the  level  of  detail,  the  uncertainty  of  the  product  routing  will  be  reduced  at   the  planning  level.  Small  deviations  from  the  planned  routing  will  no  longer  affect  the  product  routing  at   the   planning   level.   This   will   positively   influence   the   robustness   of   the   planning.   Moreover,   buffering   against  routing  uncertainties  is  done  at  the  group  level,  which  will  reduce  the  buffer  that  is  needed  due   to   variability   pooling.   We   propose   that   the   reduction   in   uncertainty   and   the   centralized   buffers   will   positively  influence  lead  times.    

2.4  Human  influence  

The  influences  of  changes  to  the  MRP  system  are  hardly  or  not  discussed  in  relation  to  their  effects  on   the   human   scheduler   who   will   work   with   it.   In   complex   manufacturing   organizations,   planning   and   scheduling  still  requires  significant  human  support  to  ensure  effective  performance.  Planning  should  thus   not   be   considered   as   a   mere   technical   problem.   The   scheduler   is   and   will   stay   a   critical   factor   in   the   planning  process  (MacCarthy  et  al.  2001;  Taal  &  Wortmann  1997).  The  absence  of  discussing  how  the   proposed   extension   influences   the   scheduler   can   be   seen   as   a   flaw   in   previous   research   extending   or   changing  MRP  systems.    

Most  extensions  of  MRP  systems  are  designed  from  a  mathematical  perspective  and  focus  on  finding  a   mathematically   optimal   planning.   Mathematical   optimality   does   not   always   correspond   to   ‘real   world’   optimality.  It  is  the  task  of  the  scheduler  to  create  a  feasible  and  reasonable  planning;  the  main  function   of  the  planning  system  is  supporting  the  planner  in  the  planning  process  (Taal  &  Wortmann  1997).  The   interaction   between   human-­‐system   should   not   be   underestimated   while   researching   revised   MRP   systems.  

(16)

15

simple   logic   of   MRP   is   preserved,   which   probably   leads   to   a   better   understanding   than   complex   algorithmic  adjustments.  

 

 

2.5  Research  questions  

The   main   question   of   this   study,   ‘How   does   the   aggregation   level   of   MRP   influence   the   relationship  

between  routing  uncertainty  and  lead-­‐times?’  will  be  answered  in  the  proceedings  of  this  thesis.  The  sub  

questions  addressed  are:  

1. How  does  implementing  HL/MRP  influence  the  planned  lead-­‐times?  

2. How  is  lead-­‐time  performance  influenced  when  routing  uncertainty  is  present?  

3. How   does   the   level   of   MRP   aggregation   affect   lead-­‐time   performance   when   uncertainty   is   present?  

(17)

16

3 METHODOLOGY

The   purpose   of   this   study   is   to   broaden   the   insights   into   how   the   aggregation   level   of   planning   can   influence   the   relationship   between   routing   uncertainty   and   lead-­‐times.   The   core   goals   are   to   identify   how   the   aggregation   level   influences   the   lead-­‐time   performance,   especially   related   to   planned   lead-­‐ times,  uncertainty  and  system-­‐scheduler  interaction.  

3.1  Research  design  

After  performing  a  literature  study,  empirical  research  is  conducted  through  an  exploratory  case  study   (Voss  et  al.  2002;  Karlsson  2009).  The  objective  of  this  study  is  to  answer  “how”  questions,  and  the  focus   is  on  a  phenomenon  within  a  real  life  context,  which  makes  case  study  most  appropriate  (Yin,  2009).  A   single   case   study   is   chosen   to   increase   the   depth   of   the   analysis.   Within   the   settings   of   the   case   company,  a  broad  range  of  methods  is  used  to  gather  both  quantitative  and  qualitative  results.  In  order   to   answer   the   (sub-­‐)   questions   guiding   this   research,   a   combination   of   interviews,   behavioural   observations  and  two  interrelated  simulation  models  have  been  used.  

Within   the   empirical   settings   of   the   case   organization,   we   have   carefully   developed   two   models;   one   simulates  the  production  system  and  the  other  simulates  the  planning  system.  Robinson  (2004)  defines   simulation   as   experimentation   with   a   simplified   imitation   of   an   operations   system   as   it   progresses   through   time,   for   the   purpose   of   better   understanding   and/or   improving   the   system.   The   use   of   simulation  enables  us  to  test  multiple  scenarios  in  a  relatively  short  amount  of  time,  which  is  necessary   for  answering  our  research  questions.  The  simulation  models  are  not  only  used  to  gather  quantitative   data   about   lead-­‐time   performance,   but   the   models   were   also   used   in   a   simulation   game   in   which   the   interaction  with  the  human  scheduler  was  assessed  with  both  behavioural  observations  as  interviews.    

3.2  Measurements  

(18)

17

before  or  on  the  due  date.  FGI  exists  because  of  deviations  between  the  completion  time  of  an  order  and   the  due  date  agreed  upon  with  a  customer,  and  will  be  measured  by  the  average  time  a  product  spends   in  FGI.  In  short  the  variables  under  consideration  are:  

• Lead-­‐time  (hours)  

• Customer  service  (%  on-­‐time)  

• Average  time  in  FGI  (due  to  deviation  between  due-­‐date  and  lead-­‐time)  (hours)  

Furthermore,  planned  lead-­‐times  are  measured,  to  evaluate  the  accurateness  of  the  PLT  and  to  evaluate   the   difference   between   the   two   aggregation   levels.   The   observations   of   the   participant   and   the   interviews  conducted  are  used  to  assess  the  scheduler-­‐system  interaction.  

3.3  Case  organization  selection  and  description  

We  have  selected  a  MTO/ETO  company  in  which  the  production  process  could  be  categorized  as  a  job   shop  with  varying,  flexible  routing.  This  company  desires  to  reach  shorter  lead-­‐times  and  the  planners   were  used  to  working  with  an  MRP  system.  The  case  company,  Trelleborg  Ridderkerk,  is  a  global  supplier   of  engineered  rubber  solutions  in  e.g.  civil  engineering,  dredging  and  energy,  and  is  located  in  the  south   of  the  Netherlands.  Trelleborg  distributes  products  to  more  than  40  countries  in  the  world.    Although,   part   of   a   larger   group,   the   organization   can   be   considered   as   a   medium-­‐sized   enterprise   (MSE)   with   around  160  employees.  It  produces  a  mix  of  MTO  and  ETO  products  with  a  high  level  of  customization   and  variability,  which  make  it  appropriate  for  our  research.  Figure  3.1  gives  a  clear  picture  of  their  annual   results  in  terms  of  products  and  product  mix.    

The  organization  is  currently  involved  in  a  Quick  Response  Manufacturing    (QRM)  transformation.  QRM   pursues   the   reduction   of   lead-­‐time   in   all   aspects   of   an   organizations   operations,   both   internally   and   externally  (Suri  2010).  The  transformation  has  until  now  mainly  focused  on  the  office  and  engineering   practices  of  the  case  organization  (Q-­‐ROCs,  redesigning  processes).  While  the  office  is  designed  in  QRM   cells,  the  shop  floor  can  be  classified  as  a  job  shop  and  is  therefore  suitable  for  this  research.  The  level  of   uncertainty  in  product  routing  is  high  due  to  the  existence  of  late  design  changes,  changes  due  to  shop   floor  conditions  and  the  possibility  of  outsourcing.    

(19)

18

FIGURE 3.1 TRELLEBORG PRODUCTION ORDERS  

(20)

19

4 SIMULATION DESIGN

This  section  will  discuss  the  design,  validation  and  settings  of  the  simulation  models  that  are  used.  It  also   provides  insights  into  how  the  experiments  were  conducted.  This  section  is  split  up  into  four  parts.  First,   we   explain   the   general   design   of   the   study,   and   show   the   interrelationship   between   the   simulation   models.   Second,   a   detailed   description   of   the   two   simulation   models   and   the   in-­‐   and   outputs   of   the   models  are  discussed.  Third,  the  experimental  design  is  discussed.  Fourth,  the  verification,  validation  and   experimental  settings  of  these  two  models  are  discussed.  

4.1  General  design  

To   examine   the   influence   of   the   aggregation   level   of   MRP,   we   have   simulated   the   MRP   system.   Two   configurations  have  to  be  possible  within  this  simulation,  a  detailed  planning  and  a  high-­‐level  planning.   Furthermore,   the   simulation   model   is   designed   in   such   a   manner   that   it   allows   for   analysing   the   interaction  with  the  human-­‐scheduler.  In  order  analyse  the  influence  of  the  aggregation  level  of  the  MRP   system  on  the  lead-­‐time  performance,  a  simulation  model  of  the  production  process  is  made.  Input  data   for  both  models  is  obtained  from  the  ERP  system,  observations  of  the  real  system  and  interviews  with   the  production  planner,  the  plant  manager  and  several  operators.  

4.2  MRP  Tool  

The  frame  of  the  MRP  model  and  its  boundaries  result  from  the  scope  of  this  dissertation:  planning  the   physical   flow   of   the   product.   Therefore,   the   model   needs   to   span   the   entire   production   operation.   It   excludes  process  steps  like  engineering,  designing  and  tendering  that  are  likely  to  occur  within  MTO/ETO   companies  (Hicks  &  McGovern  2009).    

The  model  is  built  using  Microsoft  Excel.  This  software  is  mainly  chosen  because  of  the  familiar  interface.   As  the  scheduler  has  to  interact  with  this  model,  it  is  suitable  for  the  purpose  of  this  study.  The  study   requires  two  configurations  of  the  model:  an  MRP  at  task  level  and  an  MRP  at  team/department  level.   The  input  data  obtained  for  the  purpose  of  this  model  is:  

(21)

20

• Planned  routings  of  orders  

• Expected  processing  times  per  task     • Expected  setup  time  per  task  

• Capacity  of  the  departments/machines/people  

• Buffer  time  per  task/department  to  accommodate  uncertainty    

The  output  of  the  system  is,  in  both  configurations,  an  order  release  list  for  the  coming  period  specifying   the  day  an  order  has  to  start.  Next  to  that,  a  capacity  requirement  overview  is  presented  in  time  buckets   of  one  week.  

 

4.3  Production  simulation  

Again,  the  frame  of  this  simulation  model  and  its  boundaries  are  a  result  of  the  scope  of  this  dissertation:   planning   the   physical   flow   of   the   product.   The   aim   of   this   simulation   model   is   to   assess   the   ability   of   HL/MRP   to   cope   with   routing   uncertainty   in   the   physical   flow,   and   the   model   should   thus   be   a   representation   of   the   whole   job   shop   through   which   the   products   flow.   Within   the   boundaries   of   the   simulation,  there  were  almost  limitless  options  for  the  routing.  With  the  restriction  of  two  stations,  the   exit  strategy  was  not  limited  and  all  other  stations  could  be  their  successor,  of  course  depending  on  the   characteristics  of  the  product  under  consideration.  The  study  requires  two  configurations  of  the  model:  a   production  system  with  low  routing  uncertainty  and  one  with  high  routing  uncertainty.  This  is  modelled   by  increasing  the  deviation  between  the  planned  product  routing  and  the  actual  product  routing  due  to   late  design  changes,  decisions  on  the  shop  floor  and  outsourcing  of  tasks.  

The  model  is  built  using  the  simulation  software  Tecnomatrix  Plant  Simulation,  which  is  developed  by   Siemens   with   the   purpose   to   model,   simulate,   analyse,   visualize   and   optimize   production   systems,   material  flows  and  logistic  operations  in  an  efficient  way  (Bangsow  2010).  The  ability  of  Plant  Simulation   models  to  represent  the  variability,  interconnectedness  and  complexity  of  a  system  makes  it  appropriate   software  for  modelling  a  job  shop  production  environment.  To  give  an  indication  of  the  content  of  this   simulation  model,  a  small  overview  of  some  content  is  given  in  appendix  A.  

(22)

21

behaviour  of  the  real  production  system  (Robinson  2004).  To  assure  data-­‐validity,  the  source  all  data  has   been  checked  for  inconsistencies  and  unusual  patterns  and  outliers.  Knowing  the  distribution  of  a  data   set   matters,   as   using   differences   in   distribution   deliver   great   differences   when   implemented   into   a   simulation.  The  distribution  of  the  process  and  the  distribution  of  the  setup  time  are  determined  for  all   31  workstations  within  the  boundaries  of  the  production  simulation.  Evaluating  the  distributions  of  the   workstations   has   been   performed   with   the   use   of   DataFit,   an   Add-­‐in   of   Plant   Simulation   12.   A   significance   level   of   95%   is   used   for   determining   the   distribution   type.   The   results   are   summarized   in   appendix  B.

Input  Type   Dataset/parameter  

Production  datasets  

Order  release  list  

Planned  Product  Routing   Actual  Product  Routing  

Process  parameters  

Work-­‐hours  per  machine/employee   Process  time  parameters  per  process  step   Setup  time  parameters  per  process  step   Batch  size  parameter  per  process  step  

TABLE 4.1: INPUT DATA  

In  order  to  assess  the  lead-­‐time   performance   of   the   system,   all   performance   measures  defined   in  the   methodology  are  tracked  per  order  and  are  averaged  over  the  run-­‐length  to  make  it  possible  to  make   comparisons   between   the   difference   experimental   settings.   Descriptive   statistics   such   as   minima,   maxima  and  standard  deviation  are  also  calculated  for   the  lead-­‐time.  Moreover,  the  simulation  model   provides   the   scheduler   with   information   for   determining   the   PLTs.   For   this   purpose,   the   simulation   model  also  tracks  the  average  waiting  times  of  each  buffer,  the  average  processing  time  together  with   the  capacity  loading  of  the  past  period.  

(23)

22

2004).   The   simplifications   made   are   based   upon   analysis   of   case   company’s   data   and   information   gathered  longitudinally.  The  simplifications  that  have  been  made  are:  

• Machines  never  fail  

• Input  of  external  supplies  are  always  present  at  the  release  moment  specified  by  the  MRP  model   • Human  capacity  is  not  affected  by  illness  or  other  factors  other  than  lunch  breaks  

• Transport  from  one  station  to  another  does  not  require  time  

• Product  Quality  Check  Type  Three  (QC3)  does  not  require  any  time,  and  is  done  during  ‘normal’   processing  time  

• Aggregation  of  one  type  of  machines  (caldron)  to  one  machine    

4.4  Experimental  Design  

This   study   will   compare   different   configurations   of   both   the   MRP   tool   and   the   simulation   model.   This   section  will  provide  an  overview  of  the  scenarios  that  are  tested.  However,  we  will  start  with  outlining   the   planning   procedure   that   is   used.   In   collaboration   with   the   scheduler   of   the   case   company,   in   all   configurations  of  the  MRP  tool,  order  release  lists  are  made  on  a  weekly  basis,  for  a  period  of  five  weeks,   indicating   which   order   should   be   released   to   the   shop   floor   on   which   day.   Both   determining   and   adjusting   the   planned   lead   times,   and   readjusting   the   planning   due   to   capacity   limits   was   the   responsibility  of  the  scheduler.  This  made  it  possible  to  study  the  behaviour  of  the  planner,  and  study  the   impact  the  level  of  aggregation  has  on  the  planner.  

With  these  order  release  lists,  several  scenarios  have  been  tested.  The  focus  of  the  scenarios  is  on  the   lead-­‐time  performance  of  these  order  release  lists  under  routing  uncertainty.  The  scenarios  tested  are   presented  in  table  4.2.  

 Scenario  Settings  

Detailed  MRP  

HL/MRP  

HL/MRP-­‐PM  

No  routing  uncertainty  

Scenario  1D  

Scenario  1H  

Scenario  1H-­‐PM  

Routing  uncertainty    

Scenario  2D  

Scenario  2H  

Scenario  2H-­‐PM  

TABLE 4.2 SCENARIO SETTINGS  

(24)

23

To  give  a  clear  insight  into  the  several  scenarios,  the  scenarios  are  discussed  below.  

• Scenario  1D:  In  this  scenario  all  planned  products  are  produced  in  exactly  the  routing  as  planned,   the  planning  is  made  with  the  use  of  the  detailed  MRP  tool.  Planned  lead-­‐times  are  intuitively  set   based  on  the  experience  of  the  scheduler  

• Scenario  2D:  This  scenario  is  similar  to  scenario  1D,  but  with  routing  uncertainty  due  to  design   changes  introduced.  

• Scenario  1H:  In  this  scenario  all  planned  products  are  produced  in  exactly  the  routing  as  planned,   the   planning   is   made   with   the   use   of   the   HL/MRP   tool.   Planned   lead-­‐times   are   intuitively   set   based  on  the  experience  of  the  scheduler  

• Scenario  2H:  This  scenario  is  similar  to  scenario  1H  but  with  routing  uncertainty  due  to  design   changes  introduced.  

• Scenario   1H-­‐PM:   In   this   scenario   all   planned   products   are   produced   in   exactly   the   routing   as   planned,   the   planning   is   made   with   the   use   of   the   HL/MRP   tool.   Planned   lead-­‐times   are   set   according  to  the  method  proposed  in  the  next  chapter.  

• Scenario  2H-­‐PM:  This  scenario  is  similar  to  scenario  1H-­‐PM  but  with  routing  uncertainty  due  to   design  changes  introduced.  

4.5  Verification  and  validation  

(25)

24

Simulation  12.  We  have  tried  to  find  the  cause  of  outliers  and  whenever  found  appropriate  the  outliers   are  removed  from  the  data.  

Doing  several  tests,  and  watching  the  models  at  a  low  running  speed  verified  the  models.  This  was  done   to   check   whether   the   products   are   processed   correctly   and   whether   the   methods   do   what   they   are   intended  to  do.  Moreover,  a  semi-­‐experienced  user  of  Plant  Simulation  was  asked  to  test  the  production   simulation   model.   Beforehand,   he   was   informed   about   the   goal   of   the   model   and   a   quick   screening   through  the  model  was  done  in  collaboration.    

By   comparing   the   capacity   loading   of   individual   workstations   in   the   commercial   ERP   system   with   the   MRP  simulation,  white-­‐box  validation  of  the  MRP  simulation  model  was  done.  At  first  high  deviations  in   capacity  requirement  were  found  for  one  particular  workstation,  however  it  appeared  that  the  capacity   profile  of  this  workstation  (Bouwwikkel)  was  out-­‐dated  in  the  commercial  ERP  system  as  the  merger  of   two-­‐production   sites   added   extra   capacity.   When   all   settings   within   both   models   were   the   same,   no   deviations  were  found  in  both  the  order  release  list  as  the  capacity  requirements.  As  the  HL/MRP  is  just   an   adjustment   in   configurations   of   the   detailed   MRP   simulation,   and   the   logic   remains   the   some,   not   specific  white-­‐box  testing  has  been  performed.  We  have  verified  the  model  by  setting  the  PLTs  to  zero  in   both  configurations;  this  should  result  in  exactly  the  same  capacity  requirements  and  order  release  lists.   White-­‐box   validation   of   the   production   simulation   was   done   by   inspecting   the   output   reports   for   individual   stations,   and   discussing   them   with   the   production   planner,   the   shop   floor   manager   an   operator.   Within   these   sessions   in-­‐   and   output   of   the   model   were   discussed,   and   important   variables   were  discussed  like  utilization  and  actual  lead-­‐time.  Some  minor  adjustments  were  made,  especially  in   the  hours  a  day  a  workstation  worked.  Moreover,  breaks  were  reduced  from  one-­‐hour  to  a  half-­‐hour  per   shift.  This  as  a  rotating  system  is  used,  which  implies  that  while  every  worker  goes  on  a  shift  of  an  hour,   machinery  is  only  standing  still  for  a  half  hour.  

After  this,  black-­‐box  validation  is  used  to  check  the  overall  behaviour  of  the  model  (Robinson  2004).  For   both   models,   extensive   validation-­‐sessions   with   the   production   planner   and   the   shop   floor   manager   were   conducted.   Black-­‐box   validation   of   the   MRP   simulation   model   is   done   by   comparing   the   order   release  dates  of  the  detailed  MRP  simulation  with  the  commercial  ERP  system  the  company  is  currently   using.  The  issue  of  experimentation  validity  is  discussed  in  the  next  section.  

(26)

25

In  the  simulation  game,  the  production  simulation  model  used  is  a  terminating  process,  as  a  one-­‐week   production   schedule   in   the   end-­‐point   of   the   simulation.   Therefore,   the   run   length   will   be   a   week   of   operations  (Monday  to  Sunday).  While  often  terminating  process,  returning  to  the  empty  setting  after   each  period  is  not  a  realistic  starting  point  for  this  model.  From  the  second  week  onwards,  the  situation   at  the  end  of  the  previous  week  is  the  starting  point  for  the  week  after.  However,  because  the  system   starts  in  an  empty  state,  it  has  to  be  filled  with  products  before  a  representative  state  is  achieved  for  the   first  week.  The  weekly  order  release  lists  from  the  previously  described  experiments  were  combined  in   the  simulation  game  so  that  the  simulation  model  can  be  described  as  non-­‐terminating.  

In   this   case   it   is   appropriate   to   use   a   warm-­‐up   period   before   obtaining   results.   The   warm-­‐up   time   is   defined  as  the  period  the  model  needs  to  reach  a  representative  state  (Robinson  2004).  An  appropriate   warm-­‐up  period  is  determined  with  the  use  of  the  Welch’s  method.  The  Welch  method  is  applied  on  the   average   lead-­‐time   obtained   from   the   first   scenario   (1D).   After   testing   several   window   sizes,   it   is   concluded  that  a  window  size  of  5  is  best  for  this  data  as  it  smoothens  the  data  best.  After  processing  43   products,  a  representative  state  is  reached.  This  is  equal  to  a  warm-­‐up  period  of  1  day.  See  Appendix  C   for  a  complete  overview  of  the  Welch  method.  Furthermore,  a  run  length  of  5  weeks  (35  days)  will  be   used,  thus  the  end-­‐time  of  the  simulation  will  be  set  to  36  days  (run  length  +  warm-­‐up).  

Referenties

GERELATEERDE DOCUMENTEN

In this paper I focus my research on the Dutch small and medium sized enterprises (SME) therefore we should also consider the influence of corporate

This inclusion of TMT research was identified as a gap requiring further research in the Nielsen and Nielsen (2011) paper as they analysed the role of top management team

KPN should be aware of their activities and be active in developing IP services to manage this risk (Notulen Algemene Vergadering van Aandeelhouders Koninklijke KPN N.V., 2009).

The first one includes the changing safety stock level (to account for demand patterns) and the second extension includes the influence of changing price and yield of the raw

The night/day accident ratio for different classes of road and light levels (Amsterdam-West and Leeuwarden).. Classification of

Especially in terms of economic policies, the analysis has shown that the German multi-level federalism leads to growing incongruence between these two levels as the federal branches

It is found that higher slack levels of human resources impact positively on internal innovation outcomes, whereas the squared terms of the independent variables are not