• No results found

Do  barrier  options  add  value?  An  Asset  Liability  Management  Study  for   an  Average-­‐wage  Dutch  Defined  Benefit  Pension  Fund

N/A
N/A
Protected

Academic year: 2021

Share "Do  barrier  options  add  value?  An  Asset  Liability  Management  Study  for   an  Average-­‐wage  Dutch  Defined  Benefit  Pension  Fund"

Copied!
39
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Do  barrier  options  add  value?  An  Asset  Liability  Management  Study  for  

an  Average-­‐wage  Dutch  Defined  Benefit  Pension  Fund  

Master  Thesis  Finance   Puck  de  Ridder  (s2034921)  

June  24,  2014    

Abstract  

Pension   funds   worldwide   face   great   pressure   on   their   funding   ratios   due   to   changes   in   their   environment.  The  financial  crisis,  which  started  in  2008,  still  has  a  tremendous  impact  on  the  portfolios   of   pension   funds.   Pension   funds   can   reduce   market   risk   by   investing   higher   percentages   in   bonds.   However,  this  strategy  is  far  from  optimal.  The  use  of  put  options  is  already  widely  implemented,  but  this   strategy  comes  along  with  paying  high  premiums.  The  question  arises  whether  barrier  options  can  add   value  to  the  portfolio  of  a  pension  fund,  since  they  are  known  for  having  lower  premiums  in  comparison   to  put  options  with  the  same  strike  price.  These  lower  premiums  are  caused  by  the  path  dependency  of   barrier  options.  An  asset  liability  management  study  for  Dutch  defined  benefit  pension  funds  is  described   to  look  at  the  effects  of  different  portfolios  on  the  funding  ratio.  With  the  help  of  vector  auto  regression,   economic  and  financial  scenarios  are  constructed  to  simulate  the  future.  The  model  shows  results  that   are  in  contrast  with  the  underlying  ideas  of  the  portfolios;  the  use  of  options  can  lead  to  higher  chances   of  underfunding.  Based  on  the  results  of  our  model  it  is  hard  to  make  a  definite  conclusion  on  the  use  of   barrier  options  in  the  portfolios  of  pension  funds  and  further  research  is  necessary.    

 

JEL  codes:  G11,  G13  

(2)

 

2

 

1. Introduction  and  background  

1.1 Research  topic  

The  use  of  pension  funds  is  a  phenomenon  of  the  20th  century,  which  started  in  the  United  Kingdom,  the  

United   States   and   The   Netherlands   (Blake,   1999).   Pension   funds   are   created   for   the   purpose   of   regulating   pensions   of   their   participants:   employees,   sleeping   participants   and   retirees.   Employees   financially  contribute  to  the  fund  during  their  working  life  in  return  for  benefits  when  they  retire.  Martin   and  Grundy  (1987)  state  their  objective  as:  

“to   invest   the   scheme   monies   in   such   a   way   as   to   ensure   that   the   scheme   will   always   have  

resources  to  meet  its  liabilities  to  pay  benefits  as  and  when  they  fall  due  at  all  times  in  the  future;   and,  in  so  doing,  to  take  account  of  the  risk  factors  inherent  in  any  investment  situation”.    

Pension  funds  worldwide  face  difficulties  to  cope  with  the  great  pressure  on  their  funding  ratios,  which  is   due   to   changes   in   their   environment.   Increases   in   life   expectancy,   changing   accounting   rules,   contribution  reductions,  low  interest  rates  and  very  poor  equity  market  returns  have  led  to  a  steel  fall  in   funding   ratios   (Capelleveen   et   al.,   2004).   Many   funds   crossed   the   lower   boundary   of   the   minimum   funding  ratio  of  105%  required  by  the  Financial  Assessment  Framework.  Recently,  many  pension  funds  in   The   Netherlands   had   to   make   a   recovery   plan   to   solve   their   funding   ratio   problem.   Several   obvious   solutions  have  been  suggested:  one  is  to  increase  the  contributions  of  the  sponsors  and  the  other  is  to   reduce  pensions.  However,  both  options  can  only  be  used  to  a  certain  extent;  they  raise  the  costs  for  the   sponsor  or  reduce  benefits  for  the  participants.  These  negative  effects  raise  the  question  whether  there   is  another  possible  solution  for  underfunding.  Capelleveen  et  al.  (2004)  already  mention  the  complexity   of   investment   management   for   pension   fund   and   state   that   it   should   be   worthwhile   to   investigate   whether  pension  fund’s  health  can  be  improved  by  changing  the  way  pension  funds  invest.    

(3)

 

3

(Hoevenaars  et  al.,  2008).  A  pension  plan  manager  has  to  find  the  right  balance  between  this  risk  and  the   potential  positive  return  on  investments.  Equity  returns  are  known  to  be  more  volatile  than  the  returns   of  bonds.  In  rising  markets  the  gains  will  be  large,  but  in  bad  performing  markets  the  losses  will  be  great   as  well.  Put  options  could  be  a  solution  for  the  potential  large  losses;  they  limit  the  downside  risk,  but   the   upside   potential   is   still   available.   Put   options   establish   a   floor   in   the   equity   portfolio.   However,   important  to  understand  is  that  this  strategy  is  accompanied  with  an  option  premium.  This  put  option   strategy  seems  to  work  well  in  a  crisis,  but  standard  put  options  come  with  high  premiums.  In  stable  and   rising   markets   these   premiums   will   probably   not   payoff   because   the   chance   that   the   options   become   worthless  at  the  expiration  date  is  greater  than  in  a  crisis.  Since  the  market  has  historically  been  known   to  spend  years  at  a  time  in  a  stable  and  rising  market,  the  expensive  premiums  create  a  cumulative  drag   on  the  overall  portfolio  value  and  the  funding  ratio  of  the  pension  fund  (Bonsee  et  al.,  2012).  Therefore,   the  question  arises  whether  the  strategic  asset  allocation  of  a  pension  fund  can  be  improved  by  adding   barrier   options.   Barrier   options   are   options   with   payoffs   depending   on   whether   the   underlying   asset   price   hits   a   certain   threshold   during   the   maturity   of   the   option.   They   are   attractive   to   some   market   participants  because  they  are  less  expensive  than  the  corresponding  regular  options  (Hull,  2008).  To  fully   understand   the   benefits   and   pitfalls   of   this   product   for   pension   funds,   it   has   to   be   incorporated   in   an   asset  and  liability  management  framework.  

1.2 Literature  review  

The   main   goal   of   this   thesis   is   to   examine   whether   barrier   options   can   add   value   in   strategic   asset   allocation  of  Dutch  defined  benefit  pension  funds.  An  asset  liability  management  (ALM)  model  is  the  key   tool  of  this  analysis.  The  main  research  question  is:  Can  barrier  options  add  value  to  the  strategic  asset  

allocation  of  Dutch  defined  benefit  pension  funds?  The  strategic  asset  allocation  problem  is  approached  

with  the  help  of  scenarios  of  the  macroeconomic  and  financial  environment.  These  scenarios,  generated   using  a  vector  autoregressive  (VAR)  model,  serve  as  input  for  the  ALM  model.    

1.2.1  Asset  liability  management  models  

(4)

 

4

funds.   Prominent   examples   of   research   on   ALM   for   pension   funds   are   the   studies   of   Boender   (1995),   Boender  et  al.  (1998)  and  Ziemba  and  Mulvey  (1998).  

The  paper  of  Kingsland  (1982)  is  considered  to  be  one  of  the  classic  papers  concerning  an  ALM  approach.   In  this  paper  Kingsland  stated  the  following:  

“The  dynamic  behaviour  of  a  pension  plan  is  clearly  dominated  by  rules  and  methodology  which   are   discontinuous   and   nonlinear   functions   of   its   financial   condition.   The   task   of   developing   a   closed-­‐form   solution   to   evaluate   the   potential   state   of   a   pension   plan   following   a   series   of   stochastic  investment  and  inflation  experiences  would  be  extremely  difficult,  if  not  possible.  To   date,   the   only   approach   that   has   proven   feasible   is   the   application   of   Monte   Carlo   simulation,   wherein   an   investment   and   inflation   scenario   is   generated   by   random   draws   based   on   the   expected  probability  distribution  of  year  to  year  investment  and  inflation  behaviour.  In  order  to   develop  an  accurate  assessment  of  the  range  of  potential  uncertainties,  it  is  necessary  to  repeat   this   simulation   process   by   generating   dozens   or   hundreds   possible   scenarios,   consistent   with   statistical  expectations.”    

Since  then,  science  has  enormously  moved  its  borders;  however,  the  core  of  the  statement  is  still  valid.   Since  the  mid-­‐1980s  the  use  of  strategic  programming  models  has  been  widely  advocated  to  be  used  by   pension  funds  (Consigli  and  Dempster,  1998  and  Mulvey  et  al.,  2000).  Ziemba  and  Mulvey  (1998)  provide   a   good   number   of   applications   in   ALM,   where   mostly   stochastic   programming   models   are   used.   The   hybrid   simulation/optimization   scenario   model   developed   by   Boender   (1997)   also   still   represents   the   starting  point  of  many  ALM  studies  in  The  Netherlands.    

According  to  Drijver  et  al.  (2000)  the  main  goal  of  ALM,  in  general,  is  to  find  acceptable  investment  and   contribution   policies   that   trade-­‐off   risks   and   returns   such   that   the   solvency   position   of   the   fund   is   sufficient  during  the  planning  horizon.  

1.2.2  Strategic  asset  allocation  

(5)

 

5

variability  in  returns  of  a  typical  fund  across  time  is  explained  by  policy,  about  40  percent  of  the  variation   of  returns  among  funds  is  explained  by  policy  and  on  average  about  100  percent  of  the  return  level  is   explained   by   the   part   of   the   total   return   that   comes   from   the   asset   allocation   policy   (active   return   is   explained  by  the  remainder).    

The  paper  of  Ibbotson  and  Kaplan  (2000)  shows  the  importance  of  strategic  asset  allocation,  however,   there  is  still  uncertainty  about  strategic  asset  allocation.  Modern  finance  theory  is  often  thought  to  have   started  with  the  mean-­‐variance  analysis  of  Markowitz  (1952).  Markowitz  showed  how  investors  should   pick   assets   if   they   care   about   the   mean   and   variance   of   portfolio   returns   over   a   single   period   only.   Canner   et   al.   (1997)   mention   the   asset   allocation   puzzle,   which   discusses   the   idea   that   conservative   investors  when  compared  to  aggressive  investors  are  typically  encouraged  to  hold  more  bonds,  relative   to  stocks.  Campbell  and  Viceira  (2001)  argue  in  their  book  that  optimal  portfolios  for  long-­‐term  investors   need  not  be  the  same  as  for  short-­‐term  investors.  Long-­‐term  investors,  who  value  wealth  not  for  its  own   sake  but  for  the  standard  of  living  that  they  can  support,  may  judge  risks  very  differently  from  short-­‐term   investors.    

Financial  managers  of  pension  funds  still  choose  to  allocate  their  wealth  to  traditional  asset  classes  such   as  stocks  and  bonds.  Recently,  other  asset  classes  including  commodities,  currencies,  derivatives,  hedge   funds,   private   equity   and   real   estate   have   gained   popularity.   Hoevenaars   et   al.   (2008)   discusses   the   alternative   asset   classes   and   their   value   for   long-­‐term   investors.   They   look   at   investors   that   invest   in   stocks,   government   bonds,   corporate   bonds,   T-­‐bills,   listed   real   estate,   commodities   and   hedge   funds.   They  conclude  that  these  alternative  asset  classes  add  value  for  long-­‐term  investors,  though  there  is  a   difference  between  the  strategic  portfolio  of  asset-­‐only  and  asset-­‐liability  investors.    

1.2.3  Models  

(6)

 

6

(1980)   strongly   advocates   the   use   of   VAR   time   series   to   generate   the   scenarios   of   the   economic   environment.  

1.3  Thesis  outline  

In  the  second  chapter  a  brief  introduction  on  pension  funds  and  ALM  is  provided.  First,  the  basic  idea  of   pension  funds  and  their  core  business  will  be  explained.  Also  the  different  types  of  pension  funds  will  be   mentioned  and  the  risks  these  different  funds  face.  Finally,  the  concept  of  ALM  will  be  introduced.  An   introduction   on   the   building   blocks   of   ALM   follows   and   in   the   end   the   application   of   ALM   will   be   discussed.  For  ALM  economic  scenarios  are  generated,  so  in  chapter  3  the  idea  of  economic  scenarios   will  be  discussed.  Different  models  can  be  used  to  generate  these  scenarios;  in  line  with  Hoevenaars  et   al.  (2003)  the  VAR  model  is  used  in  this  research.  This  model  will  be  discussed  in  the  second  section  of   chapter  3.  Finally  the  parameters  of  this  model  are  estimated  in  chapter  4.  

In  chapter  5  the  designed  model  will  be  used  to  perform  a  small  ALM  study  for  different  pension  funds   where  the  scenarios  serve  as  input.  The  type  of  pension  fund  used  is  introduced  and  the  assumptions   made  for  the  model  are  discussed.  The  age  distribution,  age  expectancy,  status  of  the  participants  and   wage   development   will   be   discussed   first.   After   that   the   factors   that   influence   the   liabilities   and   the   assets  of  a  pension  fund  will  be  explained  and  assumptions  are  described.  The  results  of  the  small  ALM   study  follow  in  chapter  6.  In  chapter  7,  the  results  are  discussed  and  possible  drawbacks  of  the  research   methodology  are  shown.  The  paper  finishes  with  conclusions  and  recommendations.    

2. Pension  funds  and  ALM  

This  chapter  introduces  the  idea  of  pension  funds  and  provides  background  information  on  the  funds.   This  introduction  will  show  that  funds  need  to  trade-­‐off  risk  and  return.  ALM  is  often  used  to  gain  insight   into  this  trade-­‐off  between  risk  and  return.  ALM  will  be  discussed  in  section  2.2.    

2.1  Pension  funds  

(7)

 

7

“to   invest   the   scheme   monies   in   such   a   way   as   to   ensure   that   the   scheme   will   have   resources   available  to  meet  its  liabilities  to  pay  benefits  as  and  when  they  fall  due  at  all  times  in  the  future;   and,  in  so  doing,  to  take  account  of  the  risk  factors  inherent  in  any  investment  situation”.  

Retirees  receive  a  pension  annuity,  which  is  dependent  on  the  structure  of  the  pension  scheme.  There   are  different  pension  schemes,  which  are  differentiated  by  the  set  of  rules  relating  to  the  benefits  of  the   members  of  the  fund.  Three  main  types  are  acknowledged  and  the  obligations  accumulating  under  each   of  these  schemes  constitute  the  liabilities  of  the  scheme’s  sponsor  or  manager  (Blake,  1999).  The  first   type  is  the  defined  contribution  (DC)  scheme  that  uses  the  full  value  of  the  fund’s  assets  to  determine   the  amount  of  pension.  The  DC  pension  depends  on  the  value  of  this  fund  only,  which  might  be  high  or   low   depending   on   the   success   of   the   fund   manager,   the   investment   mix,   the   results   of   the   financial   markets  and  the  interests  at  the  moment  of  retiring  of  the  participant.  This  system  is  well  known  in  the   United  States.  In  The  Netherlands,  the  defined  benefit  (DB)  system  is  most  often  used.  This  second  type   pension  fund  calculates  the  benefits  in  relation  to  factors  such  as  final  or  average  salary,  the  length  of   pensionable  service  and  the  age  of  the  member,  rather  than  to  the  value  of  the  assets  in  the  fund  as   such.   The   third   system   is   the   targeted   money   purchase   (TMP)   scheme,   which   aims   to   use   a   defined   contribution   scheme   to   target   a   particular   pension   at   retirement,   but   which   also   benefits   from   any   upside  potential  in  the  value  of  the  fund’s  assets.  The  TMP  scheme  ensures  a  minimum  pension  level,   but  there  is  not  a  maximum  pension  level.  

Off   course,   just   as   other   portfolios,   pension   funds   face   many   risks.   There   are   risks   specifically   for   pensions  funds:  risk  of  death,  early  retirement  and  longevity.  On  the  other  hand,  they  face  interest  risk,   credit  risk  and  market  risk.  These  risks  are  important  for  pension  plans,  since  pension  funds  need  to  fulfill   the  requirement  of  their  funding  ratio.  In  this  way  they  will  be  able  to  keep  paying  their  liabilities  in  the   future.  Pension  managers  have  to  trade-­‐off  these  risks  against  returns  continuously.  ALM  considers  risks   faced  by  the  assets  and  liabilities  and  tries  to  make  the  best  trade-­‐off  between  risks  and  returns.    

2.2  Asset  Liability  Management  

(8)

 

8

al.  (2000)  the  main  goal  of  ALM,  in  general,  is  to  find  acceptable  investment  and  contribution  policies   that   trade-­‐off   risks   and   returns   such   that   the   solvency   position   of   the   fund   is   sufficient   during   the   planning  horizon.  Swaiger  et  al.  (2010)  mention  the  central  decision  problem  in  ALM  as  the  construction   of  a  portfolio  of  fixed-­‐income  securities  for  a  pension  fund,  which  takes  into  account  the  future  outflows   (liabilities)   of   the   pension   scheme   and   a   set   of   other   constraints.   They   also   determine   the   optimum   trade-­‐off   between   paid   premiums   and   deviations   between   assets   and   liabilities.   ALM   studies   are   well   acknowledged  in  strategic  asset  allocation  policies  for  pension  funds.  Following  Leibowitz  et  al.  (1994)   ALM  in  this  research  is  approached  from  a  funding  ratio  perspective.  The  funding  ratio  is  the  main  aspect   that  pension  funds  have  to  manage  and  control;  risk  of  underfunding  is  one  of  the  greatest  concerns  of  a   pension  plan.  Funding  ratio  is  measured  as  the  ratio  of  the  value  of  the  assets  and  liabilities.    

As   mentioned   before,   pension   funds   face   many   risks.   ALM   analysis   takes   these   uncertainties   into   account,   consisting   of   both   the   future   economic   and   financial   environment   and   the   pension   liabilities   that  result  from  uncertain  demographic  developments.  An  ALM  model  typically  consists  of  a  number  of   building   blocks   or   modules,   each   related   to   different   aspects   of   fund   management   decision:   external   economy,   actuarial   liability   structure,   asset   structure,   policy   instruments   and   objective   function   (Capelleveen,   2004).   Figure   2.1   shows   the   formulation   of   a   general   ALM   problem   graphically   (Steehouwer,  2005).  

(9)

 

9

3. Economic  scenarios  

This  chapter  start  with  explaining  economic  and  financial  scenarios  and  how  and  when  these  scenarios   can  be  used.  In  section  3.2  the  VAR  model  is  discussed.  This  model  is  used  to  generate  the  economic  and   financial  scenarios.    

3.1  Economic  and  financial  scenarios  

Macroeconomic  and  financial  variables  from  the  ALM  problem  are  the  most  important  risk  and  return   factors   for   a   pension   fund.   The   risk   drivers   are   modelled   in   scenarios   and   serve   as   input   for   our   ALM   model.  Brauers  and  Weber  (1988)  define  a  scenario  as:  

“a   future   environment,   considering   possible   development   of   relevant   interdependent   factors   of   the  environment”.  

Instead  of  focus  on  a  single  future  development,  a  large  number  of  scenarios  of  economic  and  financial   variables   are   generated.   A   large   set   of   scenarios   is   assumed   to   be   a   reasonable   representation   of   the   uncertain  future;  the  model  assumption  is  made  that  one  of  these  paths  will  materialize.  Uncertainty  is   still  preserved  in  that  the  decision  maker  does  not  know  which  scenario  describes  the  true  future  state  of   the   world   (Dert,   1995).   Generating   economic   scenarios   is   also   called   scenario   analysis,   stochastic   simulation  or  Monte  Carlo  simulation.  Scenario  analysis  is  not  using  extrapolation  of  the  past  and  does   not  expect  past  observations  to  be  still  valid  in  the  future.  It  tries  to  consider  possible  developments  and   turning  points,  which  may  be  connected  to  the  past.  The  interrelations  between  the  variables  are  taken   into  account  as  well.    

(10)

 

10

The  relation  between  scenario  generation  and  ALM  modelling  is  well  described  in  figure  3.2  (Dert,  1995).   Economic   scenarios   together   with   an   investment   policy   are   fed   into   a   model   that   states   all   relations   between  the  policy,  scenarios  and  the  relevant  output  (funding  ratio  in  our  case).  Along  the  lines  in  the   diagram,  ALM  and  scenario  analysis  enable  decision  makers  to  evaluate  and  compare  the  risk  and  return   consequences   of   different   policies.   Thereby   they   can   arrive   at   both   more   efficient   and   more   effective   strategic  policies.    

   

Gallo  (2009)  mentions  two  reasons  why  scenario  analysis  is  often  preferred  over  alternative  approaches.   First,   scenario   analysis   offers   the   flexibility   to   model   complex   interactions   and   relations   within   and   between  the  parameters  of  an  ALM  problem.  The  second  reason  for  the  popularity  of  scenarios  is  that  it   offers  great  possibilities  for  learning  about  the  problem  under  investigation.    

3.2  VAR  

There   are   several   ways   to   generate   future   scenarios.   Hoevenaars   et   al.   (2003)   mention   independent   drawings   from   a   normal   distribution,   VAR   model,   cascade   approach,   stochastic   differential   equation   approach  and  risk-­‐neutral  simulation.  All  these  approaches  aim  to  explain  the  most  important  challenges   in   macroeconomics   and   financial   markets,   in   example   they   try   to   explain   relations   between   money,   interest   rates,   prices   and   output.   Traditionally,   these   challenges   have   been   solved   using   structural   models  that  imposed  a  priori  restrictions  on  the  intercorrelations  of  the  data.  In  the  1980s,  Sims  (1980)   made   a   new   approach   popular,   the   VAR   models.   VAR   models   in   economics   are   used   as   a   forecasting   method   using   historical   data.   Hoevenaars   et   al.   (2003)   describe   the   idea   of   using   VAR   for   scenario   generation  as  that  a  draw  is  done  from  the  probability  distribution  of  the  error  terms  given  the  economic  

(11)

 

11

variables  of  the  last  period,  such  that  the  historical  correlations  are  taken  into  account  and  the  value  of   the   economic   variables   for   the   next   period   are   computed.   The   model   is   one   of   the   most   successful,   flexible  and  easy  to  use  models  for  the  analysis  of  multivariate  time  series.  It  has  proven  to  be  specifically   useful  for  describing  the  dynamic  behaviour  of  economic  and  financial  time  series  and  for  forecasting.   Forecasts   from   VAR   models   are   quite   flexible   because   they   can   be   made   conditional   on   the   potential   future  paths  of  specified  variables  in  the  model.    

The  variables  are  modelled  together  in  a  multi-­‐equation  time  series  model,  a  VAR  model  in  the  chosen   methodology.  The   model   includes  autocorrelation  (correlation  of  a   variable  through   time)   of   variables   and  cross  correlation  (correlation  between  variables).  Additionally,  correlation  between  variables  is  also   based   on   the   state   of   the   economy,   in   example   the   macroeconomic   and   financial   variables   that   are   included  in  the  model  (Hoevenaars  et  al.,  2003).  Describing  the  joint  behaviour  of  the  yield  curve  and   macroeconomic  and  financial  variables  is  important  for  bonds  pricing,  investment  decisions,  public  policy   and  liabilities.  

4. The  model  for  the  ALM  problem  

In  this  chapter  the  parameters  of  the  designed  model  will  be  estimated.  In  the  first  section,  Hoevenaars   (2008)  is  used  as  guideline  for  building  an  arbitrage-­‐free  VAR  model.  It  is  not  realistic  to  have  arbitrage   opportunities  in  the  model,  since  they  give  investors  the  opportunity  for  a  so-­‐called  ‘free  lunch’.  A  well-­‐ known  example  to  solve  the  issue  of  arbitrage  opportunities  is  to  model  the  term  structure  of  interest   rate   with   a   stochastic   discount   factor   (SDF),   also   called   a   deflator   or   pricing   kernel.   In   the   chosen   methodology,  with  generating  individual  scenarios,  the  issue  of  arbitrage  opportunities  is  not  relevant   since   the   model   does   not   make   use   of   an   optimization   strategy   that   takes   advantage   of   arbitrage   opportunities.  In  section  4.2,  the  simulation  method  of  the  VAR  is  described.  The  results  are  shown  in   section  4.3.  The  last  section  describes  the  method  used  to  value  the  derivatives  in  the  portfolios.    

(12)

 

12

4.1  VAR  (1)  model  

Following  Campbell  and  Viceira  (2005),  the  return  dynamics  are  described  by  a  first  order  VAR  model.   We   use   this   simple,   flexible   statistical   model   to   describe   the   dynamic   behaviour   of   asset   returns   and   macroeconomic  variables.  The  simple  structure  of  a  VAR  model  of  order  one  allows  for  a  straightforward   interpretation   of   the   model   parameters.   The   model   starts   with   a   set   asset   classes   that   can   enter   the   portfolio  and  of  which  returns  are  modelled.  It  adds  a  set  of  variables  that  are  relevant  for  the  simulation   of  those  returns  because  of  the  underlying  relations.  These  variables  are  most  often  referred  to  as  state   variables.    

The  first  order  VAR  for  monthly  data  is  described  as  

𝑧!!!= 𝑣 + 𝐵𝑧!+ 𝑢!                 (1)  

where  𝑣  is  a  (nx1)  vector  of  the  constant  terms  and  B  is  a  (nxn)  vector  containing  the  VAR  coefficients.  𝑧!   is  a  (nx1)  vector  of  n  state  variables.  The  designed  model  includes  sixteen  state  variables:  interest  swap   rates   with   maturities   of   1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   15,   20   and   30   years,   the   MSCI   return,   the   corresponding   dividend   yields   and   inflation.   These   state   variables   are   somewhat   different   than   other   models   in   the   literature   use.   Campbell   and   Viceira   (2005)   use   four   different   predictive   variables:   the   nominal  3-­‐months  interest  rate,  the  dividend-­‐price  ratio,  the  term  spread  and  the  credit  spread.  𝑢!  is  a   (nx1)  vector  containing  the  error  terms  of  the  regression  equations.    

4.2  Simulation  

(13)

 

13

4.3  Data  and  estimation  results    

For  the  ALM  study  monthly  data  from  January  1999  to  December  2013  are  used.  European  interest  swap   rates   with   maturities   of   1   to   10   years,   15   years,   20   years   and   30   years   are   used.   Price   inflation   (not   seasonally   adjusted)   of   Germany   is   used   for   the   representation   of   price   inflation   and   Morgan   Stanley   Capital   International   (MSCI)   world   total   return   index,   with   the   accompanying   dividend   yields   reflect   returns  and  dividend  yields  of  stocks.  All  data  are  retrieved  from  Datastream1.  The  MSCI  world  index  is  

used  as  stock  portfolio  since  it  reflects  international  investment  opportunities.  In  figure  4.1  the  plots  of   the  interest  rates  and  the  dividend  yield  are  given.    

The  figures  show  that  the  swap  rates  are  highly  correlated  and  the  long-­‐term  rates  are  in  general  higher   than  the  short-­‐term  rates.  The  monthly  inflation  and  returns  are  plotted  in  figure  4.2.  The  data  satisfy   the   stationarity   condition,   in   example   all   eigenvalues   of   matrix   B   are   smaller   than   1.   In   table   4.1   the   descriptive  statistics  and  the  eigenvalues  of  the  variables  are  given.  

Variable   μ   σ   Eigenvalue  

1  year  swap  rate   0.224   0.116   0.979764   2  year  swap  rate   0.238   0.113   0.956777   3  year  swap  rate   0.253   0.110   0.956777   4  year  swap  rate   0.267   0.107   0.923559   5  year  swap  rate   0.280   0.103   0.830596   6  year  swap  rate   0.292   0.100   0.692410   7  year  swap  rate   0.302   0.100   0.692410   8  year  swap  rate   0.311   0.095   0.562512   9  year  swap  rate   0.312   0.094   0.461694   10  year  swap  rate   0.325   0.092   0.355323   15  year  swap  rate   0.347   0.087   0.353232   20  year  swap  rate   0.355   0.087   0.275632   30  year  swap  rate   0.355   0.090   0.266221   Inflation   0.134   0.320   0.114044   MSCI  Return   0.494   4.651   0.114044   Dividend  Yield   0.186   0.046   0.015383  

Table  4.1  Descriptive  statistics  where  μ  (in  percentage)  is  the  mean  on  monthly  basis  and  σ  (in  percentage)  the  standard   deviation  of  the  sample.  The  last  column  represents  the  eigenvalues  of  the  variables.  

                                                                                                                         

(14)

 

14

 

 

Figure  4.1  Monthly  values  of  (a)  swap  rates  and  (b)  monthly  dividend  yield  of  the  MSCI  world  total  return  index.  

  .000 .001 .002 .003 .004 .005 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

1 year swap rate 2 year swap rate 3 year swap rate 4 year swap rate 5 year swap rate 6 year swap rate 7 year swap rate 8 year swap rate 9 year swap rate 10 year swap rate

(15)

 

15

 

 

Figure  4.2  Values  of  (a)  monthly  price  inflation  and  (b)  the  monthly  returns  on  the  MSCI.  

(16)

 

16

The  coefficients,  which  are  used  to  simulate  future  values,  are  different  than  the  VAR  estimates.  Multiple   regressions  are  used  to  get  regression  equations  with  significant  coefficients  (at  the  5%  significance  level)   only.  In  table  4.2  the  regression  equations  are  given.  The  p-­‐values  of  the  coefficients  are  shown  between   brackets.  According  to  the  VAR  and  the  following  regression  analyses  applied,  almost  all  swap  rates  are   predicted  by  the  return  of  the  MSCI  index.  The  6  and  9  years  swap  rates,  as  well  as  the  dividend  yields   are  often  predictors  of  future  values  of  the  swap  rates.  Inflation  is  predicted  by  its  own  lag-­‐value  and  a   constant.  The  MSCI  world  index  returns,  does  not  have  a  significant  predictor  and  is  thus  calculated  as  a   random   draw   from   the   error   distribution.   The   last   variable   included   in   the   VAR,   the   dividend   yield,   is   predicted  by  the  returns  of  MSCI  world  index,  its  own  lag-­‐value  and  a  constant.  The  simulation  for  the   MSCI  return  is  adjusted  since  the  random  draw  only  is  in  conflict  with  the  average  long-­‐term  return  of   approximately  6%  per  year.  Therefore,  the  mean  of  the  sample  (0.494%  on  monthly  basis)  is  added  to   the  scenarios  of  the  MSCI  return.  The  simulation  of  the  one-­‐year  swap  yield  also  leads  to  some  serious   problems,  over  time  it  will  gradually  decrease  to  around  -­‐0.2  per  month.  To  overcome  this  problem  we   simulated  the  one-­‐year  swap  rate  by  deducting  the  difference  of  the  means  of  the  one-­‐year  and  the  two-­‐ years  swap  rates  from  the  simulated  two-­‐years  swap  rates.  Since  the  swap  rates  are  highly  correlated  we   prefer  this  method  above  adjusting  the  regression  equation  from  the  VAR  model.  The  adjustments  take   place  after  all  the  other  scenarios  are  calculated  to  prevent  that  these  other  scenarios  are  influenced  by  

(17)

 

17

  Regression  equations  from  OLS  

y1t+1   1.015𝑦! ! 0.0000 − 0.057𝑦 !! 0.0362 + 0.001𝑀𝑆𝐶𝐼  𝑟𝑒𝑡𝑢𝑟𝑛! 0.0000 − 0.177𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑  𝑦𝑖𝑒𝑙𝑑! 0.0000 + 0.000(0.0000) + 𝜀!   y2  t+1   2.524𝑦𝑡9(0.0000) − 1.663𝑦𝑡30(0.0000) − 0.537𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑  𝑦𝑖𝑒𝑙𝑑𝑡(0.0000) + 0.001(0.0003) + 𝜀𝑡   y3  t+1   2.249𝑦𝑡 9(0.0000) − 1.316𝑦 𝑡 30(0.0000) + 0.001𝑀𝑆𝐶𝐼  𝑟𝑒𝑡𝑢𝑟𝑛 𝑡(0.0195) − 0.412𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑  𝑦𝑖𝑒𝑙𝑑𝑡(0.0000) + 0.001 + 𝜀𝑡   y4  t+1   2.170𝑦𝑡 6(0.0000) − 1.236𝑦 𝑡 9(0.0000) + 0.001𝑀𝑆𝐶𝐼  𝑟𝑒𝑡𝑢𝑟𝑛 𝑡(0.0005) − 0.164𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑  𝑦𝑖𝑒𝑙𝑑𝑡(0.0000) + 0.001(0.0001) + 𝜀𝑡   y5  t+1   1.598𝑦𝑡 6 0.0000 − 0.648𝑦 𝑡 9 0.0000 + 0.001𝑀𝑆𝐶𝐼  𝑟𝑒𝑡𝑢𝑟𝑛 𝑡 0.0004 − 0.138𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑  𝑦𝑖𝑒𝑙𝑑𝑡(0.0001) + 0.000(0.0009) + 𝜀𝑡   y6  t+1   1.769𝑦𝑡 9(0.0000) − 0.813𝑦 𝑡 20(0.0000) + 0.001𝑀𝑆𝐶𝐼  𝑟𝑒𝑡𝑢𝑟𝑛 𝑡(0.0008) − 0.156𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑  𝑦𝑖𝑒𝑙𝑑𝑡(0.0000) + 0.000(0.0027) + 𝜀𝑡   y7  t+1   0.941𝑦!!(0.0000) + 0.001𝑀𝑆𝐶𝐼  𝑟𝑒𝑡𝑢𝑟𝑛!(0.0005) − 0.135𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑  𝑦𝑖𝑒𝑙𝑑!(0.0000) + 0.001(0.0000) + 𝜀!   y8  t+1   0.912𝑦! !(0.0000) + 0.001𝑀𝑆𝐶𝐼  𝑟𝑒𝑡𝑢𝑟𝑛 !(0.0005) − 0.157𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑  𝑦𝑖𝑒𝑙𝑑!(0.0000) + 0.001(0.000) + 𝜀!   y9  t+1   −0.002𝑀𝑆𝐶𝐼  𝑟𝑒𝑡𝑢𝑟𝑛!(0.0323) − 1.350𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑  𝑦𝑖𝑒𝑙𝑑!(0.0000) + 0.006(0.000) + 𝜀!   y10  t+1   0.477𝑦𝑡6(0.0000) + 0.518𝑦𝑡20(0.0000) + 0.001𝑀𝑆𝐶𝐼  𝑟𝑒𝑡𝑢𝑟𝑛𝑡(0.0067)  + 𝜀𝑡   y15  t+1   0.139𝑦𝑡6(0.0000) + 0.858𝑦𝑡20(0.000) + 0.001𝑀𝑆𝐶𝐼  𝑟𝑒𝑡𝑢𝑟𝑛𝑡  (0.0178) + 𝜀𝑡   y20  t+1   0.997𝑦! !"(0.0000) + 0.001𝑀𝑆𝐶𝐼  𝑟𝑒𝑡𝑢𝑟𝑛 !  (0.0046) + 𝜀!     y30  t+1   0.301𝑦𝑡6(0.0000) − 2.564𝑦𝑡15(0.0000) + 3.250𝑦𝑡20(0.0000) + 0.001𝑀𝑆𝐶𝐼  𝑟𝑒𝑡𝑢𝑟𝑛𝑡(0.0032)  + 𝜀𝑡   Inflation   −0.331𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛!   + 0.002(0.000) + 𝜀!   MSCI  return   𝜀!   Dividend   yield   −0.002𝑀𝑆𝐶𝐼  𝑟𝑒𝑡𝑢𝑟𝑛!(0.0000) + 0.987𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑  𝑦𝑖𝑒𝑙𝑑!(0.0000) + 0.000(0.0032) + 𝜀!   Table  4.2  Regression  equations  for  the  parameters  of  the  VAR  model.  All  coefficients  are  significant  at  the  5%  level.  The  p-­‐values   of  the  coefficients  are  shown  between  brackets.  

 

(18)

 

18

4.4  Black-­‐Scholes  formula  

The  prices  of  derivatives  cannot  be  generated  using  the  VAR  model,  but  prices  can  be  calculated  with  the   use  of  the  VAR  output.  The  relation  between  the  variables  is  specified  by  the  pricing  formulas  and  the   scenarios   serve   as   input   for   the   formulas.   The   value   of   put   options   will   be   calculated   using   the   well-­‐ known  Black-­‐Scholes  formula  explained  in  Hull  (2008)  

𝑝 = 𝐾𝑒!!"𝑁 −𝑑 ! − 𝑆!𝑒!!"𝑁 −𝑑!                                                                                                                (2)   where     d!= !" !! ! ! !!!!! ! ! ! ! !                                                                                                                                                                                                                          (3)   and     d!= !" !! ! ! !!!!!!! ! ! ! = d!− σ T                                                                                                                                                                          (4)   The  formulas  describe  the  value  of  a  put  option,  with  strike  price  K,  risk-­‐free  rate  r,  current  price  of  the   underlying  stock  S0,  dividend  yield  q,  time  to  maturity  T  and  volatility  σ.    

Barrier  options  are  options  with  payoffs  depending  on  whether  the  underlying  asset  price  hits  a  certain   threshold   during   the   maturity   of   the   option   and   cannot   be   priced   using   the   ‘standard’   Black-­‐Scholes   formula  since  path  dependency  is  involved.  Hull  (2008)  describes  different  types  of  barrier  options  that   regularly  trade  in  the  over-­‐the-­‐counter  market  and  they  can  be  classified  as  either  knock-­‐out  options  or   knock-­‐in  options.  A  knock-­‐out  option  ceases  to  exist  when  the  underlying  asset  price  hits  the  threshold;  a   knock-­‐in  option  comes  into  existence  only  when  the  underlying  assets  price  hits  the  threshold.  We  use   the  down-­‐and-­‐in  put  option  in  our  investment  portfolio.  This  barrier  option  has  the  same  pay-­‐off  as  a   standard  put  option  when  the  barrier  has  been  hit  and  otherwise  it  is  worthless  at  the  expiration  date.   When  the  barrier  is  greater  than  the  strike  price,  the  down-­‐and-­‐in  put  has  the  same  value  as  a  normal   put   option.   When   the   barrier   is   less   than   the   strike   price,   the   formulas   described   in   the   book   of   Hull   (2008)  are  used  to  value  the  barrier  options.    

(19)

 

19

The   Black-­‐Sholes   formula,   described   in   Hull   (2008),   for   a   down-­‐and-­‐in   put   with   a   barrier   level   that   is   lower  than  the  strike  price  is  

p!" = −S!N −x! e!!"+ Ke!!"N −x!+ σ T + S!e!!" H S! !" N y − N y! −      Ke!!" H S! !"!! [N y − σ T − N y!− σ T ]                                                                                                                                          (5)   where     λ =!!!!! ! ! !! ,                                                                                                                                                                    (6)   y =!"  (! ! !!!) ! ! + λσ T,                              (7)   x!=!"  (! ! !) ! ! + λσ T                                  (8)   and   y!=!"  (! !! ) ! ! + λσ T                              (9)   A  new  variable  comes  along  in  these  formulas,  H,  which  is  the  barrier  the  stock  has  to  reach  before  the   option   comes   into   existence.   The   formula   described   above   can   be   used,   when   the   underlying   is   monitored  continuously.  In  the  designed  model  the  stock  price  is  monitored  only  once  a  month,  so  the   formulas   need   to   be   adjusted   for   discrete   monitoring.   Broadie   et   al.   (1997)   came   up   with   a   solution,   which   will   be   applied   in   the   model.   In   their   adjusted   formula,   they   replace   the   barrier   level   by   𝐻𝑒!!.!"#$! !/!,  where  m  is  the  number  of  times  the  asset  price  is  observed.  

(20)

 

20

5. Pension  fund  ALM  study  

In  this  chapter,  simulations  of  stock  returns,  bond  returns,  inflation  and  interest  rates  serve  as  input  for   an  ALM  study  of  an  average  Dutch  defined  benefit  pension  fund.  As  explained  in  chapter  2,  there  are   many  forms  of  pension  funds,  but  this  research  focusses  on  the  defined  benefit  structure  since  almost   90%  of  the  pension  funds  in  The  Netherlands  use  this  structure2.  In  section  5.1  the  pension  fund,  which  is  

used   for   this   research,   is   described.   Sections   5.2   and   5.3   discuss   the   made   assumptions   for   the   ALM   model.    

In  line  with  Leibowitz  et  al.  (1994),  the  ALM  problem  is  approached  from  a  funding  ratio  perspective.  The   funding  ratio  is  the  main  aspect  that  pension  funds  have  to  manage  and  control;  risk  of  underfunding  is   one  of  the  greatest  concerns  of  a  pension  plan.  The  funding  ratio  is  measured  as  the  ratio  of  the  value  of   the  assets  and  the  liabilities.  

The   planning   horizon   of   most   pension   funds   stretches   out   for   decades;   as   a   result   of   the   long-­‐term   commitment  to  pay  benefits  to  the  retirees  (Kouwenberg,  2001).  For  the  purpose  of  the  ALM  study,  the   planning  horizon  is  split  into  sub  periods  of  one  month.  The  sub  periods  of  one  month  are  important  for   the   pricing   formulas   of   the   barrier   options.   These   normal   formulas   are   adjusted   for   the   discrete   observation  of  the  underlying.    

5.1  Average-­‐wage  Dutch  defined  benefit  pension  fund  

For  the  ALM  framework,  an  average-­‐wage  Dutch  defined  benefit  pension  fund  is  modelled,  which  aims   for   full   indexation   of   the   pension   rights.   Final   pension   benefits   depend   on   the   average   wage   that   is   earned  during  the  participant’s  career  and  is  built  up  out  of  2.05%3  of  the  participant’s  pensionable  wage  

for  each  year  of  service.  So  when  someone  retires  at  the  age  of  65  and  this  person  started  working  at  25,   this  person  has  built  up  pension  rights  of  82%  (40x2.05%)  of  his/her  average  salary.  In  2015  the  maximal   contribution   rate   will   decrease   to   1.875%.   The   rationale   behind   this   decrease   is   that   people   have   a   longer  period  to  build  up  their  pension  because  the  retirement  age  has  increased  by  two  years  (from  65   to  67  years).  The  data  of  participants  is  collected  from  De  Nederlandse  Bank4.  The  data  used  are  from  

pension  funds  related  to  companies  in  the  same  branch  of  industry.  Of  all  pension  funds,  around  80%  are   included  in  this  type  of  pension  funds.    

                                                                                                                         

2   This   information   is   gathered   from   the   Pensioenthermometer.   On   the   website   of   the   Pensioenthermometer,  

www.pensioenthermometer.nl,  Aon  Hewitt  tracks  the  funding  ratio  of  the  average  Dutch  pension  fund.  

(21)

 

21

5.1.1.  Age  distribution  and  status  of  the  participants  

Data  from  De  Nederlandse  Bank  for  the  age  distribution  and  status  of  the  participants  are  available  for   the  year  2012.  For  the  purpose  of  this  research  it  is  assumed  that  no  significant  changes  have  taken  place   since   then   and   therefore   the   data   of   2012   is   used   for   the   age   distribution   and   participant   status.   The   participant  status  can  be  split  into  three  different  categories:  active,  sleeping  and  retired  participants.   Figure  5.1  shows  the  distribution  of  the  participants.  It  is  remarkable  that  there  are  retired  participants   before  the  pensionable  age  of  65.  It  is  possible  that  these  participants  receive  disability  support  pension   or   partner’s   pension,   since   these   payments   fall   in   the   same   category   as   normal   pension   payments.   Around  the  age  of  65,  a  shift  can  be  seen  from  active  and  sleeping  participants  to  retired  participants.   This  shift  is  quite  logic,  since  the  legal  pension  age  was  65  for  a  long  term.  In  The  Netherlands  a  shift  is   taking  place  for  the  legal  pensionable  age.  The  pensionable  age  will  incrementally  increase  to  66  years  in   2019  and  to  67  years  in  2023.  For  the  calculations  the  ‘old’  pensionable  age  of  65  years  is  used.  The  life   expectancy  for  the  individuals  from  Het  Centraal  Bureau  voor  de  Statistiek5  is  used  for  the  remaining  life  

expectancy  of  the  participants,  which  is  necessary  for  calculating  the  liabilities.  For  simplicity,  the  data   are  rounded  to  the  nearest  integer.    

 

   

                                                                                                                         

5  StatLine  is  the  electronic  Databank  of  Het  Centraal  Bureau  voor  de  Statistiek.    

(22)

 

22

   

For  the  purpose  of  calculating  the  liabilities  some  assumptions  are  made.  For  the  age  category  of  <20   and   20-­‐25,   it   is   assumed   that   the   individuals   have   been   working   since   their   18th   birthday   and   for   the  

other  age  categories  it  is  assumed  that  the  individuals  have  been  working  from  the  age  of  236.  For  the  

pension  age,  it  is  assumed  that  everybody  that  has  not  reach  the  age  of  65  yet,  will  retire  at  the  age  of   65.  The  transitional  arrangements  are  not  taken  into  account  in  these  calculations.  For  everybody  that   already   passed   that   age   and   is   not   retired   yet,   it   is   assumed   that   they   will   retire   directly,   so   at   their   current  age.  For  calculating  the  liabilities  of  the  sleeping  participants,  the  age  group  is  taken  where  the   median  of  the  sleeping  individuals  is  included  as  the  age  that  they  will  change  from  active  to  sleeping   participants.   For   the   retirees   in   the   pension   fund,   the   same   assumptions   are   used   as   for   the   active   participants,  in  example  the  employees  of  the  first  two  age  groups  started  working  when  they  were  18   and  the  other  age  groups  started  working  at  the  age  of  23.  The  assumption  is  made  that  the  people  who   are  younger  than  65  retired  at  their  current  age  and  whoever  is  older  than  65  retired  at  the  age  of  65.   Figure  5.3  shows  the  total  liabilities  of  the  fund.  The  zigzag  pattern  is  probably  the  result  of  the  simplified   assumptions.    

                                                                                                                         

6  The  ages  of  18  and  23  for  starting  working  are  based  on  the  distribution  of  the  participants  of  the  pension  fund  

and  that  the  most  common  age  where  you  can  start  building  up  your  pension.  Legally  this  age  is  21  years  old,  but  in   many  pension  funds  you  can  participate  at  a  younger  age.  Since  21  years  falls  in  the  age  category  20-­‐25  years,  we   took  the  mean  (rounded  to  the  nearest  integer)  of  this  age  group  as  starting  age.  

0 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 100 Male Female R e m a in in g l if e e xp e ct a n cy Age

(23)

 

23

0 20,000 40,000 60,000 80,000 100,000 5 10 15 20 25 30 35 40 45 50 55 60 65 L ia b ili ti e s (i n m ln € )

Years from now  

 

5.1.2.  Wage  

During   the   career   of   individuals   their   wage   will   be   different,   depending   on   the   job   and   due   to   compensation   for   price   inflation.   For   the   wage   of   employees   the   same   average   wage   is   used   for   everyone  in  the  fund,  being  the  median  family  income  in  The  Netherlands  for  2014  from  Het  Centraal  

Planbureau7.  For  2014  the  value  of  the  median  family  income  is  estimated  at  €34,500  per  year.    

5.2  Liabilities  

Economic  variables  and  actuarial  predications  drive  the  liability  side,  whereas  economics  variables  and   sentiment  drive  financial  markets  and  security  prices  (Ziemba,  2003).  Based  on  Hoevenaars  (2008),  this   research  focuses   on   three   factors   that   change   the   liabilities   each   year:   actuarial   factors,   interest   rates   and  inflation.  

5.2.1  Actuarial  factors  

The  main  concern  with  actuarial  factors  is  the  level  and  length  of  nominal  future  cash  flows,  which  are   earned   by   the   employees.   The   evolution   of   the   liabilities   is   influenced   by   mortality,   hiring   and   firing   decisions  and  disability.  To  generate  scenarios  for  the  uncertain  development  of  the  liabilities  and  the   benefit  payments,  future  values  of  the  earned  rights  should  be  determined.  An  important  first  step  is  to                                                                                                                            

7www.cpb.nl  

Referenties

GERELATEERDE DOCUMENTEN

Note: Both the MSCI Emerging Markets Total Index exposure of emerging market hedge funds and average returns are estimated using a 24-month rolling window... The results for the

De portfolio wordt vervolgens geïmmuniseerd tegen elke verandering voor elke looptijd, waarbij de koersen tussen de key rates worden geïnterpoleerd in de praktijk is dit vaak

(contribute) intended to cover the pension benefits promised under the plan. 6 The accumulated pension assets are most often administered by a pension fund. Sometimes, this

The switching costs that pension funds have to pay in order to switch asset management providers could be higher if they take out the asset management services as part of a

cle conclusie dat door de keuze van de duration van de beleggingsportefeuille de economische risico's met betrekking tot het waardeverschil tussen beleggingen en verplichtingen

We asked respondents the following question: “How would you characterize [pension funds/banks/insurance companies] in terms of the following elements?” Six elements

Asset Management Costs and Financial Performance of Dutch Pension Funds in 2011- 2014..

Although the pension notes mention the weighted average duration of the defined benefit plans or pension liabilities only, this information was not used, because the reported