• No results found

The fight for a reactive site Groot, I.M.N.

N/A
N/A
Protected

Academic year: 2021

Share "The fight for a reactive site Groot, I.M.N."

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The fight for a reactive site

Groot, I.M.N.

Citation

Groot, I. M. N. (2009, December 10). The fight for a reactive site. Retrieved from https://hdl.handle.net/1887/14503

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/14503

Note: To cite this publication please use the final published version (if applicable).

(2)

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op donderdag 10 december 2009 klokke 13.45 uur

door

Irene Monique Nicolette Groot

geboren te Amsterdam in 1980

(3)

Promotiecommissie

Promotores: Prof. dr. A. W. Kleyn Prof. dr. G. J. Kroes Co-promotores: Dr. L. B. F. Juurlink

Dr. R. A. Olsen Overige leden: Prof. dr. J. Brouwer

Prof. dr. M. C. van Hemert Prof. dr. M. T. M. Koper Prof. dr. A. C. Luntz Dr. M. Rost

Prof. dr. P. Saalfrank Prof. dr. S. Stolte

The research described in this thesis was partially made possible by financial support from Stichting Fundamenteel Onderzoek der Materie (FOM), which is financially supported by de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

Productie en vormgeving omslag: F&N Boekservice

(4)

Voor mama

A scientist in his laboratory is not only a technician: He is also a child placed before natural phenomena which impress him like a fairy tale.

Marie Curie (1867-1934)

(5)
(6)

Contents

1

Introduction 9

1.1 Heterogeneous catalysis . . . 9

1.2 Reactions of atoms and molecules on surfaces . . . 10

1.3 Dissociative adsorption of H2 on a metal surface . . . 12

1.4 H2 + Ru(0001) and H2 + Pt(S): Background and motivation . . . 13

1.4.1 H2 dissociation on Ru(0001) and CO-precovered Ru(0001) . . . 14

1.4.2 Dissociative adsorption of H2 on stepped platinum . . . 16

1.5 Outline and major results of this thesis . . . 18

1.6 Outlook . . . 21

1.6.1 Hydrogen dissociation on bare Ru(0001) . . . 21

1.6.2 Hydrogen dissociation on CO-precovered Ru(0001) . . . 23

1.6.3 Hydrogen dissociation on stepped platinum . . . 24

2

Experimental set-up and techniques 31

2.1 Ultra-high vacuum set-up . . . 31

2.2 Molecular beam techniques . . . 33

2.3 Surface science techniques . . . 34

2.3.1 Temperature programmed desorption spectroscopy . . . 34

2.3.2 Low energy electron diffraction . . . 35

2.4 Experimental procedures . . . 36

2.4.1 Time-of-flight spectrometry . . . 36

2.4.2 King and Wells technique . . . 38

3

Calculational methods and approximations 45

3.1 The Born-Oppenheimer approximation . . . 45

3.2 Density functional theory . . . 46

3.3 Building the potential energy surface . . . 47

3.3.1 Electronic structure calculations . . . 47

3.3.2 Modified Shepard interpolation method . . . 48

3.3.3 Implementation of the MS method in GROW . . . 49

3.4 Quantum dynamical calculations: the time-dependent wave packet method . 50 3.4.1 The initial wave packet . . . 51

3.4.2 Time propagation . . . 52

3.4.3 Asymptotic analysis of the wave packet . . . 52

3.4.4 Optical potential . . . 54

3.4.5 Finite basis representations and discrete variable representations . . . 54 v

(7)

vi

3.5 Quasi-classical trajectory calculations . . . 58

3.6 Molecular beam simulation . . . 58

3.7 The CO/Ru(0001) system . . . 60

4

Supersonic molecular beam studies of dissociative adsorption of H

2

on Ru(0001) 65

4.1 Introduction . . . 65

4.2 Experimental apparatus and methods . . . 66

4.3 Results . . . 68

4.4 Discussion . . . 69

4.5 Summary . . . 74

5

A theoretical study of H

2

dissociation on ( √ 3 × √ 3)R30

CO/Ru(0001) 79

5.1 Introduction . . . 79

5.2 Theory . . . 81

5.2.1 H2 + CO/Ru(0001) system . . . 81

5.2.2 Electronic structure calculations . . . 81

5.2.3 Locating barriers along different H2 dissociation paths . . . 83

5.2.4 Two-center projected density of states calculations . . . 85

5.3 Results and discussion . . . 85

5.3.1 Barrier heights and locations . . . 85

5.3.2 An energy decomposition and a molecular orbital analysis of the H2 approach to the surface and the subsequent dissociation . . . 90

5.4 Conclusions . . . 95

6

Dynamics of dissociative adsorption of hydrogen on a CO- precovered Ru(0001) surface: A comparison of theoretical and experimental results 101

6.1 Introduction . . . 101

6.2 Theory . . . 103

6.2.1 Potential energy surface . . . 103

6.2.2 Quasi-classical trajectory calculations . . . 108

6.2.3 Quantum dynamics calculations . . . 110

6.2.4 Molecular beam simulation . . . 111

6.3 Results and discussion . . . 114

6.4 Conclusions . . . 123

7

Dynamics of hydrogen dissociation on Pt(211) 127

7.1 Introduction . . . 127

7.2 Experimental apparatus and methods . . . 128

7.3 Results . . . 129

7.4 Discussion . . . 130

7.5 Summary . . . 133

(8)

vii

8

Dynamics of hydrogen dissociation on stepped platinum 137

8.1 Introduction . . . 137

8.2 Experimental apparatus and methods . . . 139

8.3 Results and discussion . . . 140

8.3.1 Reaction mechanisms . . . 140

8.3.2 Modeling reactivity on stepped platinum . . . 147

8.5 Conclusions . . . 150

Nederlandse samenvatting 153

List of publications 157

Curriculum Vitae 159

Nawoord 161

(9)

Referenties

GERELATEERDE DOCUMENTEN

Using supersonic molecular beam techniques, four different dissociation mechanisms were found for Pt(533) [77]: (i) Direct dissociative adsorption at terrace sites, dominant at

• The molecular beam of hydrogen is blocked at three different places (first beam shutter, valve and second beam shutter, see Fig. 2.1), and thus hydrogen gas is prevented from

The energy distribution of the molecular beam was numerically integrated using points with equal spacing in the energy, and for each of these energies the reaction probability was

Different H 2 + CO/Ru(0001) reaction paths and the corresponding barrier heights and tran- sition states were determined. By a reaction path we mean a path from hydrogen in the gas

To compare our computed reaction probabilities to experimental results obtained for the same system [10], we have made a simulation of the molecular beam condi- tions used in

Three different reaction mechanisms are involved to account for the total reaction probabil- ity of hydrogen on stepped platinum: Indirect adsorption at low kinetic energy attributed

Deze discrepantie kan veroorzaakt worden door de aanwezigheid van rotationeel aangeslagen waterstof moleculen in de moleculaire bundel, of door het negeren van fononen

En ook toen je niet langer mijn student was, maar mijn collega, kon ik altijd bij je terecht voor fysieke hulp en een gezellig praatje.. Hirokazu, you came to Leiden because