• No results found

Cover Page The handle

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The handle"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle http://hdl.handle.net/1887/68031 holds various files of this Leiden University

dissertation.

Author: Lahabi, K.

(2)

SPIN-TRIPLET SUPERCURRENTS

OF ODD AND EVEN PARITY

IN NANOSTRUCTURED DEVICES

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties

te verdedigen op dinsdag 4 december 2018

klokke 11.15 uur

door

(3)

Promoter:

Prof. dr. J. Aarts Universiteit Leiden Promotiecommissie:

Prof. dr. ir. A. Brinkman Universiteit Twente

Prof. dr. M. Eschrig Royal Holloway, University of London Prof. dr. Y. Maeno Kyoto University

Prof. dr. E. R. Eliel Universiteit Leiden Prof. dr. ir. T. H. Oosterkamp Universiteit Leiden

Casimir PhD series, Delft-Leiden 2018-45 ISBN 978-90-8593-375-5

An electronic version of this thesis can be found at

https://openaccess.leidenuniv.nl/.

Cover design: Kaveh Lahabi Copyright © 2018 Kaveh Lahabi

(4)

C

ONTENTS

1 Introduction 3

References. . . 9

2 Pairing symmetry 11 2.1 General symmetry classes. . . 11

2.2 Pairing symmetry of Sr2RuO4. . . 15

2.2.1 Sr2RuO4: basic properties . . . 15

2.2.2 d -vector formalism . . . 17

2.2.3 Possible symmetries for Sr2RuO4. . . 20

References. . . 25

3 Spin-triplet Cooper pairs in magnetic hybrids 29 3.1 Proximity Effect . . . 29

3.1.1 Spin-active interfaces . . . 31

3.1.2 Long-range triplet correlations. . . 33

3.1.3 Josephson effect . . . 35

3.1.4 Long-range triplet supercurrents. . . 37

3.2 Micromagnetic Simulations. . . 41

3.2.1 Micromagnetic Theory. . . 41

3.2.2 Simulations . . . 42

3.2.3 Multilayer Planar Junctions . . . 44

3.3 CrO2nanowires . . . 47

3.3.1 magnetic patterns . . . 47

3.3.2 Generating long-range triplets with magnetic pattern . . . 51

References. . . 53

4 Controlling the path of spin-triplet currents in a magnetic multilayer 59 4.1 Introduction . . . 60

4.2 Results . . . 61

4.2.1 Micromagnetic simulations . . . 61

(5)

4 CONTENTS

4.2.3 Basic transport properties . . . 63

4.2.4 Superconducting quantum interferometry. . . 63

4.2.5 Magnetotransport with in-plane fields . . . 66

4.3 Discussion . . . 68 4.4 Methods . . . 69 4.4.1 Device fabrication . . . 69 4.4.2 Magnetotransport measurements . . . 69 4.4.3 Micromagnetic simulations . . . 70 4.4.4 Control experiment . . . 70 4.5 Supplementary Information . . . 71 4.5.1 Supplementary Figures . . . 71

4.5.2 Supplementary Note 1: Transport in the virgin state . . . 74

4.5.3 Supplementary Note 2: Numerical simulations of the critical current . . . 74

4.5.4 Supplementary Note 3: Fourier analysis of supercurrent den-sity profiles. . . 76

References. . . 77

5 Generating Spin-Triplet Supercurrents with a Ferromagnetic Vortex 81 5.1 Motivation . . . 82

5.1.1 Formation of 0-π triplet channels: S/F’/F/F”/S . . . 82

5.2 Generating spin-triplet supercurrents with a ferromagnetic vortex . . . 86

5.2.1 Basic transport and ground state interference . . . 86

5.2.2 Magnetotransport with in-plane fields . . . 87

5.2.3 Emergence of 0 &π channels in the vortex . . . 89

5.2.4 Interference patterns from a displaced vortex . . . 89

5.2.5 Summary & Outlook . . . 93

References. . . 95

6 Little-Parks effect and half-quantum fluxoid in Sr2RuO4microrings 97 6.1 Introduction . . . 98

6.2 Results and Discussion . . . 101

References. . . 106

7 Spontaneous emergence of Josephson junctions in Sr2RuO4 111 7.1 General Introduction . . . 112

(6)

7.3 Results . . . 115

7.3.1 Basic transport properties . . . 115

7.3.2 Insights from order parameter simulations . . . 116

7.3.3 Critical current oscillations . . . 118

7.3.4 Rings with an extrinsic phase & Tcoscillations . . . 120

7.3.5 Anomalous current-voltage & in-plane fields . . . 124

7.4 Discussion . . . 126

7.4.1 Mechanisms for oscillatory Ic(H ) . . . 126

7.4.2 Josephson energy of a chiral domain wall . . . 128

7.5 Summary & Outlook . . . 134

(7)

Referenties

GERELATEERDE DOCUMENTEN

Figure 3.10: Magnetization loops at 10 K for a 30 nm thick CrO 2 thin film deposited on pretreated TiO 2 substrate at different angles (θ) of the field with respect to the c-axis..

Figure 4.8: Low field and low temperature (4.2 K) MR measurements for a 200 nm thick CrO 2 thin films deposited on sapphire substrate, with in-plane applied field (a) parallel to

the lead (40 nm) is smaller that the thickness of the bridge, the current density flowing through the lead is still an order of magnitude smaller than J dp , which is more than an

With increasing field both the MR and the MTEP variations keeps growing, with MTEP showing relative changes of 1.5% with the thermal gradient along the b-axis and even 20% with

Figure A.5: Resistance as a function of temperature for a Co island based junction ML06 with junction length of 100 nm and measured with three probe measurements.. Inset: R(T)

Junction Geometry, The contact geometry of the full film is very unusual, with the CrO2 having a very low resistivity (5 µΩcm) and contacts a very high one (200 µΩcm). Current

It shows two transitions with a normal down jump, at around 6 K the transition of the main superconducting electrodes, and second is around 3 K when the 5 nm thick MoGe becomes

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden.. Downloaded