• No results found

structure and Collagen-chitosan scaffold with Au modified and Ag nanoparticles:Synthesis Applied Surface Science

N/A
N/A
Protected

Academic year: 2022

Share "structure and Collagen-chitosan scaffold with Au modified and Ag nanoparticles:Synthesis Applied Surface Science"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Applied Surface Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Collagen-chitosan scaffold modified with Au and Ag nanoparticles:

Synthesis and structure

M.S. Rubina

a

, E.E. Kamitov

a

, Ya. V. Zubavichus

b

, G.S. Peters

b

, A.V. Naumkin

a

, S. Suzer

c

, A.Yu. Vasil’kov

a,∗

aA.N.NesmeyanovInstituteofOrganoelementCompounds,RussianAcademyofSciences,Moscow,119991RussianFederation

bNationalResearchcenter«KurchatovInstitute»,Moscow,123182RussianFederation

cDepartmentofChemistry,BilkentUniversity,Ankara,06800Turkey

a r t i c l e i n f o

Articlehistory:

Received7May2015 Receivedinrevisedform 28December2015 Accepted13January2016 Availableonline14January2016

Keywords:

Collagen-chitosanscaffolds Metal-vaporsynthesis Nanoparticles XPS XRD SAXS XANES/EXAFS

a b s t r a c t

Nowadays,thedermalbiomimeticscaffoldsarewidelyusedinregenerativemedicine.Collagen-chitosan scaffoldoneofthesematerialspossessesantibacterialactivity,goodcompatibilitywithlivingtissuesand hasbeenalreadyusedasawound-healingmaterial.Inthisarticle,collagen-chitosanscaffoldsmodified withAgandAunanoparticleshavebeensynthesizedusingnovelmethod-themetal-vaporsynthesis.

ThenanocompositematerialsarecharacterizedbyXPS,TEM,SEMandsynchrotronradiation-basedX-ray techniques.AccordingtoXRDdata,themeansizeofthenanoparticles(NPs)is10.5nmand20.2nmin Au-Collagen-Chitosan(Au-CollCh)andAg-Collagen-Chitosan(Ag-CollCh)scaffolds,respectivelyinfair agreementwiththeTEMdata.SAXSanalysisofthecompositesrevealsanasymmetricsizedistribution peakedat10nmforAu-CollChand25nmforAg-CollChindicativeofparticle’saggregation.According toSEMdata,themetal-carryingscaffoldshavelayeredstructureandthenanoparticlesareratheruni- formlydistributedonthesurfacematerial.XPSdataindicatethatthemetallicnanoparticlesareintheir unoxidized/neutralstatesanddominantlystabilizedwithinthechitosan-richdomains.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Naturallyoccurringpolymersarewidelyappliedinmedicine duetotheirpronouncedbiocompatibility,availability ofrenew- ablesources,easiness ofchemical modification,etc.[1].Among them,chitosan is ofspecial importance,which isessentiallyan N-deacetylatedchitinderivative,alinearpolymercomposedofD- glucosamineandN-acetylglucosamineresidues.Chitosanisknown topromoteskinregeneration,woundsandburnshealing.Further- more,itmanifestshemostaticandimmunomodulatoryproperties [2–4],aswellasantibacterialandantifungalactivity[5,6].Chitosan isabiocompatiblepolymerandpossessesahighsorptioncapac- ity.Apartfrompristinechitosan,chitosan-basedhybridmaterials, especiallyoneswithcollagen[7],cellulose[8],polyethyleneglycol [9],polyvinylpyrrolidone[10],gelatin[11],polyvinylalcohol[12], etc.,arepromisingmaterialsforbiomedicalapplications[13].

Collagenisastructuralproteinactivelyusedinmedicine[14].

Availabilityofhydroxylicgroupsandaminoacidresiduesonitssur- facemakesitpossibletoadjustitssurfacechargetoeithernegative

∗ Correspondingauthor.Tel.:+74991359380.

E-mailaddress:alexandervasilkov@yandex.ru(A.Yu.Vasil’kov).

or positive values by changing pH[15].Collagen fibrils(cross- linkedornot,nativeordenaturated)stronglyaffectmorphology andphysiologyofcells[16].Collagenisnearlyasbiodegradable andbiocompatibleaschitosan,thatiswhyitiswidelyusedintis- sueengineeringaswoundandburndressingandsponges.Collagen andchitosandonotoccurinnaturetogether,butspecificproper- tiesofbothpolymerscanbeutilizedtodesignahybridmaterial withuniquestructuralandmechanicalproperties[17].

Numerousexamples of similarmaterialsused for thetissue engineering, drugdelivery matrices, bandage dressing, etc.,are availablein literature[18,19].Incorporation ofnoble metalNPs withantibacterialactivityfurtherextendsapprovedfieldsofappli- cationsofcollagen-chitosanscaffolds.Themajorityofmethodsfor theincorporationofmetalNPsinpolymermatricesrequireschem- icalreductionofmetalsaltsimpregnatedintothepolymermatrix (e.g.,borohydrideorcitrate methods)[20,21].These techniques aretypicallymulti-stepandusepotentiallybiologicallyhazardous orenvironmentally unfriendlyreactants,stabilizers, orreducing agents[22],whichpreventorstronglylimittheuseoftheresultant compositesinmedicine[23].

Metal-vapor synthesis (MVS) is an efficient route to pro- ducebiologicallyactivemetalnanoparticlesand thecomposites derivedfromthemwithbiocompatiblematerialsforbiomedical http://dx.doi.org/10.1016/j.apsusc.2016.01.107

0169-4332/©2016ElsevierB.V.Allrightsreserved.

(2)

applications[24,25].Thetechniquehasbeensuccessfullyapplied tomodifycommonmedicalmaterials,includingsurgicalsuture anddressingmaterialsorimplants,withmetalnanoparticlespos- sessingantibacterialandantifungalproperty[26,27].Incontrastto themajorityofmethodsforpreparationofnanoparticles,theMVS methodisfullyenvironmentallysafeandcaneasilybeintegrated intodiversetechnologicalcycles.TheMVSmethodaffordscolloidal suspensions of NPsin commonmedical solvents, which makes anyfurtherpurificationunnecessary[28].Thetargetcomposites arepreparedviathemodificationofabiopolymerwithorganosols containingmetalnanoparticlesfollowedbysolventremoval.

Here, we report for the first time on the synthesis of metal-bearinghybridsystems based ontheintrinsicallyporous collagen-chitosanscaffolds.Thestructureandchemicalstatesof metalsinthecompositenanomaterialsareaddressedbymodern physicochemicaltechniques.

2. Experimental 2.1. Materials

Collagen-chitosanscaffold, denoted as CollCh,was prepared accordingtothemethoddescribed elsewhere[29].Et3N(Sigma Aldrich,purity≥99.5%)andi-PrOH(Fluka,purity99.8%)wereused asorganicsolvents.Allotherreactantsusedfortheexperiments wereofanalyticalgrade.Priortouseinthesynthesis,allsolvents weredried,distilledinanatmosphereofpurifiedAranddegassed byseveralconsecutivepump-freeze-thawcyclesat10−1Pa and RTfor1h.Theresultantcollagen-chitosanscaffoldwasdegassed invacuo.

2.2. Metal-vaporsynthesisofhybridmaterials

Theoriginal metal-vapor synthesis (MVS)method wasused in this work to produce metal-modified composites based on thecollagen-chitosanscaffold.The (MVS)methodis efficientin preparationofhighlyreactivemetalnanoparticlesandtheirincor- poration into various matrices to induce practically important magnetic[30],antibacterial[26],catalytic[31]andtribological[32]

properties.

NanocompositesfilledwithgoldandsilverNPswereprepared byimpregnationofthemetal-containingorganosolsfromMVSinto thecollagen-chitosanscaffoldasdescribedelsewhere[26].Metals wereevaporated at a basepressure of 10−2Pa by a resistively heatedevaporatorintheformofeithertungstenrodorsmalltan- talumvesselforAu(99.99%)orAg(99.99%),respectively.Specially preconditionedorganicsolventsEt3Nandi-PrOHwereusedtosta- bilize,respectively,AuandAgnanoparticlesassols.Metalvapor wascondensed simultaneouslywiththesolventvaporontoliq- uidnitrogen-cooledwallsofaglassreactorwithavolumeof5L.A typicalsolvent-to-metalmolarratiointhesynthesiswas300:1.

Afterthesynthesis,theco-condensate washeatedtothemelt- ingpoint andtheresultantorganosolwasimpregnatedintothe collagen-chitosanscaffoldplacedinaSchlenkflaskundervacuum.

Theexcessiveamountoftheorganosolwasremovedandthetarget productwasdriedinvacuumat60C.

2.3. Characterizationmethods

2.3.1. Synchrotronradiation-basedtechniques

X-raystructuralstudiesofthecompositesbasedoncollagen- chitosanscaffoldsmodifiedwithAuandAgnanoparticles,including suchtechniquesaspowderX-raydiffraction,small-angleX-ray scattering,andX-rayabsorptionspectroscopyXANES/EXAFSwere performedat theKurchatov synchrotronradiation source(NRC

“KurchatovInstitute”,Moscow).

X-rayabsorptionspectraandpowderdiffractionpatternswere measuredattheStructuralMaterialsSciencebeamline [33]. Au L3-edgeXANES/EXAFSforthegold-containingsampleAu-CollCh aswellasfortheAufoilreferenceweremeasuredinthetrans- missionmodeusingionchambersfilledwithappropriateN2-Ar mixtures.ForsimilarAg-containingcomposites,thesilverconcen- trationappearedinsufficientfortransmissionmeasurementsand thusthespectraweremeasuredintheX-rayfluorescenceyield modeusingaSiavalanchephotodiode.SpectrafortheAgfoilrefer- enceweremeasuredinthetransmissionmode.Experimentaldata processingandanalysiswereperformedusingtheIFEFFITsoftware package[34].

PowderX-raydiffractionpatternsforthesamesampleswere measuredin thetransmission (Debye-Sherrer)modeusing Fuji FilmImagingplatesasa2Ddetector.Diffractionmeasurements wereperformedatanX-raywavelength=0.06889nm.Themean nanoparticlesizewasestimatedbyprofileanalysisassumingthe Pseudo-Voightlineshapeofthediffractionpeakswithinstrumen- talfunctionresponsiblefortheGaussianpartofbroadeningand Lorentzian-typesample-drivenphysicalbroadening.

Additionally, small-angle X-rayscattering curves were mea- suredforthepristineandAg-,Au-filledcollagen-chitosanscaffold to refine the diffraction data on NP sizing. The measurements wereperformedattheDICSIbeamlineofthesamesynchrotron sourceanda2DMAR165CCDdetectorwasused.Thesample-to- detectordistancewas2400mmandtheX-raywavelengthwasset to=0.162nm.Toimprovesamplingandsignal-to-noisestatis- tics,severaldatasetsatdifferentspotsonasampleweremeasured and averaged.The sizedistributionof Agand Au nanoparticles wasretrievedfromthecorrespondingSAXS“Ag-CollCh-CollCh”

and“Au-CollCh-CollCh”differencecurves,respectively.Theindi- rectFouriertransformationapproachasimplementedintheGNOM code under assumption of a polydisperse distribution of non- interactinghardspheres[35]hasbeenused.

2.3.2. X-rayphotoelectronspectroscopy(XPS)

X-rayphotoelectronspectrawereacquiredwithanAxisUltra DLD(Kratos,UK)spectrometerusingAlKradiationatanoperat- ingpowerof150WoftheX-raytube.Surveyandhigh-resolution spectraofappropriatecorelevelswererecordedatpassenergiesof 160eVand40eVandwithscanningstepsof1eVand0.1eV,respec- tively.Sampleareaof300␮m×700␮mcontributedtothespectra.

Thesamplesweremountedonasampleholderwithatwo-sided adhesivetape,andthespectrawerecollectedatroomtemperature.

ThebasepressureintheanalyticalUHVchamberofthespectrom- eterduringmeasurementsdidnotexceed10−8Torr.Thebinding energyscaleofthespectrometerwascalibratedtoprovidethefol- lowing valuesfor referencesamples(i.e., metalsurfacesfreshly cleanedbyionsputtered):Au4f7/2–83.96eV,Cu2p3/2–932.62eV, Ag3d5/2–368.21eV.Theelectrostaticchargingeffectswerecom- pensatedbyusinganelectronneutralizer.For eachsample,the spectrawererecalibratedagainsttheadventitiouscarbonsignalat 285.0eV.Backgroundwithinelasticlosseswassubtractedfromthe high-resolutionspectraaccordingtotheShirleyprescription.The AgMNNAugerspectrawerecorrectedusingalinearbackground.

Thesurfacechemicalcompositionwascalculatedusingstandard elementsensitivityfactorscodedinthespectrometercontrolsoft- warecorrectedforthetransferfunctionoftheinstrument.

2.3.3. TEM

Micrographsofthesamplesweremadeusingatransmission electronmicroscopeLEO912ABOMEGA,Zeiss(Germany).

2.3.4. SEM

SEManalysiswasperformedwithascanningelectronmicro- scopeTescanMiraLMU(CzechRepublic).Thesampleswerefixed

(3)

Fig.1.XRDpatternsforthenanocompositesstudiedAu-CollCh,Ag-CollCh,and pristineCollCh(=0.06889nm).

onaconductivetapeandexaminedunderhighvacuumwiththe Everhart-Thornleystandardsecondaryelectrondetector.

3. Resultsanddiscussion

Theexperimental X-raydiffraction patternsof thecollagen- chitosanscaffoldsmodified bygoldandsilvernanoparticlesare showninFig.1.Thecollagen-chitosanscaffoldappearstobeamor- phoussothatalldiffractionpeakspresentintherespectivepatterns canbeattributedtofccatomicpackingoftheAgandAunanoparti- cles[PDF#040783and#040784,respectively].Thecrystallitesizes estimatedfromthelinebroadeninganalysisassumingthatmicros- trainsmakenegligiblecontributionyield10.5nmand20.2nmfor Au-CollChandAg-CollCh,respectively,thenominalaccuracyofthe estimateis10–15%.

0.1 0.1

1 10 100 1000 10000

0 25 50 75 100

Scattering Intensity, a.u.

q, nm-1

Volume fraction, a.u.

d, nm

Fig.2.ExperimentalSAXScurvesforAu-CollCh(filledsquares),Ag-CollCh(open circles),andpristineCollCh(line).Theinsetshowsvolumedistributionofmetal nanoparticlediametersreconstructedfromthedifferencecurves.

Forthecomposites,anindependentestimateforthenanopar- ticlessizewasobtainedfromtheSAXSdata.Thecorresponding experimentaldataareshowninFig.2.

The experimental curve for the metal-containing composite (correctedfortheincidentintensityandthesampleX-rayabsorp- tion) is characterizedby a higher scattering intensity than the pristineCollChscaffoldovertheentirerangeofscatteringwave vectorsmeasured, which makes it possibleto reliably separate thecontributionofthescatteringby thenanoparticlesviasim- plenumericalsubtractionprocedure.Ananalysisofthedifference curveusingtheindirectFouriertransformationwiththeTikhonov’s regularizationunderassumptionofnone-interactinghardspheres yieldsarathernarrowandslightlyasymmetricsizedistribution peakedat10nmforAu-CollChandmuchbroaderasymmetricdis- tributioncurvewithamaximumat25nmextendinguptosizes

Fig.3.TEMmicrographs(scalebaris100nm),correspondingSAEDpatternsandparticlesizedistributionfortheAu-CollCh(a–d)andAg-CollCh(e–h)composites.

(4)

Fig.4.SEMmicrographsofthecross-sectionoftheAu-CollCh(a,b)andAg-CollCh(c,d)composites.

of 120–150nm for Ag-CollCh. Apparently, this means that the nanoparticlesareagglomeratedintoaggregatesfromfewtoseveral thousandindividualnanoparticleswithinthecomposite.

Fig.3showsmicrographs,SAEDpatternsofmetalnanoparticles andsizedistributionhistogramfortheAu-CollChandAg-CollCh.

AccordingtoTEM,theparticlesarespherical,polydisperseandhave fairlyuniformdistributioninthescaffold.Theaveragesizeofthe AuandAgparticlesis4.6nmand6.6nm,respectively.Itisdemon- stratedinFig.3(candg)thatAg-CollChcompositehavethebroader particlesizedistributionthanAu-CollChone.

The presence of larger Ag nanoparticles with size of about 60–70nminthematerialshowninFig.3(eandf)canbeexplained byaggregationofsmallernanoparticlesduringthemodificationof polymermatrixwithorganosol,aswellassurfacediversityofthe pristinescaffold.

Fig.4showstheinternalcross-sectionalmicrostructureofthe Ag-CollChandAu-CollChcomposites. Collagen-chitosanscaffold hasalayeredstructure,consistingoflamellasandmicrocavaties formedbypolymernetworkoffibrils(Fig.4a–c).

Theaveragediameterofmicrocavitiesisabout40–80microns andthethicknessofthefibrilscaffoldis2–5microns.Itisexhibited thattheaggregates,withsizesfromafewtensofnanometersto severalmicrons,haveslightlyuniformdistributionsonthesurfaces ofthefibrilsandlamellas(Fig.4bandd).

Supplementaryinformation ontheelectronic stateandlocal environmentofAuandAgatomsinthecompositeswasobtainedby X-rayabsorptionspectroscopyXANES/EXAFS.AuL3-andAgK-edge XANESspectraforthemetal-modifiedCollCh-basedcompositesare comparedwithreferencespectraofmetalfoilsinFig.5.

ThesimilarshapeandenergypositionofEXAFSspectralfeatures indicatethatthechemicalstateofthemetalatomsinthecompos- itesissimilartothatintheirbulkmetals,whichmeansthatthe fractionofsurfaceatomsstronglyinteractingwiththematrixis ratherlow.

FortheXANESspectrumoftheAg-CollChcomposite,anincrease intheperiodofoscillationsisapparent,whichcorrespondstoan Ag-Agbondlengthcontractionwithrespecttothebulkmetal.This findingisfurthersupportedbyaquantitativeanalysisoftheEXAFS

Fig.5. XANESspectraofcollagen-chitosanscaffoldmodifiedwithAu(left)andAg(right).

(5)

Fig.6.FTsofEXAFSspectraforcollagen-chitosanscaffoldsmodifiedwithAu(left)andAg(right):experimental(line)andbest-fittheoretical(opencircles)curves.Thelocal environmentparameterscorrespondingtothefitsaresummarizedinTable1.

Fig.7. SurveyXPSspectraofAu-CollCh(a)andAg-CollCh(b)composites;high-resolutionAu4f,Ag3d,AgMNNandN1score-levelspectraofAu-CollCh(c),Ag-CollCh(d, e)and(f1,f2),respectively.

(6)

Table1

Parametersofthelocalenvironmentofthemetalatomsinthechitosan-basedcom- positesaccordingtoEXAFS:interatomicdistances(R),coordinationnumbers(n), andDebye-Wallerfactors(2).

Sample Path n R[Å] 22]

Au(foil) Au-Au 12.0 2.85 0.0079

Au-CollCh Au-Au 11.9 2.84 0.0095

Ag(foil) Ag-Ag 12.0 2.88 0.0095

Ag-CollCh Ag-Ag 9.7 2.85 0.0119

data.FourierTransforms(FTs)ofEXAFSspectraforthecompos- itesunderstudyareshowninFig.6.Theyareessentiallysimilar tothoseofthereferencemetalfoils.Best-fitcoordinationnumbers andinteratomicdistancesforthefirstmetal-metalcoordination spheresarelistedinTable1.

Thecompositesarecharacterizedbysomewhatdecreasedcoor- dination numbers when compared with the data the for bulk metals,whichisverycommonfornanometer-sizedmetalparti- cles.Theminimummetal-metalcoordinationnumberisobserved fortheAg-CollChcompositedespiteitsratherlargercrystallitesize asestimatedfromdiffractiondata.Furthermore,theAg–Aginter- atomicdistancederivedfromtheEXAFSforthatcompositeisby 0.03 ˚AshorterthanthatforAgfoil.Thebondlengthcontractionis quitetypicalofsmallmetalnanoparticles.Butinthecaseofsil- ver,bondlengthelongationissometimesobservedduetopartial oxidationandsuboxideformation[36].Nevertheless,aprominent changein thecoordinationnumberand bondlengthfortheAg- CollChdespitenominallylargesizefromdiffractionmayindicatea distortedlocalstructureofsilvernanoparticleswithfrequentpoint defects.

Inordertoevaluatethesurfaceconcentrationsand chemical statesofmetalatomsinthecomposites(withinalayerof5–8nm), X-rayphotoelectronspectroscopywasapplied(Fig.7).Surveyspec- tra of Au-CollCh (Fig. 7a) and Ag-CollCh (Fig. 7b) reveal peaks attributabletoelementsofthenominalchemicalcomposition,i.e., C,O,N,Au/Ag,aswellasadmixtureelementsSiandF.Quantifi- cationdatabasedonatomicsensitivityfactorsarepresented in Table2.AsitcanbejudgedfromC/NandC/Oatomicratios,the incorporationofmetals intothepristine collagen-chitosanscaf- foldsgivesrisetosomeenrichmentofthecompositesurfaceswith carbonspecies(seeTable2).Partly,thiscanbeduetoco-sorption oftheorganicsolventusedinthesynthesis.Theabsenceofdra- maticchangesinelementconcentrationsratherconfirmsthatthe CollChscaffoldsdonotdegradeuponmodificationwithnoblemetal nanoparticles.

TheAu4fbindingenergyobservedforthecomposite(Fig.7c)is characteristicoftheAu0state.Aminuteshiftby0.05eVtoahigher energywithrespecttofoilandpronouncedasymmetryofthepeak shapeareduetothesizeeffects[37,38]andthustheyalsoconfirm thepresenceofnm-sizedgoldnanoparticlestherein.

High-resolutionAg3dcore-levelsandMNNAugerlinesforthe Ag-containingcompositeareshowninFig.7dande.Theexperi- mentalvaluesfortheAg3dbindingenergy,AgMNNAugerkinetic energy,andthecorrespondingAugerparameterallconfirm[39,40]

theAg0stateofsilveratomsinthecomposite.TheN1sspectrain metal-containingcompositesandpristinescaffoldsarecharacter- izedbydifferentbindingenergiesandfull-widthsathalf-maxima

Table2

SurfacechemicalcompositionsofthecompositesfromXPSdata.

Sample Relativeconcentration,at.%

C N O Au Ag C/N C/O O/N

CollCh 74.2 8.5 17.3 8.7 4.3 2.0

Au-CollCh 74.0 7.8 15.8 2.4 9.5 4.7 2.0

Ag-CollCh 75.2 8.1 15.8 1.0 9.3 4.8 2.0

(Fig.7f),whichcanbeexplainedbyanalterationofbalancebetween thecollagenandchitosanN-functionalgroupsuponthemodifica- tion.TypicalN1score-levelbindingenergiesinchitosan(C-NH2) andcollagen(C(O)N)are399.67eV[41]and399.77–399.96[42], respectively.

4. Conclusions

Thenovelmethodforthesynthesisofhybridmaterialsbasedon thecollagen-chitosanscaffoldmodifiedwithAgandAunanopar- ticles is reported. XRD and SAXS data show that the Au- and Ag-bearingcompositesarecharacterizedbymeanparticlesizeof 10nmand25nm,respectively.Itisrevealedthatnanoparticlesin thebulkofmaterialshaveaslightlyuniformdistributionwiththe meansizeis4.6nmand6.6nmforAuandAg,respectively.Onthe surfaceitwasobservedthelargeraggregates,withsizesfromafew tensofnanometerstoseveralmicrons,consistingofsmallerparti- cles.Thewholestructureoftheobtainednanocompositesissimilar.

However,theAg-CollChcompositehasmuchbroaderasymmetric sizedistributionthanAu-CollCh.

AccordingtoXPS,metalatoms areintheunoxidized/neutral statesandpreferablystabilizedinthechitosanmatrix.Similarly, XANES/EXAFSdataindicatethechemicalstateandlocalstructure ofmetalatomsinthecompositesissimilartothatofbulkmetals apartfromasmalldecreaseinmetal-metalcoordinationnumber inbothcomposites,andmetal-metalbond-lengthcontractionin Ag-CollCh.

Wesuggestthatcollagen-chitosanscaffold,containingAuand Agnanoparticles,canbepromising antibacterialwound-healing materialformedicine.

Acknowledgements

ThisworkwaspartiallysupportedbytheRussianFoundation forBasicResearch(grantsnos.14-03-01074and15-53-61030).

References

[1]A.Aravamudhan,D.M.Ramos,A.A.Nada,S.G.Kumbar,Naturalpolymers:

polysaccharidesandtheirderivativesforbiomedicalapplications,in:S.

Kumbar,C.Laurencin,M.Deng(Eds.),NaturalandSyntheticBiomedical Polymers,firsted.,Elsevier,USA,2014,pp.67–89.

[2]R.Jayakumar,M.Prabahran,P.T.SudheeshKumar,S.V.Nair,H.Tamura, Biomaterialsbasedonchitinandchitosaninwounddressingapplications, Biotechnol.Adv.29(2011)322–337.

[3]S.-Y.Ong,J.Wu,S.M.Moochhala,M.-H.Tan,J.Lu,Developmentofa chitosan-basedwounddressingwithimprovedhemostaticandantimicrobial properties,Biomaterials29(2008)4323–4332.

[4]A.Pattani,V.B.Patravale,L.Panicker,P.D.Potdar,Immunologicaleffectsand membraneinteractionsofchitosannanoparticles,Mol.Pharm.6(2009) 345–352.

[5]I.Younes,S.Sellimi,M.Rinaudo,K.Jellouli,M.Nasri,Influenceofacetylation degreeandmolecularweightofhomogeneouschitosansonantibacterialand antifungalactivities,Int.J.FoodMicrobiol.185(2014)57–63.

[6]J.Xu,X.Zhao,X.Han,Y.Du,Antifungalacivityogoligochitosanagainst Phytophtoracapsiciandotherplantpathogenicfungiinvitro,Pest.Biochem.

Physiol.87(2007)220–228.

[7]J.-P.Chen,G.-Y.Chang,J.-K.Chen,Electrospuncollagen/chitosannanofibrous membraneaswounddressing,Coll.Surf.A:Physicochem.Eng.Asp.313–314 (2008)183–188.

[8]M.I.NiyasAhamed,S.Sankar,P.MohammedKashif,S.K.HayathBasha,T.P.

Sastry,Evaluationofbiomaterialcontainingregeneratedcelluloseand chitosanincorporatedwithsilvernanoparticles,Int.J.Biol.Macromol.72 (2015)680–686.

[9]C.Prego,D.Torres,E.Fernandez-Megia,R.Novoa-Carballal,E.Qui ˜noá,M.J.

Alonso,Chitosan–PEGnanocapsulesasnewcarriersfororalpeptidedelivery:

effectofchitosanpegylationdegree,J.ControlledRelease111(2006)299–308.

[10]T.aykara,A.Alaslan,M.S.Ero˘glu,O.Güven,Surfaceenergeticsof

poly(N-vinyl-2-pyrrolidone)/chitosanblendfilms,Appl.Surf.Sci.252(2006) 7430–7435.

[11]C.-M.Deng,L.-Z.He,M.Zhao,D.Yang,Y.Liu,Biologicalpropertiesofthe chitosan-gelatinspongewounddressing,Carbohydr.Polym.69(2007) 583–589.

(7)

[12]E.Salehi,S.S.Madaeni,Influenceofpoly(ethyleneglycol)aspore-generator onmorphologyandperformanceofchitosan/poly(vinylalcohol)membrane adsorbents,Appl.Surf.Sci.288(2014)537–541.

[13]M.Rinaudo,ChitinandChitosan:propertiesandapplications,Prog.Polym.

Sci.31(2006)603–632.

[14]M.Chvapil,R.L.Kronenthal,W.V.WinkleJr.,Medicalandsurgicalapplications ofcollagen,Int.Rev.ConnectiveTissueRes.6(1973)1–61.

[15]T.Nezu,F.M.Winnik,Interactionofwater-solublecollagenwithpoly(acrylic acid),Biomaterials21(2000)415–419.

[16]K.Yoshizato,A.Makino,K.Nagayoshi,Regulationofmorphologyand physiologyofepithelialcellsbycollagenfibrils,Biomed.Res.9(1988) 33–45.

[17]T.Garg,O.Singh,S.Arora,R.S.R.Murthy,Scaffold.Anovelcarrierforcelland drugdelivery,Crit.Rev.Therap.DrugCarrierSyst.29(2012)1–63.

[18]X.H.Wang,D.P.Li,W.J.Wang,Q.L.Feng,F.Z.Cui,Y.X.Xu,X.H.Song,M.vander Werf,Crosslinkedcollagen/chitosanmatrixforartificiallivers,Biomaterials 24(2003)3213–3220.

[19]L.Ma,C.Gao,Z.Mao,J.Zhou,J.Shen,X.Hu,C.Han,Collagen/chitosanporous scaffoldswithimprovedbiostabilityforskintissueengineering,Biomaterials 24(2003)4833–4841.

[20]L.-PingDing,Y.Fang,Aninvestigationofthesurface-enhancedRaman scattering(SERS)effectfromlaserirradiationofAgnanoparticlespreparedby trisodiumcitratereductionmethod,Appl.Surf.Sci.253(2007)4450–4455.

[21]W.Zhanga,X.Qiao,Q.Chen,Y.Cai,H.Chen,Theinfluenceofsynthesis conditionandagingprocessofsilvernanocrystalsontheformationofsilver nanorods,Appl.Surf.Sci.258(2012)5909–5913.

[22]D.Wei,W.Sun,W.Qian,Y.Ye,X.Mac,Thesynthesisofchitosan-basedsilver nanoparticlesandtheirantibacterialactivity,Carbohydr.Res.344(2009) 2375–2382.

[23]Y.-K.Twu,Y.-W.Chen,C.-M.Shih,Preparationofsilvernanoparticlesusing chitosansuspensions,PowderTechnol.185(2008)251–257.

[24]L.N.Nikitin,Yu.A.Vasil’kov,M.Banchero,L.Manna,A.V.Naumkin,V.L.

Podshibikhin,S.S.Abramchuk,M.I.Buzin,A.A.Korlyukov,A.R.Khokhlov, Compositematerialsformedicalpurposesbasedonpolyvinylpyrrolidone modifiedwithketoprofenandsilvernanoparticles,Russ.J.Phys.Chem.A85 (2011)1190–1195.

[25]O.A.Belyakova,A.V.Shulenina,Ya.V.Zubavichus,A.A.Veligzhanin,A.V.

Naumkin,Yu.A.Vasil’kov,Diagnosticsofgold-containingsurgical-dressing materialswithX-rayandsynchrotronradiation,J.Surf.Invest.X-ray SynchrotronNeutronTech.7(2013)509–514.

[26]G.Cárdenaz,J.DíazVisurraga,M.F.Meléndrez,C.Cruzat,A.GarcíaCancino, ColloidalCunanoparticles/chitosancompositefilmobtainedbymicrowave heatingforfoodpackageapplications,Pollym.Bull.62(2009)511–514.

[27]S.I.Stoeva,A.B.Smetana,C.M.Sorensen,K.J.Klabunde,Gram-scalesynthesis ofaqueousgoldcolloidsstabilizedbyvariousligands,J.ColloidInterfaceSci.

309(2007)94–98.

[28]C.Zhu,D.Fan,X.Ma,W.Xue,Y.Yu,Y.Luo,B.Liu,L.Chen,Effectsofchitosan onpropertiesofnovelhuman-likecollagen/chitosanhybridvascularscaffold, J.BioactiveCompatiblePolym.76(2009)560–576.

[29]PatentRU2108114.

[30]I.P.Suzdalev,Yu.V.Maksimov,Yu.A.Vasil’kov,A.V.Naumkin,V.L.

Podshibikhin,I.O.Volkov,ElectronicandmagneticpropertiesofAu-Fecluster nanocompositespreparedbyasequentialsolvatedmetalatomdispersion process,Nanotechnol.Russia3(2008)72–78.

[31]Yu.A.Vasil’kov,A.V.Naumkin,I.O.Volkov,V.L.Podshibikhin,G.V.Lisichkin, A.R.Khokhlov,XPS/TEMcharacterisationofPt–Au/Ccathodeelectrocatalysts preparedbymetalvapoursynthesis,Surf.InterfaceAnal.42(2010)559–563.

[32]A.P.Krasnov,V.N.Aderikha,O.V.Afonicheva,V.A.Mit’,N.N.Tikhonov,Yu.A.

Vasil’kov,E.E.Said-Galiev,A.V.Naumkin,Yu.A.Nikolaev,Categorization systemofnanofillerstopolymercomposites,J.Frict.Wear31(2010)68–80.

[33]A.A.Chernyshev,A.A.Veligzhanin,Y.V.Zubavichus,Structuralmaterials scienceend-stationatthekurchatovsynchrotronradiationsource:recent instrumentationupgradesandexperimentalresults,Nucl.Instrum.Methods Phys.Res.A603(2009)95–98.

[34]B.Ravel,M.Newville,ATHENA,ARTEMIS,HEPHAESTUS:dataanalysisfor X-rayabsorptionspectroscopyusingIFEFFIT,J.Synchrotr.Rad.12(2005) 537–541.

[35]D.I.Svergun,Determinationoftheregularizationparameterin

indirect-transformmethodsusingperceptualcriteria,J.Appl.Crystallogr.25 (1992)495–503.

[36]A.I.Frenkel,A.Yevick,C.Cooper,R.Vasic,Modelingthestructureand compositionofnanoparticlesbyextendedX-rayabsorptionfine-structure spectroscopy,Annu.Rev.Anal.Chem.4(2011)23–39.

[37]C.R.Henry,Surfacestudiesofsupportedmodelcatalysts,Surf.Sci.Rep.31 (1998)235–325.

[38]F.Karadas,G.Ertas,E.Ozkaraoglu,S.Suzer,X-rayinducedproductionofgold nanoparticlesonSiO2/SisystemandinPMMA,Langmuir21(2005)437–442.

[39]R.Romand,M.Roubin,J.P.Deloume,ESCAstudiesofsomecopperandsilver selenides,J.ElectronSpectrosc.Relat.Phenom.13(1978)229–242.

[40]G.B.Hoflund,J.F.Weaver,W.S.Epling,AgFoilbyXPS,Surf.Sci.Spectra3 (1994)151–156.

[41]N.Li,R.Bai,C.Liu,Enhancedandselectiveadsorptionofmercuryionson chitosanbeadsgraftedwithpolyacrylamideviasurface-initiatedatom transferradicalpolymerization,Langmuir21(2005)11780–11787.

[42]G.Beamson,D.Briggs,HighResolutionXPSofOrganicPolymers:TheScienta ESCA300Database,Wiley,Chichester,1992.

Referenties

GERELATEERDE DOCUMENTEN

The oxidation of 2-propanol on the gold based catalysts results in the products acet- one, propylene and carbon dioxide. The results are summarized in table 7.6. No indications of

5 Direct conversion of ethanol into ethylene oxide on copper and silver nan- oparticles Effect of addition of CeO x and Li 2 O 73 5.1

Lippits M.J., Gluhoi A.C., Nieuwenhuys B.E., A comparative study of the selective oxidation of NH 3 to N 2 over gold, silver and copper catalysts and the effect of addition of Li 2

Addition of Li 2 O has a small positive effect on the activity of the copper and gold catalyst and the silver catalyst prepared by HDP in preferential CO oxidation. Figure 2.12

Similar to the copper catalysts, addition of Li 2 O has a very small effect on the activity of the Ag based catalyst, while the selectivity was not affected by addition of Li 2

On the silver containing catalyst there is some selectivity to CH 2 O at temperature above 300 ◦ C, which is not observed for the gold containing catalyst, demonstrating that gold

Addition of Li 2 O to the alumina catalysts lowers the ethanol conversion compared to the γ-Al 2 O 3 -only catalyst, and results in a lower selectivity towards ethylene..

It is unlikely that the formation of ethylene oxide is the result of a reaction of ethanol on the gold particles with oxygen from the support as the addition of ceria, which is