• No results found

Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration?

N/A
N/A
Protected

Academic year: 2021

Share "Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration?"

Copied!
5
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Bioresorbability, porosity and mechanical strength of bone

substitutes

Citation for published version (APA):

Hannink, G., & Arts, J. J. C. (2011). Bioresorbability, porosity and mechanical strength of bone substitutes: what

is optimal for bone regeneration? Injury, 42(SUPPL. 2), S22-S25. https://doi.org/10.1016/j.injury.2011.06.008

DOI:

10.1016/j.injury.2011.06.008

Document status and date:

Published: 01/09/2011

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be

important differences between the submitted version and the official published version of record. People

interested in the research are advised to contact the author for the final version of the publication, or visit the

DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page

numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

Bioresorbability,

porosity

and

mechanical

strength

of

bone

substitutes:

What

is

optimal

for

bone

regeneration?

Gerjon

Hannink

a

,

J.J.

Chris

Arts

b,

*

aOrthopaedicResearchLaboratory,DepartmentofOrthopaedics,RadboudUniversityNijmegenMedicalCentre,Nijmegen,TheNetherlands b

DepartmentofOrthopaedicSurgery,ResearchSchoolCaphri,MaastrichtUniversityMedicalCentre,Maastricht,TheNetherlands

Introduction

Annually,morethan2.2millionbonegraftingproceduresare performedworldwide.1Thecurrentgoldstandardforbonerepair

istheuseofautologousbonegraftsharvestedfromaremotesitein thepatient.Afewofthemanyproblemsassociatedwithautografts includedonor site morbidity andthe restrictedavailability.2 In

additiontoautografts,successhasbeenreportedwiththeuseof allografts.Liketheautografts,theseallograftsarealsolimitedin supplyandthereexistsariskofdiseasetransmissionandimmune rejection.Despitethebenefitsofbothautograftsandallografts,the relativeconcerns over their usehasled tothedevelopment of numeroussyntheticbonesubstitutes.

Oneofthemostpromisinggroupsofsyntheticbonesubstitutes arecalciumphosphateceramics(CaPs).Themostcommonlyused CaPsarehydroxyapatite(HA)andtricalciumphosphate(TCP)oran intrinsiccombinationofthetwo.3,4

The rationale for the development of CaPs has been their similarityincompositiontobonemineralandtheirsimilaritiesin

somepropertiesofbone,suchasbiodegradability,bioactivityand osteoconductivity. Another important property of bone, inter-connectingporositycanbeintroducedduringthemanufacturing processofCaPs.Besidesthesedesirableproperties,CaPsareknown tohave relatively low mechanical properties and are therefore mostlynotsuitableforapplicationinload-bearingareas,astheydo notprovidesufficientstructuralsupport.5Aproperunderstanding

oftheseproperties,bothbiologicalandmechanical,arecriticalfor the successful application of CaPs as bone substitutes. In this review we describe and discuss the interaction between these propertiesinsearchofwhatisoptimalforboneregeneration. Bonecell–ceramicinteractions

AlthoughTCPandHA derivedthroughthermaltreatmentdo notexistnaturally,theyhavebeenshowntoinduceabiological responsesimilartothatofbone.3,5Cellsattachtoandengulfthe

CaPs,causingthemtobiodegradeinvitroandinvivo.CaPsallow osteoblastcellstoattach,proliferate,anddifferentiate. Differenti-atingosteoblastcellsproducecollagentypeI,alkaline phospha-tase, proteoglycans, and matrix proteins, such as osteocalcin, osteopontin, and bone sialoprotein known to signify bone formation.5 Cellular response is affected bythe composition of ARTICLE INFO Keywords: Bonesubstitutes Porosity Calciumphosphate Biodegradability Boneregeneration ABSTRACT

Bonerepairisamulti-dimensionalprocessthatrequiresosteogeniccells,anosteoconductivematrix, osteoinductivesignalling,mechanicalstabilityandvascularization.Inclinicalpractice,bonesubstitute materialsarebeingusedforreconstructivepurposes,bonestockaugmentation,andbonerepair.Over thelast decade,theuseofcalciumphosphate(CaP)basedbone substitutematerialshasincreased exponentially.Thesebonesubstitutematerialsvaryincomposition,mechanicalstrengthandbiological mechanismoffunction,eachhavingtheirownadvantagesanddisadvantages.Itisknownthatintrinsic materialpropertiesofCaPbonesubstituteshaveaprofoundeffectontheirmechanicalandbiological behaviour and associated biodegradation. These material properties of bone substitutes, such as porosity, composition and geometry change the trade-off between mechanical and biological performance.Thechoiceoftheoptimalbone substitutesisthereforenotalwaysaneasyone,and largelydependsontheclinicalapplicationanditsassociatedbiologicalandmechanicalneeds.Notall bonegraftsubstituteswillperformthesameway,andtheirperformanceinoneclinicalsitemaynot necessarilypredicttheirperformanceinanothersite.CaPbonesubstitutesunfortunatelyhaveyetto achieveoptimalmechanicalandbiologicalperformanceandtodateeachmaterialhasitsowntrade-off betweenmechanicalandbiologicalperformance.Thisreviewdescribestheeffectofintrinsicmaterial propertiesonbiologicalperformance,mechanicalstrengthandbiodegradabilityofCaPbonesubstitutes.

ß2011ElsevierLtd.

*Correspondingauthor.Tel.:+31433874502. E-mailaddress:j.arts@mumc.nl(J.J.ChrisArts).

ContentslistsavailableatScienceDirect

Injury

j ou rna l h ome p a ge : w ww . e l se v i e r. co m/ l oc a te / i n j ury

0020–1383ß2011ElsevierLtd.

doi:10.1016/j.injury.2011.06.008

Open access under the Elsevier OA license.

(3)

CaPs.Forexample,zincfromzinccontainingtricalciumphosphate orfluoride (F)fromF-apatite or carbonate-F-apatite have been showntoinhibitosteoclasticactivity.5,6Ontheotherhand,Fin

F-apatiteorMgorZnand/orForcombinationofthethreeionsin carbonateapatitematrixwasshowninvitrotopromotecollagen production and phenotypic expression of proteoglycans and matrixproteinsassociatedwithbonemineralization.The forma-tion of distinct resorption pits on HA and TCP surfacesin the presenceofosteoclastswasalsoobserved.7,8 Factorsthat affect

cellularresponsetoCaPsincludesurfacetopography(roughness), geometry,composition,andparticlesize.5

Biodegradability

Ideally,therateofresorptionofCaPsissimilartotherateofnew bone formationbut for obvious reasonsnot anyfaster. In vivo biodegradabilitycanbeachievedbydissolutionoriscellmediated. The population of cells responsible for the resorption of CaPs mainlyconsistsofmultinuclearcellsandosteoclasts.7,8However,

macrophagesareinvolvedinthephagocytosisofCaPsaswell.9The

speed of biodegradability and the cell type involved in the resorption processare determinedby both material properties, suchas Ca/P ratio,crystallinity, particle size, surface area, and porosity and the local biological environment, suchas pH, the presenceofcells,andH2Ocontent.3Ingeneral,CaPsconsistingof

TCPhavehigherdegradationratesascomparedtoCaPsconsisting ofHA.10

Recently, new tools have been developed to assess the incorporation, remodelling, and resorption of biomaterials in patients. High-resolution peripheral QCT makes it possible to assesschangesinboneandbiomaterial/CaPstructureanddensity invivo/insituwitharelativelyhigh(82

m

m)resolution.11Thelow

radiationexposureassociatedwiththistechniquemakes longitu-dinalfollow-upin patients possibleandwill providelong-term clinicaldataoftheincorporation,remodellingandresorptionbone substitutematerials over time. In addition,FEA modelscan be buildfromtheQCTimagestoquantifychangesinboneandbone graft substitutestrength. Another, promising method tofollow bonemetabolismand bloodflowinpatientsis18F-fluoridePET scanning.12,13However,dataon thelong-termfollow-upofCaP

bonesubstitutesimplantedinpatientsisstillratherlimited. Poresize

Poresincalciumphosphatematerialsarenecessaryforbone tissueformationbecausetheyallowmigrationandproliferationof osteoblastsandmesenchymalcells,aswellasvascularization.In addition, a porous surface improves mechanical interlocking (interdigitation) between the implant biomaterial and the surroundingnaturalbone,providinggreatermechanicalstability atthiscriticalinterface.14

Poresizecanbedividedintwodifferentgroups:microporous (<5

m

mpores)andmacroporous(>100

m

mpores).14,15

Micropo-rosityandmacroporosityareimportantforthebioresorbabilityof thematerial.Inaddition,macroporosityplaysanimportantrolein theosteoconductivity.3,5

Theminimumrecommendedporesizeforabonesubstituteis 100

m

m,16butsubsequentstudieshaveshownbetterosteogenesis

for substitutes with pores >300

m

m.14,17,18 Smaller pores (75–

100

m

m)resultediningrowthofunmineralizedosteoidtissueor werepenetratedonlybyfibroustissue(10–44and44–75

m

m).16

However,usinglaserperforationtechniquesandtitaniumplates, fourdifferentporesizes(50,75,100and125

m

m)weretestedin rabbitfemoraldefectsundernon-load-bearingconditions.19Bone

ingrowthwassimilarinalltheporesizessuggestingthat100

m

m maynotbethecriticalporesizefornon-load-bearingconditions.A

very interesting aspect of the effect of pore size on bone regenerationistheimpactontheprogressiontowards osteogene-sis.Relativelylargerporesfavourdirectosteogenesis,sincethey allowvascularizationandhighoxygenation,whilstsmallerpores result in osteochondral ossification, although the type of bone ingrowthdependsonthematerialitselfandthegeometryofthe pores.18,20

Porosity

Manystudieshavedemonstratedagreaterdegreeand faster rate of bone ingrowth or apposition withpercentage porosity; however, there still seems to be some dispute regarding the optimum ‘‘type’’ of porosity. The rate and quality of bone integration have been related to a dependence on pore size, porosityvolumefraction,andinterconnectivity,bothasafunction ofstructuralpermeabilityandmechanics.21Boneregenerationina

scaffoldinvivoinvolvesrecruitmentandpenetrationofcellsfrom the surroundingbone tissue, as wellas vascularization.Higher porosity is expected to enhance osteogenesis and numerous studieshaveverifiedthishypothesis.Theseresultswerelikelydue tothelargersurfaceareathatresultedinhigherionexchangeand bone-inducingfactoradsorption.10,21Therearealimitednumber

ofreportsintheliteraturethatshownoeffectofporosityonthe amountofappositedbone.22,23Theabsenceofanyreportsonthe

beneficialeffectsoflowerporosityscaffoldsinvivosolidifiesthe requirementofhighlyporousimplantsforboneregeneration.

Microporosityresultsinlargersurfaceareathatisbelievedto contributetohigherboneinducingproteinadsorptionaswellasto ionexchangeandbone-likeapatiteformationbydissolutionand reprecipitation.21Surfaceroughnessenhancesattachment, prolif-erationanddifferentiationofanchoragedependentboneforming cells.5

High porosity and large pores enhance bone ingrowth and osseointegrationoftheimplantaftersurgery.14Althoughthereare

afewreportsinliteratureshowingnodifferenceintheosteogenic outcomeforscaffoldswithdifferentporosities,therearenoreports indicatingabeneficialeffectforimplantswithlowporosity.Other factors, such as the rate of degradation and the mechanical performanceofthescaffoldshouldbetakenintoaccountwhen porosityisassessed.

Interconnectivity

Anotherimportantfactorthatdeterminestheeffectivenessof porosityisthestructureoftheporeswithrespecttoeachother. Theporesmayeitherbeinterconnectingortheycontain ‘‘dead-ends’’.15Interconnectingmacroporosityis introducedby adding

porogens,suchasnaphthalene,H2O2,polymericporogensorusing

the foaming method.4 Microporosity depends on sintering

temperatureorsinteringprogram.CaPsinteredat12008Cshows significantlylessmicroporositythanthatsinteredat10008Canda dramaticchangeincrystalsize.5

Ingeneral,calciumphosphateswithinterconnectiveporesare advantageousoverbiomaterialscontainingdead-endpores,because aspatialcontinuousconnectionoftheporesystemhasadecisive meaningfortheingrowthofnewbone,especiallyinlong-termtissue interfacemaintenance.15However,whenusedincombinationwith

osteogeniccells,materialscontaininginterconnectiveporesareless abletocontainosteogeniccells,resultinginalongerperioduntilthe porespacehasbeenfilledwithnewlyformedbone.24

Biomechanicalproperties

The property that is most often used to characterize the mechanical behaviour of bone substitutes is their compressive G.Hannink,J.J.C.Arts/Injury,Int.J.CareInjured42(2011)S22–S25 S23

(4)

strength.Sincethesematerialsareintendedtobeusedasbone substitutes,itisimportanttokeepinmindthatthecompressive strengthofhumancorticalbonerangesbetween90and230MPa (withtensilestrengthsrangingfrom90to190MPa),whereasthe compressivestrength ofcancellousbone rangesbetween2 and 45MPa.25,26

Calcium phosphates generallyprovidelimited biomechanical support,becausetheyarebrittleandhavelittletensilestrength. TCPs are less brittle compared with HA. However, the faster degradation of TCP results in subsequent quicker loss of mechanicalstrengthovertime.

Although increased porosity and pore size facilitate bone ingrowth,theresultisareductioninmechanicalproperties,since thiscompromisesthestructuralintegrityofthescaffold.Moreover, scaffoldsfabricatedfromceramicswitha highdegradationrate shouldnothavehighporosities(>90%),sincerapiddepletionofthe materialwillcompromisethemechanicalandstructuralintegrity beforesubstitutionbynewlyformedbone.14

However,thereisanupperlimitinporosityandporesizesetby constraintsassociatedwithmechanicalproperties.Anincreasein thevoidvolumeresultsinareductioninmechanicalstrengthof thescaffold,whichcanbecriticalforregenerationinload-bearing bones.Forexample,anincreaseofthetotalporousvolumefrom10 to20%resultsinafactorfourdecreaseinmechanicalstrength.15,27

The extent to which pore size can be increased whilst maintaining mechanical requirements is dependent on many factors,includingthenatureofthematerialandtheprocessing conditionsusedinitsfabrication.

Bioactivity,osteoconductivityandosteoinductivity

Bioactivityisdefinedasthepropertyofmaterialstodevelopa direct,adherent,andstrongbondingwiththebonetissue.3Froma

cellular perspective, bioactivity reflects the attachment and differentiationofosteogeniccellsonceramicsurfaces.24

Osteoconductivity is the ability of a material to serve as a scaffold toguide formation of newly formingbone along their surfaces.Osteoinductivityistheinherentabilityofamaterialto induceboneformationwithoutthepresenceofosteogenicfactors andisusuallydemonstratedbyboneformationafterimplantation ofthesematerialsinanectopicsite.28,29

CaPmaterialsaregenerallyknowntobeosteoconductivebut notosteoinductive.However,severalCaPmaterials,suchasporous synthetic and coralline HA,

b

-TCP, and calcium phosphate cements, have been shown to have to abilityto form bone in ectopic sites in different animals without the addition of osteogenicfactors.Theosteoinductivepropertiesofthese materi-alsappear tobe based on their architectural features, suchas surfacegeometry,topography,poresize,andporositywhichallow entrapmentandconcentrationofcirculatingBMPsinthebiologic fluid.3,5,30,31 The main challenge remains to determine the

appropriatearchitectureforthesematerialstooptimizetheability toentrapandconcentrategrowthfactorsand/orosteoprogenitor cells.

Independent of architectural features, CaPs or CaP-based compositematerialscombinedwithBMPs,osteoprogenitorcells, andbioactiveproteinsorpeptideshavebeenshowntoenhance bone formation.32–34 The main challenges for this so-called

engineeredosteoinductivityaretodeterminetheoptimalscaffold, the appropriate dose of osteogenic factors, and the controlled releaseofthesefactorsfordifferentapplications.

Discussion

Theideaofanoptimalbonegraftsubstituteusableinallclinical indications, although alluring, is an idle one. Most bone graft

substitutesneedtobeinsertedintoastablehostsitethatcontains adequate vascularity and an adequate source of osteoblast precursorcells. In anappropriate site,thesegraft materialsare eventuallyresorbedand replacedbyhostbone. However,ifthe operativesiteismechanicallyunstableorifthereareinadequate cells orotherhostfactorslimiting bonehealing, problemsmay occur.Co-morbiditiesofthepatient,suchasosteoporosisand/or diabetes,willalsonegativelyinfluencetheinvivoperformanceand capacityofthebiomaterialtoincorporate.

Therefore,thebonesubstituteofchoicedependslargelyonthe clinicalapplicationanditsassociated biologicalandmechanical needs.35Itissensibletoassumethatnotallbonegraftsubstitutes

willperformthesamewayandthatthevalidationofabonegraft substitute in one clinical site may not necessarily predict its performance in another location.1,36 Non-invasive and non-destructivequantitativeimagingmodalitieshavebecomeauseful tools in monitoring the performance of CaPs in different locations.11–13

Thelargevarietyofbonesubstitutesavailableonthemarket represents not only the different clinical needs and scenarios encountered, but also the diversity of the expected clinical outcomes. The surgeon has to assess the requirements of the bonedefecttobegrafted,thinkofthepropertiesneededforrepair, and ultimately choose the appropriate bone substitute and its associatedsurgicaltechnique.Thechoiceoftheappropriatebone substitutescaffoldshouldbebasedonseveralparametershaving inmindthatthegoldstandardremainstheautograft.

Overtherecentyears,hybridbonesubstitutematerialshave appearedonthemarket.Usuallythebasisisanosteoconductive TCPorHAcalciumphosphatescaffoldwhichhasbeencombined withothercompoundstoenhancethemechanicalorthebiological performance.37,38Clinicalstudiesinvolvingtheadditionofgrowth

factors, suchas BMP-2 and BMP-7 toCaPs have demonstrated remarkable osteoinductive capacities.39,40 The incorporation

of such factors to create osteoinductive scaffolds remains a promising option. In the near future, complex combination productsthat includecells,growthfactors,and/orgenetherapy incombinationwithscaffoldswithoptimalgeometriesarelikelyto givesurgeonsmoreeffectivetoolsfordefect/applicationspecific bonerepair.

Conflictofintereststatement

The authors state that theyreceived nothing of value with regardtothismanuscript.Thereisnoconflictofinterest. References

1.GiannoudisPV,DinopoulosH,TsiridisE.Bonesubstitutes:anupdate.Injury 2005;36(Suppl3):S20–7.

2.DeLongWG,EinhornTA,KovalK,McKeeM,SmithW,SandersR,etal.Bone graftsandbonegraftsubstitutesinorthopaedictraumasurgery.Acritical analysis.JBoneJointSurgAm2007;89:649–58.

3.LeGerosRZ.Propertiesofosteoconductivebiomaterials:calciumphosphates. ClinOrthopRelatRes2002:81–98.

4.LeGerosRZ,LinS, RohanizadehR,MijaresD,LeGeros JP.Biphasic calcium phosphatebioceramics:preparation,propertiesandapplications.JMaterSci MaterMed2003;14:201–9.

5.LeGeros RZ. Calcium phosphate-based osteoinductive materials. ChemRev 2008;108:4742–53.

6.YamadaY,ItoA,KojimaH,SakaneM,MiyakawaS,UemuraT,etal.Inhibitory effect ofZn2+ in zinc-containing beta-tricalcium phosphate onresorbing activityofmatureosteoclasts.JBiomedMaterResA2008;84:344–52. 7.YamadaS,HeymannD,BoulerJM,DaculsiG.Osteoclasticresorptionofbiphasic

calciumphosphateceramicinvitro.JBiomedMaterRes1997;37:346–52. 8.YamadaS,HeymannD,BoulerJM,DaculsiG.Osteoclasticresorptionofcalcium

phosphateceramicswithdifferenthydroxyapatite/beta-tricalciumphosphate ratios.Biomaterials1997;18:1037–41.

9.GisepA,WielingR,BohnerM,MatterS,SchneiderE,RahnB.Resorptionpatterns ofcalcium-phosphatecementsinbone.JBiomedMaterResA2003;66:532–40. 10.HingKA.Bonerepairinthetwenty-firstcentury:biology,chemistryor

(5)

11.MuellerTL,WirthAJ,vanLentheGH,GoldhahnJ,SchenseJ,JamiesonV,etal. Mechanicalstabilityinahumanradiusfracturetreatedwithanovel tissue-engineeredbonesubstitute:anon-invasive,longitudinalassessment using high-resolutionpQCTincombinationwithfiniteelementanalysis.JTissue EngRegenMed2011;5:415–20.

12.SorensenJ,UllmarkG,LangstromB,NilssonO.Rapidboneandbloodflow formationinimpactedmorselizedallografts:positronemissiontomography (PET)studiesonallograftsin5femoralcomponentrevisions oftotalhip arthroplasty.ActaOrthopScand2003;74:633–43.

13.UllmarkG,SorensenJ,LangstromB,NilssonO.Boneregeneration6yearsafter impactionbonegrafting:aPETanalysis.ActaOrthop2007;78:201–5. 14.KarageorgiouV,KaplanD.Porosityof3Dbiomaterialscaffoldsand

osteogene-sis.Biomaterials2005;26:5474–91.

15.BlokhuisTJ, TermaatMF, den BoerFC, Patka P,Bakker FC, Haarman HJ. Propertiesofcalciumphosphateceramicsinrelationtotheirinvivobehavior. JTrauma2000;48:179–86.

16.Hulbert SF,Young FA,Mathews RS,Klawitter JJ, TalbertCD, Stelling FH. Potentialofceramicmaterialsaspermanentlyimplantableskeletalprostheses. JBiomedMaterRes1970;4:433–56.

17.TsurugaE, Takita H,Itoh H, Wakisaka Y, Kuboki Y. Pore sizeof porous hydroxyapatiteasthecell-substratumcontrolsBMP-inducedosteogenesis.J Biochem1997;121:317–24.

18.KubokiY,JinQ,KikuchiM,MamoodJ,TakitaH.GeometryofartificialECM:sizes ofporescontrollingphenotypeexpressioninBMP-inducedosteogenesisand chondrogenesis.ConnectTissueRes2002;43:529–34.

19.ItalaAI,YlanenHO,EkholmC,KarlssonKH,AroHT.Porediameterofmorethan 100micromisnotrequisiteforboneingrowthinrabbits.JBiomedMaterRes 2001;58:679–83.

20.JinQM,TakitaH,KohgoT,AtsumiK,ItohH,KubokiY.Effectsofgeometryof hydroxyapatiteasacellsubstratuminBMP-inducedectopicboneformation.J BiomedMaterRes2000;51:491–9.

21.HingKA.Bioceramicbonegraftsubstitutes:influenceofporosityand chemis-try.IntJApplCeramTechnol2005;2:184–99.

22.FisherJP,VehofJW,DeanD,vanderWaerdenJP,HollandTA,MikosAG,etal.Soft andhardtissueresponsetophotocrosslinkedpoly(propylenefumarate) scaf-foldsinarabbitmodel.JBiomedMaterRes2002;59:547–56.

23.KujalaS,RyhanenJ,DanilovA,TuukkanenJ.Effectofporosityonthe osteointe-grationandboneingrowthofaweight-bearingnickel-titaniumbonegraft substitute.Biomaterials2003;24:4691–7.

24.DennisJE,HaynesworthSE,YoungRG,CaplanAI.Osteogenesisinmarrow-derived mesenchymal cell porous ceramic compositestransplantedsubcutaneously:

effectoffibronectinandlamininoncellretentionandrateofosteogenic expres-sion.CellTransplant1992;1:23–32.

25.AnYH.Mechanicalpropertiesofbone.In:AnYH,DraughnRA,editors. Mechani-caltestingofboneandthebone-implantinterface.BocaRaton:CRCPress;2000. p.41–64.

26.Ginebra MP. Calcium phosphate bone cements. In: Deb S, editor. Orthopaedicbonecements.1sted.Cambridge,England:WoodheadPublishing Limited;2008.p.206–30.

27.LaneJM,BostromMP.Bonegraftingandnewcompositebiosyntheticgraft materials.InstrCourseLect1998;47:525–34.

28.UristMR.Bone:formationbyautoinduction.Science1965;150:893–9. 29.BauerTW.Bonegraftsubstitutes.SkeletalRadiol2007;36:1105–7.

30.RipamontiU,MaS,ReddiAH.Thecriticalroleofgeometryofporous hydroxy-apatitedeliverysystemininductionofbonebyosteogenin,abone morphoge-neticprotein.Matrix1992;12:202–12.

31.ReddiAH.Morphogenesisandtissueengineeringofboneandcartilage: induc-tive signals,stem cells, and biomimeticbiomaterials. Tissue Eng 2000;6: 351–9.

32.SeehermanH,WozneyJM.Deliveryofbonemorphogeneticproteinsfor ortho-pedictissueregeneration.CytokineGrowthFactorRev2005;16:329–45. 33.ArinzehTL,TranT,McalaryJ,DaculsiG.Acomparativestudyofbiphasic

calciumphosphateceramicsforhumanmesenchymalstem-cell-inducedbone formation.Biomaterials2005;26:3631–8.

34.ReaSM,BrooksRA,SchneiderA,BestSM,BonfieldW.Osteoblast-likecell responsetobioactivecomposites-surface-topographyandcompositioneffects. JBiomedMaterResBApplBiomater2004;70:250–61.

35.BeamanFD,BancroftLW,PetersonJJ,KransdorfMJ.Bonegraftmaterialsand syntheticsubstitutes.RadiolClinNorthAm2006;44:451–61.

36.GiannoudisPV,EinhornTA,MarshD.Fracturehealing:thediamondconcept. Injury2007;38(Suppl4):S3–6.

37.LowKL,TanSH,ZeinSH,Roether JA,MourinoV,BoccacciniAR. Calcium phosphate-basedcompositesasinjectablebonesubstitutematerials.JBiomed MaterResBApplBiomater2010;94:273–86.

38.IgnjatovicN,TomicS,DakicM,MiljkovicM,PlavsicM,UskokovicD.Synthesis andpropertiesofhydroxyapatite/poly-L-lactidecompositebiomaterials.

Bio-materials1999;20:809–16.

39.NauthA,GiannoudisPV,EinhornTA,HankensonKD,FriedlaenderGE,LiR,etal. Growth factors: beyond bone morphogenetic proteins. J Orthop Trauma 2010;24:543–6.

40.GiannoudisPV,DinopoulosHT.BMPs:options,indications,andeffectiveness.J OrthopTrauma2010;24(Suppl1):S9–16.

Referenties

GERELATEERDE DOCUMENTEN

Using a sample of 679 distressed transactions and 1480 healthy deals involving both public and private targets from 19 European countries over the period 1998-2016, I

Though cs as it is defined does not comply with closure under relational operators, the way it is used in the HL7 specification much resembles our implementation of the cv data type

In this paper I sketch my personal scientific bubble journey, starting with single-bubble sonoluminescence, continuing with sound emission and scattering of bubbles,

Because of the ‘realistic’ part black characters, mainly as domestic workers, have had in literary texts written by white Afrikaans authors, this extra information concerning

Hiervoor is literatuur bestudeerd en is voor een concreet gebied berekend hoeveel fijn stof en ammoniak kan worden ingevangen door de aanwezige landschapselementen en hoe groot

weervinden. Deze laatste betrekking kan gebruikt worden voor de berekening van de trillingstijd als de waarde van - bekend is, wat o.a. van belang is voor de berekening van

We hebben een vrij groot aantal soorten gastropoden gevonden die door Glibert &amp; de Heinzelin in TOligocène inférieur beige’ niet werden vermeld.. Wellicht zitten er in

5.2.3 Nucleic acid mediated amplification process on live fish surface To demonstrate the broad versatility of zebrafish surface engineering enabled by lipid-DNA, we