• No results found

Spin triplet supercurrents in thin films of ferromagnetic CrO2 Anwar, M.S.

N/A
N/A
Protected

Academic year: 2021

Share "Spin triplet supercurrents in thin films of ferromagnetic CrO2 Anwar, M.S."

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Spin triplet supercurrents in thin films of ferromagnetic CrO2

Anwar, M.S.

Citation

Anwar, M. S. (2011, October 19). Spin triplet supercurrents in thin films of ferromagnetic CrO2. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/17955

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/17955

Note: To cite this publication please use the final published version (if applicable).

(2)

Bibliography

[1] K. H. Onnes, Leiden Commun. 119b, 120b, 122b, 124c (1911).

[2] M. Tinkham, Introduction to Superconductivity 2nd Edition, Dover Pub- lications, INC. Mineola, NewYork (1996).

[3] Charles Kittel, Introduction to solid state physics, John Wiley and Sons inc. (1996).

[4] W. Meissner and R. Ochsendelf, Naturwiss. 21, 787 (1933).

[5] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev., 108, 1175 (1957).

[6] A. F. Andreev, Sov. Phys. JETP 19 1228 (1964).

[7] A. I. Buzdin Rev. Mod. Phys. 77, 935 (2005).

[8] M. J. M. de Jong, and C. W. J. Beenakker, Phys. Rev. Lett. 74, 1657 (1995).

[9] V. L. Berezinskii, JETP Lett. 20, 287 (1975).

[10] F. S. Bergeret, A. F. Volkov and K. B. Efetov, Phys. Rev. Lett. 86 4096 (2001).

[11] R. S. Keizer, S. T. B. G¨onnenwein, T. M. Klapwijk, G. Miao, G. Xiao and A. Gupta, Nature (London) 439 825 (2006).

[12] Sosnin I., Cho H., Petrashov V.T. and Volkov A.F., 2006 Phys. Rev. Lett.

96157002.

[13] M. S. Anwar, F. Czeschka, M. Hesselberth, M. Porcu, and J. Aarts, Phys.

Rev. B 82 100501(R) (2010).

[14] M. S. Anwar, and J. Aarts, Supercond. Sci. Technol., 24, 024016 (2011).

114

(3)

BIBLIOGRAPHY 115 [15] T. S. Khaire, M. A. Khasawneh, Jr. W. P. Pratt, and N. O. Birge, Phys.

Rev. Lett., 104 137002 (2010).

[16] J. W. A. Robinson, J. D. S. Witt and M. G. Blamire, Science, 329 59 (2010).

[17] J. Wang, M. Singh, M. Tian, N. Kumar, B. Liu, C. Shi, J. K. Jain, N.

Samarth, T. E. Mallouk and M. H. W. Chan, Nat. Phys., 6 389 (2010).

[18] V. V. Ryazanov, V. A. Oboznov, A. Y. Rusanov, A. V. Veretennikov, A.

A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).

[19] Y. Blum, M. K. A. Tsukernik, and A. Palevski, Phys. Rev. Lett. 89, 187004 (2002).

[20] T. Kontos, M. Aprili, J. Lesueur, F. Genet, B. Stephanidis, and R. Bour- sier, Phys. Rev. Lett. 89, 137007 (2002).

[21] A. Bauer, J. Bentner, M. Aprili, M. L. D. Rocca, M. Reinwald, W.

Wegscheider, and C. Strunk, Phys. Rev. Lett. 92, 217001 (2004).

[22] H. Sellier, C. Baraduc, F. Lefloch, and R. Calemczuk, Phys. Rev. Lett.

92, 257005 (2004).

[23] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bed- norz, and F. Lichtenberg, Nature (London) 372, 532 (1994).

[24] M. Houzet and A. I. Buzdin, Phys. Rev. B 76 060504 (2007).

[25] M. Eschrig and T. Lfwander, Nat. Phys. 4 138 (2008).

[26] M. Eschrig, J . Kopu, J. C. Cuevas, and Gerd Sch¨on, Phys. Rev. Lett., 90, 13, (2003).

[27] S. M. Watt, S. Wirth, S. von Molnar, A. Barry, and J. M. D. Coey, Phys.

Rev. B 61, 9621 (2000).

[28] P. Schlottmann, Phys. Rev. B 67, 174419 (2003).

[29] M.A. Kroton, V. I. Anisimov, D. I. Khomshii, and G. A. Sawatzky, Phys.

Rev. Lett. 80, 4305 (1998).

[30] S. P. Lewis, P. B. Allen, T. Sasaki, Phys. Rev. B. 55, 10253 (1997).

[31] Goodenough, et al. (1971).

[32] K. Schawarz, J. Phys. F 16, L211 (1986).

(4)

[33] J. S. Parker, S. M. Watts, P.G. Ivanov, and P. Xiong, Phys. Rev. Lett.

88, 196601 (2002).

[34] M.A.K.L. Dissanayake, and L.L. Chase, Phys. Rev. B 18,6872 (1978).

[35] S.T.B. Goennenwein, R. S. Keizer, S. W. Schink, I. van Dijk, T. M.

Klapwijk, G. X. Miao, G. Xiao, and A. Gupta, , Appl. Phys. Lett. 90, 142509 (2007).

[36] S. Ishibashi, T. Namikawa, and M, Satou, Mater. Res. Bull. 14, 51 (1979).

[37] P.M. Sousa, S. A. Dias, A. J. Silvestre, O. Conde, B. Morris, K. A. Yates, W. R. Benjamin and L. F. Cohen, Chem. Vap. Deposition 12, 712 (2006).

[38] B. Z. Rameev, A. Gupta, G. X. Miao, G. Xiao, F. Yildiz, L. R. Tagirov1, and B. Aktas Phys. Stat Sol. (a) 201, 3350 (2004).

[39] B.Z. Rameev, A. Guptac, A. Anguelouchd, G. Xiaod, F. Yildiz, L.R.

Tagirova, and B. Aktas J. Magn. Magn. Mater. 272276, 1167 (2004).

[40] B.Z. Rameev, A. Gupta, F. Yildiz, L.R. Tagirova, and B. Aktas J. Magn.

Magn. Mater. 300 e526 (2006).

[41] B. Rameev, F. Yildiz, S. Kazan, B. Aktas, A. Gupta, L. R. Tagirov, D. Rata, D. Buergler, P. Gruenberg, C. M. Schneider, S. Kammerer, G.

Reiss, and A. Hutten, Phys. Stat Sol. (a) 203, 1503 (2006).

[42] M. Rabe, J. Pommer, K. Samm, B. Ozyilmaz, C. Konig, M. Fraune, U.

Rudiger, G. Guntherodt, S. Senz, and D. Hesse, J. Phys. Condens. Matter 14, 7 (2002).

[43] G.-X. Miao, G. Xiao, and A. Gupta, Phys. Stat Sol. (a) 203,1513 (2006).

[44] C. Konig, M. Fonin, M. Laufenberg, A. Biehler, W. Buhrer, M. Klaui, U.

Rudiger, and G. Guntherodt, Phys. Rev. B, 75, 144428 (2007).

[45] P.G. Ivanov, S.M. Watts, D.M. Lind, J. Appl. Phys. 89, 1035 (2001).

[46] S.M. Watt, PhD. Thesis, Florida State University, Tallahassee, FL (2002).

[47] Li X W, Gupta A and Xiao G, Appl. Phys. Lett. 75, 713 (1999).

[48] Miao G.-X., Xiao G., and Gupta A., Phys. Rev. B 71 094418 (2005).

[49] Stephen Blundell, Magnetism in condensed matter; Oxford maser series in condensed matter physics, Oxford university press-UK (2001).

(5)

BIBLIOGRAPHY 117 [50] H. Yanagihara and M. B. Salamon, Phy. Rev. Lett. 89 187201 (2002).

[51] A. Barry, J.M.D. Coey and M. Viret, J. Phys. Condens. Matter 12 L173 (2000).

[52] K. Suzuki, P.M. Tedrow, Phys. Rev. B. 58, 11597 (1998).

[53] J. Ye, Y. B. Kim, A. J. Millis, B. I. Shraiman, P. Majumdar, and Z.

Teanovic, Phys. Rev. Lett. 83, 3737 (1999).

[54] A. Kadigrobov, R. I. Shekhter and M. Jonson, Europhys. Lett. 54 394 (2001).

[55] F. Konschelle, J. Cayssol and A. Buzdin, Phys. Rev. B. 82, 180509(R) (2010).

[56] M. A. Khasawneh, T. S. Khaire, C. Klose, W. P. Pratt Jr and N. O.

Birge, Supercond. Sci. Technol. 24, 024005 (2011).

[57] A. Yu. Rusanov, M. B. S. Hesselberth, and J. Aarts, Phys. Rev. B 70, 024510 (2004).

[58] J.W.A. Robinson, S. Piano, G. Burnell, C. Bell, and M. G. Blamire, Phys.

Rev. Lett. 97 177003 (2006).

[59] R. Keizer, PhD thesis, Technical University Delft, (2007).

[60] F.K. Wilhelm, D. Andrei, A. D. Zaikin and G. Sch¨on, J. Low-Temp. Phys.

106, 305 (1997).

[61] P. Dubos, H. Courtois, B. Pannetier, F. K. Wilhelm, A. D. Zaikin, and G. Sch¨on, Phys. Rev. B 63 064502 (2001).

[62] V. Braude and Y. V. Nazarov, Phys. Rev. Lett. 98 077003 (2007).

[63] Y. Asano, Y. Tanaka, and A. A. Golubov, Phys. Rev. Lett. 98 107002 (2007).

[64] Private communications, 2 nm thick Ni layer has the coercive field around 100 mT and saturation occurs around 150 mT.

[65] G. E. W. Bauer, A. H. Mac Donald, and S. Maekawa, Solid State Com- mun., 150, 459 (2010).

[66] M. N. Baibich, J. M. Broto, A. Fert, F. Nugyen van Dau, F. Petroff, P.

Etienne, G. Creuzet, A. Friederich and J. Chazalas, Phys. Rev. Lett., 61, 2472 (1988).

(6)

[67] K Sakorai, M. Horie, S. Araki, H. Yamamoto, and T. Shinjo, J. Phys.

Soci. Japan, 61, 2522 (1991).

[68] K Sakorai, K. Hasegawa, K. Shintaku,, S. Araki, H. Yamamoto, and T.

Shinjo, J. Phys. Soci. Japan, 64, 3897 (1995).

[69] L. Gravier, S. Serrano-Guisan, F. Reuse and J. P. Ansermet, Phys. Rev.

B 73, 024419 2006.

[70] A. Slachter, F. L. Bakker, J-P. Adam and B. J. vanWees Nat. Phys. 6, 879 (2010).

[71] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S.

Maekawa, and E. Saitoh, Nature 455, 778 (2008).

[72] Y. Pu, E. Johnston-Halperin, D. Awschalom, and J. Shi, Phys. Rev. Lett.

97, (2006).

[73] Y. Pu, D. Chiba, F. Matsukura, H. Ohno, and J. Shi, Phys. Rev. Lett.

101, 117208 (2008).

[74] G. Busch, and H. Schade, Lectures on Solid State Physics, Pergamon Press-Frankfurt, (1979).

[75] J. M. Ziman, Principles of the theory of solids, Cambridge University Press-London, (1964).

[76] N. Mott and H. Jones. The theory of the properties of metals and alloys, Dover Publications, New York, (1958).

[77] M. Jonson, and G. D. Mahan, Phys. Rev. B, 21, 4223 (1980).

[78] F. J. Blatt, P. A. Schroeder, C. L. Foiles and D. Greig, Thermoelectric power in metals, Plenum press New York and London, (1976).

[79] L. Piraux, A. Fert, P. A. Schroeder, R. Loloee, and P. Etienne, J. Mag- netism and Magnetic Materials, 110, L247 (1992).

[80] S. Compans, Rev. Sci. Instum. 60, 2715 (1989).

[81] M.C. Cadeville and J. Roussel. J. Phys. F, 1, 686 (1971).

[82] eFunda: theory of thermocouples. http://www.efunda.com/Design Stan- dards/sensors/thermocouples/thmcple theory.cfm, 2010.

[83] Safa Kasap. Thermoelectric effects in metals : thermocouples. http://

materials.usask.ca/samples/Thermoelectric-Seebeck.pdf, (2001).

(7)

BIBLIOGRAPHY 119 [84] D. S. Chapin, J. A. Kafalas, and J. M. Honig, J. Phys. Chemi., 69, 1402

(1965).

[85] R. Schepis and K. Schroder, J. Magn. Magn. Mater. 104-107, 1757 (1992).

[86] K. Uchida, T. Ota, K. Harii, S. Takahashi, S. Maekawa, Y. Fujikawa,and E. Saitoh, Solid State Communications, 150, 524 (2010).

[87] A. D. Caplin, C. K. Chiang, J. Tracy, and P. A. Schroeder. Physica Status Solidi (a), 26 497 (1974).

[88] R.J. Soulen, Jr., J.M. Byers, M.S. Osofsky, B. Nadgory, T. Ambrose, S.F.

Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, and J.M.D. Coey, Science, 282, 85 (1998).

[89] J. Bass and W. P. Pratt, J. Phys. Condens. Matter 19, 183201 (2007).

[90] L. Piraux, S. Dubois, A. Fert, and L. Belliard, Eur. Phys. J. B 4, 413 (1998).

[91] M. A. Khasawneh, W. P. Pratt, and N. O. Birge, Phys. Rev. B 80, 020506(R) (2009).

Referenties

GERELATEERDE DOCUMENTEN

Peripheral blood cells were stained with HLA-A2.1 tetramers containing the tyrosinase368–376 peptide followed by staining with a panel of lineage antibodies, as described in

Blades and blade fragments seem to have been especially used for longitudinal motions, mainly on plant material (7/12). Flake and flake fragments are used in different motions on

Junction Geometry, The contact geometry of the full film is very unusual, with the CrO2 having a very low resistivity (5 µΩcm) and contacts a very high one (200 µΩcm). Current

It shows two transitions with a normal down jump, at around 6 K the transition of the main superconducting electrodes, and second is around 3 K when the 5 nm thick MoGe becomes

A long range supercurrent was observed passing through CrO 2 films grown on sapphire substrates over a distance of the order of a micrometer be- tween two superconducting

Een lange-dracht superstroom is alleen mogelijk met een zogeheten equal- spin triplet Cooper paar; lang werd gedacht dat deze door het Pauli principe verboden waren.. Alleen de

In particular, I want to mention Marcel Hesselberth and Daan Boltje for their technical support; Federica Galli for her encouragements and fruitful discussions with a lot of fun;

Trying to describe the temperature dependence of the resistance of CrO 2 over the temperature range between 4 K and 300 K by a single formula is unphysical and overlooks