• No results found

Applications of AdS/CFT in Quark Gluon Plasma Atmaja, A.N.

N/A
N/A
Protected

Academic year: 2021

Share "Applications of AdS/CFT in Quark Gluon Plasma Atmaja, A.N."

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Applications of AdS/CFT in Quark Gluon Plasma

Atmaja, A.N.

Citation

Atmaja, A. N. (2010, October 26). Applications of AdS/CFT in Quark Gluon

Plasma. Casimir PhD Series. Retrieved from

https://hdl.handle.net/1887/16078

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16078

Note: To cite this publication please use the final published version (if

applicable).

(2)

Applications of AdS/CFT in Quark Gluon Plasma

Ardian Nata Atmaja

(3)
(4)

Applications of AdS/CFT in Quark Gluon Plasma

P R O E F S C H R I F T

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op dinsdag 26 oktober 2010 klokke 13.45 uur

door

Ardian Nata Atmaja

geboren te Medan, Indonesi¨e

in 1979

(5)

Promotiecommissie:

Promotor: prof. dr. J. de Boer (Universiteit Amsterdam) Co-Promotor: dr. K. Schalm

Overige leden: prof. dr. A. Ach ´ucarro prof. dr. J. Zaanen

prof. dr. E.P. Verlinde (Universiteit Amsterdam) prof. dr. J.M. van Ruitenbeek

ISBN: 978-908593088-4

Casimir PhD Series, Delft-Leiden 2010-28

(6)

Untuk almarhum papa, mama, dan nenekku tersayang yang cinta dan kasih sayangnya melewati batas ruang dan waktu.

(7)
(8)

Bismillah Hir-Rahman Nir-Rahim.

(9)
(10)

C ONTENTS

1 Introduction 1

1.1 Quark Gluon Plasma . . . 3

1.2 D-branes . . . 5

1.2.1 Non-abelian gauge theory on D3-branes. . . 6

1.3 p-Branes . . . 7

1.4 AdS/CFT correspondence . . . 8

1.4.1 GKPW procedure and holographic renormalization . . . 9

1.4.2 Top-down approach . . . 10

1.4.3 Bottom-up approach . . . 11

1.5 Holographic models of Hadrons. . . 11

1.5.1 Hard-wall model . . . 11

1.5.2 Soft-wall model . . . 13

1.6 Thermal field theory . . . 14

1.7 Holographic real-time propagator. . . 17

1.7.1 Minkowski prescription I. . . 18

1.7.2 Minkowski prescription II . . . 20

1.8 Outline . . . 21

2 Photon Production in Soft Wall Model 23 2.1 Introduction . . . 23

2.2 Photon and dilepton production . . . 24

2.2.1 Photon and dilepton rates at strong coupling . . . 25

2.3 Solving the system. . . 28

2.3.1 Lightlike momenta . . . 28

2.3.2 Timelike and spacelike momenta . . . 35

2.3.3 Electrical conductivity . . . 36

2.4 Conclusion: Soft wall cut-offs as an IR mass-gap. . . 37

2.A Spectral function low frequency limit for lightlike momenta. . . 41

2.B The susceptibility and the diffusion constant . . . 42

(11)

x CONTENTS

3 Holographic Brownian Motion and Time Scales in Strongly Coupled

Plasmas 45

3.1 Introduction . . . 45

3.2 Brownian motion in AdS/CFT . . . 47

3.2.1 Boundary Brownian motion . . . 47

3.2.2 Bulk Brownian motion . . . 49

3.2.3 Generalizations . . . 54

3.3 Time scales . . . 57

3.3.1 Physics of time scales . . . 57

3.3.2 A simple model . . . 58

3.3.3 Non-Gaussian random force and Langevin equation . . . 62

3.4 Holographic computation of theR-correlator . . . 62

3.4.1 Thermal field theory on the worldsheet . . . 63

3.4.2 Holographic approach . . . 67

3.4.3 General polarizations . . . 68

3.5 The IR divergence . . . 69

3.6 Generalizations . . . 72

3.6.1 Mean-free-path time for the general case . . . 72

3.6.2 Application: STU black hole . . . 75

3.7 Discussion . . . 81

3.A Normalizing solutions to the wave equation . . . 83

3.B Low energy solutions to the wave equation . . . 84

3.C Various propagators and their low frequency limit . . . 87

3.D Holographic renormalization and Lorentzian AdS/CFT . . . 90

3.D.1 Holographic renormalization . . . 90

3.D.2 Propagators and correlators . . . 93

3.D.3 Lorentzian AdS/CFT . . . 98

3.D.4 Low frequency correlators . . . 100

3.D.5 Retarded 4-point function . . . 101

3.E Computation ofη for the STU black hole . . . 102

4 Drag Force in 4D Kerr-AdS Black Hole 105 4.1 Introduction . . . 105

4.2 Drag force on a string in a global 4D AdS black hole. . . 106

4.2.1 Great circle atθ = π/2 . . . 108

4.2.2 General solution of the great circle . . . 110

4.3 Anisotropic drag on a string in 4D Kerr-AdS black hole . . . 113

4.3.1 Static solution . . . 116

4.3.2 Drag force . . . 118

4.4 Discussion and conclusion. . . 120

Bibliography 123

Summary 133

(12)

CONTENTS xi

Samenvatting 136

Acknowledgement 140

Curriculum Vitae 142

List of Publications 144

(13)

xii CONTENTS

Referenties

GERELATEERDE DOCUMENTEN

To relate the massive N = 2 SQCD result to AdS/QCD, we note that Mateos and Pati ˜ no showed that in N = 2 SQCD the defining equation relevant for the trace of the spectral function

We studied Brownian motion in the AdS/CFT setup and computed the time scales characterizing the interaction between the Brownian particle and the CFT plasma, such as the

Taking a “static” solution in Boyer-Lindquist coordinates, corresponding to a static quark in a rotating plasma, we were able to compute the leading contribution to the drag

Starinets, “Viscosity in strongly interact- ing quantum field theories from black hole physics,” Phys... Wiedemann, “Calculating the jet quenching parameter from

In this thesis, we used AdS/CFT correspondence to compute some of observables of QGP such as photon and dilepton production rates, mean-free path time of the plasma constituents,

We hebben in 3 laten zien dat voor een eenvoudig model de gemiddelde tijd tussen botsin- gen berekend kan worden met behulp van de twee- en vierpuntsfuncties van de kracht ten

I started my Bachelor program at Informatics Department of College of Technology Telkom (STT Telkom) in 1997 and a year later I entered another Bachelor program at Physics Department

The quark immersed in the plasma is dressed with a "cloud" of excitations of the plasma and the transverse fluctuation modes on the bulk string correspond to the excitations