• No results found

Cover Page The handle

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The handle"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle http://hdl.handle.net/1887/19107 holds various files of this Leiden University dissertation.

Author: Velander, Malin Barbro Margareta

Title: Studying dark matter haloes with weak lensing

Issue Date: 2012-06-20

(2)

Studying Dark Matter

Haloes with Weak Lensing

(3)
(4)

Studying Dark Matter Haloes with Weak Lensing

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op woensdag 20 juni 2012 klokke 11.15 uur

door

Malin Barbro Margareta Velander

geboren te Lund, Zweden

in 1983

(5)

Promotiecommissie

Promotor: Prof. dr. K. H. Kuijken

Overige leden: Prof. dr. M. Franx

Prof. dr. A. Taylor (Edinburgh University, UK) Dr. H. Hoekstra

Dr. J. Brinchmann

(6)

For my husband

and our little one

(7)

Cover: Chinese Kite Cluster by Gabrian J. van Houdt

(8)

Table of Contents

1 Introduction 1

1.1 Cosmology . . . 1

1.1.1 The concordance model of cosmology . . . 1

1.1.2 Alternative models . . . 6

1.1.3 Cosmology probes . . . 7

1.2 Gravitational lensing overview . . . 11

1.2.1 Fundamentals of lensing . . . 11

1.2.2 Microlensing . . . 13

1.2.3 Strong lensing . . . 16

1.3 Weak lensing . . . 19

1.3.1 Convergence, shear and flexion . . . 19

1.3.2 Cosmic shear . . . 23

1.3.3 Galaxy-galaxy lensing . . . 25

1.3.4 Bullets and train wrecks . . . 29

1.3.5 Shape measurement methods . . . 32

1.4 This Thesis . . . 36

2 A new shape measurement method and its application to galaxies with colour gradients in weak lensing surveys 38 2.1 Introduction . . . 39

2.2 Theoretical background . . . 40

2.2.1 Shear and flexion . . . 40

2.2.2 Shapelets . . . 41

2.2.3 The MV pipeline . . . 43

2.3 Monochromatic tests . . . 45

2.3.1 GREAT08 . . . 45

2.3.2 FLASHES . . . 50

2.4 Non-monochromatic tests . . . 55

2.4.1 Analytical prediction . . . 55 i

(9)

TABLE OF CONTENTS

2.4.2 Simulations . . . 57

2.4.3 Results . . . 59

2.5 Conclusion . . . 62

3 Probing galaxy dark matter haloes in COSMOS with weak lensing flexion 64 3.1 Introduction . . . 65

3.2 Shear and flexion . . . 66

3.3 Shapelets . . . 67

3.3.1 The MV pipeline . . . 68

3.4 Testing the pipeline . . . 69

3.4.1 GREAT08 . . . 69

3.4.2 FLASHES . . . 70

3.4.3 Galaxy-galaxy simulations and bright object removal . . . 73

3.5 COSMOS analysis . . . 74

3.5.1 The COSMOS data set . . . 75

3.5.2 Data analysis . . . 75

3.5.3 Results . . . 76

3.5.4 Removing bright objects . . . 78

3.5.5 The effect of substructure . . . 78

3.5.6 Profile determination . . . 81

3.6 Discussion and conclusions . . . 83

3.A FLASHES results . . . 84

3.B COSMOS data analysis . . . 85

3.B1 Catalogue creation . . . 85

3.B2 PSF interpolation . . . 87

3.B3 CTI correction . . . 88

3.B4 Signal computation . . . 89

3.C High redshift results . . . 90

3.D Comparison with KSB . . . 90

4 The relation between galaxy dark matter haloes and baryons in the CFHTLS from weak lensing 93 4.1 Introduction . . . 94

4.2 Data . . . 95

4.2.1 Lens sample . . . 95

4.2.2 Source catalogue . . . 96

4.3 Method . . . 97

4.3.1 Weak galaxy-galaxy lensing . . . 97

4.3.2 The halo model . . . 98

4.4 Systematics tests . . . 100

4.4.1 Verification of the shear catalogue . . . 100

4.4.2 Seeing test . . . 101

4.5 Luminosity trend . . . 103

4.5.1 Photometric redshift error corrections . . . 107

4.5.2 Luminosity scaling relations . . . 109

4.5.3 Satellite fraction . . . 113

4.6 Stellar mass trend . . . 113

4.6.1 Stellar mass scaling relations . . . 115

4.7 Discussion and conclusions . . . 120 ii

(10)

TABLE OF CONTENTS

4.A Detailed luminosity bins . . . 121

4.B Detailed stellar mass bins . . . 124

5 Constraining cluster profiles with weak lensing shear and flex- ion 127 5.1 Introduction . . . 128

5.2 Cluster lensing formalism . . . 129

5.2.1 Shear and flexion . . . 130

5.2.2 Contribution from the BCG . . . 131

5.2.3 Contribution from centred cluster dark matter haloes . . 132

5.2.4 Contribution from a cluster population with miscentred BCGs . . . 132

5.2.5 Other contributions . . . 134

5.3 Results . . . 135

5.3.1 Mass dependence . . . 135

5.3.2 Concentration dependence . . . 137

5.3.3 Offset width dependence . . . 139

5.4 Conclusions . . . 141

Bibliography 143

Nederlandse samenvatting 157

Svensk sammanfattning 162

Publications 166

Curriculum Vitæ 168

Afterword 170

iii

(11)

Referenties

GERELATEERDE DOCUMENTEN

The significance of the measurement for clusters at high redshift (z ≥ 1) is a remarkable 4.1σ, thus further strengthening the case for using weak lensing magnification methods

Measurement of the cross-spectrum ˆ C  gκ between Fermi gamma rays in the energy range 0.5–500 GeV and KiDS weak lensing data in the redshift range 0.1–0.9 (black data

In spite of the extremely low temperatures and densities, a surprisingly rich and interesting chemistry occurs in these interstellar clouds, as evidenced by the detection of more

As shown in the power spectrum dispersion plots in figure 5, such cases may arise when dark matter is warm and the stream suffers few or no subhalo impacts (e.g., the density

total mass fraction ( f f ) and the shear rate (Γ) are important parameters that decide the disk galaxy morphology such as the number of spiral arms, pitch angle, and the formation

In addition to the additive bias discussed above, lens galaxies a ffect the source density in their vicinity for two reasons: big lenses act as masks on the background

all moments of the same order are biased by the same relative factor (n, s). This means any ratio of such moments remains unbiased. This does not guarantee that the ellipticity is

We used this flexion signal in conjunction with the shear to constrain the average density profile of the galaxy haloes in our lens sample.. We found a power-law profile consistent