• No results found

University of Groningen Engineering endogenous hexose transporters in Saccharomyces cerevisiae for efficient D- xylose transport Nijland, Jeroen

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Engineering endogenous hexose transporters in Saccharomyces cerevisiae for efficient D- xylose transport Nijland, Jeroen"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Engineering endogenous hexose transporters in Saccharomyces cerevisiae for efficient

D-xylose transport

Nijland, Jeroen

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Nijland, J. (2019). Engineering endogenous hexose transporters in Saccharomyces cerevisiae for efficient

D-xylose transport. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

BIBLOGRAPHY

1. Solomon BD. 2010. Biofuels and sustainability. Ann N Y Acad Sci 1185:119–134.

2. Zaldivar J, Nielsen J, Olsson L, Arensdorf JJ, Loomis AK, DiGrazia PM, Monticello DJ, Pienkos PT. 2002. Fuel ethanol production from ligno-cellulose: a challenge for metabolic engineering and process integration . Appl Environ Microbiol 68:691–698.

3. LYND L, ZYL W, MCBRIDE J, LASER M. 2005. Consolidated bioprocess-ing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583. 4. Carroll A, Somerville C. 2009. Cellulosic biofuels. Annu Rev Plant Biol

60:165–182.

5. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łu-kasik  R. 2010. Hemicelluloses for fuel ethanol: A review. Bioresour Technol 101:4775–4800.

6. Lee J. 1997. Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24.

7. Kotter P, Ciriacy M. 1993. Xylose fermentation by Saccharomyces cere-visiae. Appl Microbiol Biotechnol 38:776–783.

8. Tantirungkij M, Seki T, Yoshida T. 1994. Genetic improvement of Sac-charomyces cerevisiae for ethanol production from xylose. Ann N Y Acad Sci 721:138–47.

9. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT. 2005. Evolutionary engineering of mixed-sugar utilization by a xy-lose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934.

10. Kuyper M, Winkler AA, van Dijken JP, Pronk JT. 2004. Minimal met-abolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664. 11. Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT,

den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT. 2003. High-level functional expression of a fungal xylose isomerase: the key to ef-ficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4:69–78.

12. Kuyper  M, Hartog  MM, Toirkens  MJ, Almering  MJ, Winkler AA, van Dijken JP, Pronk JT. 2005. Metabolic engineering of a xylose-isomer-ase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xy-lose fermentation. FEMS Yeast Res 5:399–409.

(3)

13. Johansson B, Hahn-Hägerdal B. 2002. The non-oxidative pentose phos-phate pathway controls the fermentation rate of xylulose but not of xy-lose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2:277–82. 14. Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund M-F. 2005. Investiga-tion of limiting metabolic steps in the utilizaInvestiga-tion of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368. 15. Bera AK, Ho NWY, Khan A, Sedlak M. 2011. A genetic overhaul of

Sac-charomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biotechnol 38:617–626.

16. Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund M-F. 2006. High activity of xylose reductase and xylitol dehydrogenase im-proves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 73:1039–1046.

17. Traff KL, Otero Cordero RR, van Zyl WH, Hahn-Hagerdal B. 2001. Dele-tion of the GRE3 Aldose Reductase Gene and Its Influence on Xylose Me-tabolism in Recombinant Strains of Saccharomyces cerevisiae Expressing the xylA and XKS1 Genes. Appl Environ Microbiol 67:5668–5674. 18. Verhoeven MD, Lee M, Kamoen L, van den Broek M, Janssen DB,

Da-ran J-MG, van Maris AJA, Pronk JT. 2017. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Sci Rep 7:46155.

19. Moysés D, Reis V, Almeida J, Moraes L, Torres F. 2016. Xylose Fermen-tation by Saccharomyces cerevisiae: Challenges and Prospects. Int J Mol Sci 17:207.

20. Sedlak, Ho. 2001. Expression of E. coli araBAD operon encoding en-zymes for metabolizing L-arabinose in Saccharomyces cerevisiae. En-zyme Microb Technol 28:16–24.

21. Becker J, Boles  E. 2003. A modified Saccharomyces cerevisiae strain that consumes L-Arabinose and produces ethanol. Appl Environ Micro-biol 69:4144–50.

22. Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van  Dijken JP, Pronk JT, van Maris AJA. 2007. Engineering of Saccha-romyces cerevisiae for Efficient Anaerobic Alcoholic Fermentation of L-Arabinose. Appl Environ Microbiol 73:4881–4891.

23. Richard P, Verho R, Putkonen M, Londesborough J, Penttilä M. 2003. Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res 3:185–9.

24. Bettiga  M, Bengtsson  O, Hahn-Hagerdal  B, Gorwa-Grauslund  MF. 2009. Arabinose and xylose fermentation by recombinant Saccharomy-ces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 8:40.

25. Hahn-Hägerdal  B, Karhumaa K, Jeppsson  M, Gorwa-Grauslund  MF. 2007. Metabolic Engineering for Pentose Utilization in Saccharomyces cerevisiae, p. 147–177. In Biofuels. Springer Berlin Heidelberg, Berlin, Heidelberg.

26. Henderson PJ, Maiden MC. 1990. Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukary-otes. Philos Trans R Soc Lond B Biol Sci 326:391–410.

27. Maiden  MCJ, Davis  EO, Baldwin  SA, Moore  DCM, Henderson  PJF. 1987. Mammalian and bacterial sugar transport proteins are

homolo-gous. Nature 325:641–643.

28. Baldwin  SA, Henderson  PJF. 1989. Homologies between Sugar Trans-porters from Eukaryotes and Prokaryotes. Annu Rev Physiol 51:459–471. 29. Vardy E, Arkin IT, Gottschalk KE, Kaback HR, Schuldiner S. 2004. Struc-tural conservation in the major facilitator superfamily as revealed by comparative modeling. Protein Sci 13:1832–1840.

30. Griffith JK, Baker  ME, Rouch DA, Page  MG, Skurray RA, Paulsen  IT, Chater KF, Baldwin  SA, Henderson  PJ. 1992. Membrane transport proteins: implications of sequence comparisons. Curr Opin Cell Biol 4:684–95.

31. Horák J. 1997. Yeast nutrient transporters. Biochim Biophys Acta 1331:41–79.

32. Pao SS, Paulsen IT, Saier MH. 1998. Major facilitator superfamily. Mi-crobiol Mol Biol Rev 62:1–34.

33. Young EM, Tong A, Bui H, Spofford C, Alper HS. 2014. Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proc Natl Acad Sci U S A 111:131–6.

34. Kruckeberg AL. 1996. The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292.

35. Boles E, Hollenberg CP. 1997. The molecular genetics of hexose trans-port in yeasts. FEMS Microbiol Rev 21:85–111.

36. Hamacher T, Becker J, Gardonyi M, Hahn-Hagerdal B, Boles E. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148:2783–2788.

(4)

37. Runquist D, Fonseca C, Rådström P, Spencer-Martins I, Hahn- Hägerdal  B. 2009. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82:123–130. 38. Fonseca  C, Olofsson  K, Ferreira C, Runquist  D, Fonseca  LL, Hahn-

Hägerdal B, Lidén G. 2011. The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw. Enzyme Microb Technol 48:518–525.

39. Diao L, Liu Y, Qian F, Yang J, Jiang Y, Yang S. 2013. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing dip-loid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnol 13:110.

40. Tanino T, Ito T, Ogino C, Ohmura N, Ohshima T, Kondo A. 2012. Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces cerevisiae harboring a xyloseisom-erase pathway. J Biosci Bioeng 114:209–211.

41. Olofsson K, Runquist D, Hahn-Hägerdal B, Lidén G. 2011. A mutated xylose reductase increases bioethanol production more than a glucose/ xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw. AMB Express 1:4.

42. Leandro MJ, Goncalves P, Spencer-Martins I. 2006. Two glucose/xy-lose transporter genes from the yeast Candida intermedia: first mo-lecular characterization of a yeast xylose-H+ symporter. Biochem J 395:543–549.

43. Lee M, Rozeboom HJ, de Waal PP, de Jong RM, Dudek HM, Janssen DB. 2017. Metal Dependence of the Xylose Isomerase from Piromyces sp. E2 Explored by Activity Profiling and Protein Crystallography. Biochemistry 56:5991–6005.

44. Young  EM, Comer AD, Huang H, Alper HS. 2012. A molecular trans-porter engineering approach to improving xylose catabolism in Saccha-romyces cerevisiae. Metab Eng 14:401–411.

45. Li H, Schmitz O, Alper HS. 2016. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter. Appl Mi-crobiol Biotechnol 100:10215–10223.

46. Johnson DA, Thomas MA. 2007. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolu-tion, and functional divergence. Mol Biol Evol 24:2412–23.

47. Hector RE, Qureshi  N, Hughes  SR, Cotta  MA. 2008. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80:675–684.

48. Runquist D, Hahn-Hagerdal B, Radstrom P. 2010. Comparison of heter-ologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 3:5.

49. Grootjen DRJ, van der Lans RGJM, Luyben KCAM. 1991. Conversion of glucose/xylose mixtures by Pichia stipitis under oxygen-limited condi-tions. Enzyme Microb Technol 13:648–654.

50. Does AL, Bisson LF. 1989. Comparison of glucose uptake kinetics in dif-ferent yeasts. J Bacteriol 171:1303–8.

51. Weierstall T, Hollenberg CP, Boles E. 1999. Cloning and characteriza-tion of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31:871–83.

52. Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A. 2008. Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expres-sion of glucose transporter Sut1. Enzyme Microb Technol 43:115–119. 53. Wang C, Bao X, Li Y, Jiao C, Hou J, Zhang Q, Zhang W, Liu W, Shen Y.

2015. Cloning and characterization of heterologous transporters in Sac-charomyces cerevisiae and identification of important amino acids for xylose utilization. Metab Eng 30:79–88.

54. Young E, Poucher A, Comer A, Bailey A, Alper H. 2011. Functional sur-vey for heterologous sugar transport proteins, using Saccharomyces cer-evisiae as a host. Appl Environ Microbiol 77:3311–9.

55. de Sales BB, Scheid B, Gonçalves DL, Knychala MM, Matsushika A, Bon EPS, Stambuk BU. 2015. Cloning novel sugar transporters from Schef-fersomyces (Pichia) stipitis allowing d-xylose fermentation by recombi-nant Saccharomyces cerevisiae. Biotechnol Lett 37:1973–1982. 56. Young  EM, Comer AD, Huang H, Alper HS. 2012. A molecular

trans-porter engineering approach to improving xylose catabolism in Saccha-romyces cerevisiae. Metab Eng 14:401–411.

57. dos Reis TF, Menino JF, Bom VLP, Brown NA, Colabardini AC, Savoldi  M, Goldman MHS, Rodrigues F, Goldman GH. 2013. Identification of Glucose Transporters in Aspergillus nidulans. PLoS One 8:e81412. 58. Colabardini A, Ries LN, Brown N, dos Reis T, Savoldi M, Goldman MHS,

(5)

of a xylose transporter in Aspergillus nidulans. Biotechnol Biofuels 7:46.

59. Kim H, Lee H-S, Park H, Lee D-H, Boles E, Chung D, Park Y-C. 2017. Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H + symporter and Scheffersomyces stipitis xylose re-ductase in recombinant Saccharomyces cerevisiae.

60. Verho R, Penttilä M, Richard P. 2011. Cloning of Two Genes (LAT1,2) Encoding Specific l-Arabinose Transporters of the l-Arabinose Fer-menting Yeast Ambrosiozyma monospora. Appl Biochem Biotechnol 164:604–611.

61. Londesborough J, Richard P, Valkonen M, Viljanen K. 2014. Effect of C-terminal protein tags on pentitol and L-arabinose transport by Am-brosiozyma monospora Lat1 and Lat2 transporters in Saccharomyces cerevisiae. Appl Environ Microbiol 80:2737–45.

62. Knoshaug EP, Vidgren V, Magalhães F, Jarvis EE, Franden MA, Zhang M, Singh A. 2015. Novel transporters from Kluyveromyces marxianus and Pi-chia guilliermondii expressed in Saccharomyces cerevisiae enable growth on l -arabinose and d -xylose. Yeast 32:615–628.

63. Subtil T, Boles E. 2011. Improving L-arabinose utilization of pentose fer-menting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters. Biotechnol Biofuels 4:38. 64. Truernit E, Stadler R, Baier K, Sauer N. 1999. A male

gametophyte-spe-cific monosaccharide transporter inArabidopsis. Plant J 17:191–201. 65. Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E. 2014. Engineering

of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci 1323464111–.

66. Verhoeven  MD, Bracher  JM, Nijland  JG, Bouwknegt J, Daran  J-MG, Driessen AJM, van  Maris AJA, Pronk JT. 2018. Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cere-visiae strain reveals mutations in GAL2 that enable glucose-insensitive l-arabinose uptake. FEMS Yeast Res 18.

67. Li J, Xu J, Cai P, Wang B, Ma Y, Benz JP, Tian C. 2015. Functional Anal-ysis of Two l-Arabinose Transporters from Filamentous Fungi Reveals Promising Characteristics for Improved Pentose Utilization in Saccharo-myces cerevisiae. Appl Environ Microbiol 81:4062–70.

68. Bracher JM, Verhoeven MD, Wisselink HW, Crimi B, Nijland JG, Dries-sen  AJM, KlaasDries-sen  P, van  Maris  AJA, Daran  J-MG, Pronk JT. 2018. The Penicillium chrysogenum transporter PcAraT enables high-affinity,

glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae. Biotechnol Biofuels 11:63.

69. Nijland  JG, Vos  E, Shin  HY, de  Waal  PP, Klaassen  P, Driessen  AJM. 2016. Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae. Biotechnol Biofuels 9:158.

70. Saloheimo A, Rauta J, Stasyk O V, Sibirny AA, Penttila M, Ruohonen L. 2007. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74:1041–1052.

71. Shin  HY, Nijland JG, de Waal  PP, de Jong  RM, Klaassen  P, Driessen  AJM. 2015. An engineered cryptic Hxt11 sugar transporter facilitates glucose–xylose co-consumption in Saccharomyces cerevisiae. Biotech-nol Biofuels 8:176.

72. Nijland JG, Shin HY, de Jong RM, de Waal PP, Klaassen P, Driessen AJ. 2014. Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Sac-charomyces cerevisiae. Biotechnol Biofuels 7:168.

73. Subtil T, Boles  E. 2012. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevi-siae. Biotechnol Biofuels 5:14.

74. van Zyl WH, Eliasson A, Hobley T, Hahn-Hägerdal B. 1999. Xylose util-isation by recombinant strains of Saccharomyces cerevisiae on different carbon sources. Appl Microbiol Biotechnol 52:829–33.

75. Lagunas R. 1993. Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol Rev 10:229–42.

76. Nijland JG, Shin HY, Boender LGM, de Waal PP, Klaassen P, Driessen  AJM. 2017. Improved Xylose Metabolism by a CYC8 Mutant of Saccha-romyces cerevisiae. Appl Environ Microbiol 83:e00095–17.

77. Reznicek O, Facey SJ, de Waal PP, Teunissen AWRH, de Bont JAM, Ni-jland JG, Driessen AJM, Hauer B. 2015. Improved xylose uptake in Sac-charomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption. J Appl Microbiol 119:99–111.

78. Nijland JG, Shin HY, de Waal PP, Klaassen P, Driessen AJM. 2018. In-creased xylose affinity of Hxt2 through gene shuffling of hexose trans-porters in Saccharomyces cerevisiae. J Appl Microbiol 124:503–510. 79. Gonçalves DL, Matsushika A, de Sales BB, Goshima T, Bon EPS, Stambuk

(6)

Saccharomyces cerevisiae strains expressing individual hexose trans-porters. Enzyme Microb Technol 63:13–20.

80. Shin HY, Nijland JG, de Waal PP, Driessen AJM. 2017. The amino-ter-minal tail of Hxt11 confers membrane stability to the Hxt2 sugar trans-porter and improves Xylose fermentation in the presence of acetic acid. Biotechnol Bioeng.

81. Kruckeberg AL, Ye L, Berden JA, van Dam K. 1999. Functional expres-sion, quantification and cellular localization of the Hxt2 hexose trans-porter of Saccharomyces cerevisiae tagged with the green fluorescent protein. Biochem J 339 (Pt 2):299–307.

82. Snowdon C, van der Merwe G. 2012. Regulation of Hxt3 and Hxt7 turn-over converges on the Vid30 complex and requires inactivation of the Ras/ cAMP/PKA pathway in Saccharomyces cerevisiae. PLoS One 7:e50458. 83. Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N. 2012. Crystal

struc-ture of a bacterial homologue of glucose transporters GLUT1-4. Nastruc-ture 490:361–366.

84. Kasahara T, Maeda M, Ishiguro M, Kasahara M. 2007. Identification by comprehensive chimeric analysis of a key residue responsible for high af-finity glucose transport by yeast HXT2. J Biol Chem 282:13146–13150. 85. Reider Apel A, Ouellet M, Szmidt-Middleton H, Keasling JD,

Mukhopad-hyay A. 2016. Evolved hexose transporter enhances xylose uptake and glu-cose/xylose co-utilization in Saccharomyces cerevisiae. Sci Rep 6:19512. 86. Vilela L de F, de Araujo VPG, Paredes R de S, Bon EP da S, Torres FAG,

Neves BC, Eleutherio ECA. 2015. Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express 5:16.

87. Lynd  LR. 1996. OVERVIEW AND EVALUATION OF FUEL ETHANOL FROM CELLULOSIC BIOMASS: Technology, Economics, the Environ-ment, and Policy. Annu Rev Energy Environ 21:403–465.

88. Grohmann K, Bothast RJ. 1997. Saccharification of corn fibre by com-bined treatment with dilute sulphuric acid and enzymes. Process Bio-chem 32:405–415.

89. Kou SC, Christensen MS, Cirillo VP. 1970. Galactose transport in Sac-charomyces cerevisiae. II. Characteristics of galactose uptake and ex-change in galactokinaseless cells. J Bacteriol 103:671–8.

90. Wang C, Shen Y, Zhang Y, Suo F, Hou J, Bao X. 2013. Improvement of L-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae. Biomed Res Int 2013:461204.

91. Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ. 2009. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevi-siae strains. Appl Environ Microbiol 75:907–914.

92. Wang C, Li Y, Qiu C, Wang S, Ma J, Shen Y, Zhang Q, Du B, Ding Y, Bao X. 2017. Identification of Important Amino Acids in Gal2p for Improving the L-arabinose Transport and Metabolism in Saccharomyces cerevisiae. Front Microbiol 8:1391.

93. WISSELINK HW, VAN MARIS AJA, PRONK JT, KLAASSEN P, DE JONG RM. 2012. POLYPEPTIDES WITH PERMEASE ACTIVITY.

94. Reifenberger E, Boles E, Ciriacy M. 1997. Kinetic characterization of in-dividual hexose transporters of Saccharomyces cerevisiae and their rela-tion to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333.

95. Diderich JA, Schepper M, van Hoek P, Luttik MA, van Dijken JP, Pronk JT, Klaassen P, Boelens HF, de Mattos MJ, van Dam K, Kruckeberg AL. 1999. Glucose uptake kinetics and transcription of HXT genes in

che-mostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–9. 96. Ozcan S, Johnston M. 1999. Function and regulation of yeast hexose

transporters. Microbiol Mol Biol Rev 63:554–569.

97. Kim J-H, Polish J, Johnston M. 2003. Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Mol Cell Biol 23:5208–16.

98. Roy A, Shin YJ, Cho KH, Kim J-H. 2013. Mth1 regulates the interaction between the Rgt1 repressor and the Ssn6-Tup1 corepressor complex by modulating PKA-dependent phosphorylation of Rgt1. Mol Biol Cell 24:1493–503.

99. Nehlin JO, Ronne H. 1990. Yeast MIG1 repressor is related to the mam-malian early growth response and Wilms’ tumour finger proteins. EMBO J 9:2891–8.

100. Kim J-H, Brachet V, Moriya H, Johnston M. 2006. Integration of tran-scriptional and posttranslational regulation in a glucose signal transduc-tion pathway in Saccharomyces cerevisiae. Eukaryot Cell 5:167–73. 101. Ozcan S, Johnston M. 1995. Three different regulatory mechanisms

en-able yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15:1564–1572.

102. BUZIOL S, WARTH L, MAGARIO I, FREUND A, SIEMANNHERZBERG M, REUSS M. 2008. Dynamic response of the expression of hxt1, hxt5 and

(7)

hxt7 transport proteins in Saccharomyces cerevisiae to perturbations in the extracellular glucose concentration. J Biotechnol 134:203–210. 103. Roy A, Kim Y-B, Cho KH, Kim J-H. 2014. Glucose starvation-induced

turnover of the yeast glucose transporter Hxt1. Biochim Biophys Acta 1840:2878–85.

104. Verwaal R, Paalman JWG, Hogenkamp A, Verkleij AJ, Verrips CT, Boon-stra J. 2002. HXT5 expression is determined by growth rates in Saccha-romyces cerevisiae. Yeast 19:1029–38.

105. Van Maris AJA, Winkler AA, Kuyper M, De Laat WTAM, Van Dijken JP, Pronk JT. 2007. Development of efficient xylose fermentation in Sac-charomyces cerevisiae: xylose isomerase as a key component. Adv Bio-chem Eng 108:179–204.

106. Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148:2783–8.

107. Sedlak M, Ho NWY. 2004. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermen-tation by a recombinantSaccharomyces yeast. Yeast 21:671–684.

108. Gonçalves DL, Matsushika A, de Sales BB, Goshima T, Bon EPS, Stambuk BU. 2014. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose trans-porters. Enzyme Microb Technol 63:13–20.

109. Kasahara  T, Ishiguro  M, Kasahara  M. 2004. Comprehensive chimeric analysis of amino acid residues critical for high affinity glucose transport by Hxt2 of Saccharomyces cerevisiae. J Biol Chem 279:30274–30278. 110. Kasahara T, Maeda M, Boles E, Kasahara M. 2009. Identification of a

key residue determining substrate affinity in the human glucose trans-porter GLUT1. Biochim Biophys Acta 1788:1051–1055.

111. Kasahara T, Kasahara M. 2003. Transmembrane segments 1, 5, 7 and 8 are required for high-affinity glucose transport by Saccharomyces cere-visiae Hxt2 transporter. Biochem J 372:247–252.

112. Kasahara T, Ishiguro M, Kasahara M. 2006. Eight amino acid residues in transmembrane segments of yeast glucose transporter Hxt2 are re-quired for high affinity transport. J Biol Chem 281:18532–18538. 113. Kasahara T, Kasahara  M. 2010. Identification of a key residue

deter-mining substrate affinity in the yeast glucose transporter Hxt7: a two- dimensional comprehensive study. J Biol Chem 285:26263–26268.

114. Kasahara T, Shimogawara K, Kasahara M. 2011. Crucial effects of amino acid side chain length in transmembrane segment 5 on substrate affinity in yeast glucose transporter Hxt7. Biochemistry 50:8674–8681. 115. Stemmer WP. 1994. DNA shuffling by random fragmentation and

reas-sembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91:10747–51.

116. Du J, Li  S, Zhao H. 2010. Discovery and characterization of novel d- xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol Biosyst 6:2150–2156.

117. Maier A, Völker B, Boles E, Fuhrmann GF. 2002. Characterisation of glu-cose transport in Saccharomyces cerevisiae with plasma membrane ves-icles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res 2:539–50.

118. Cornish-Bowden A, Eisenthal R. 1974. Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot ando-ther methods. Biochem J 139:721–30.

119. Eisenthal  R, Cornish-Bowden  A. 1974. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Bio-chem J 139:715–20.

120. Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.

121. von Sivers M, Zacchi G, Olsson L, Hahn-Hagerdal B. 1994. Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Prog 10:555–560.

122. Ren C, Chen T, Zhang J, Liang L, Lin Z. 2009. An evolved xylose trans-porter from Zymomonas mobilis enhances sugar transport in Esche-richia coli. Microb Cell Fact 8:66.

123. Leandro MJ, Goncalves P, Spencer-Martins I. 2006. Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular char-acterization of a yeast xylose-H+ symporter. Biochem J 395:543–549. 124. Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA,

Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne WHM, Klaassen P, Paddon CJ, Platt D, Kötter P, van Ham RC, Reinders MJT, Pronk JT, de  Ridder  D, Daran J-M. 2012. De novo sequencing, assembly and analysis of the ge-nome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11:36.

(8)

125. Fleming AB, Beggs S, Church M, Tsukihashi Y, Pennings S. 2014. The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene. Biochim Biophys Acta 1839:1242–55.

126. Zha J, Shen M, Hu M, Song H, Yuan Y. 2014. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phos-phate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. J Ind Microbiol Biotechnol 41:27–39. 127. Tzamarias D, Struhl K. 1995. Distinct TPR motifs of Cyc8 are involved

in recruiting the Cyc8-Tup1 corepressor complex to differentially regu-lated promoters. Genes Dev 9:821–31.

128. Smith RL, Johnson AD. 2000. Turning genes off by Ssn6–Tup1: a con-served system of transcriptional repression in eukaryotes. Trends Bio-chem Sci 25:325–330.

129. Treitel MA, Carlson M. 1995. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A 92:3132–6. 130. DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and ge-netic control of gene expression on a genomic scale. Science 278:680–6. 131. Chujo M, Yoshida S, Ota A, Murata K, Kawai S. 2015. Acquisition of the

abil-ity to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8. Appl Environ Microbiol 81:9–16. 132. Lipke PN, Hull-Pillsbury C. 1984. Flocculation of Saccharomyces

cerevi-siae tup1 mutants. J Bacteriol 159:797–9.

133. Wong KH, Struhl K. 2011. The Cyc8-Tup1 complex inhibits transcrip-tion primarily by masking the activatranscrip-tion domain of the recruiting protein. Genes Dev 25:2525–39.

134. Jordan P, Choe J-Y, Boles E, Oreb M. 2016. Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Sci Rep 6:23502.

135. Toivari MH, Salusjärvi L, Ruohonen L, Penttilä M. 2004. Endogenous xylose pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 70:3681–3686.

136. Luttik MA, Kötter P, Salomons FA, van der Klei IJ, van Dijken JP, Pronk JT. 2000. The Saccharomyces cerevisiae ICL2 gene encodes a mitochon-drial 2-methylisocitrate lyase involved in propionyl-coenzyme A metab-olism. J Bacteriol 182:7007–7013.

137. Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NGA, van den  Broek  M, Daran-Lapujade  P, Pronk JT, van  Maris  AJA, Daran  J-MG.

2015. CRISPR/Cas9: a molecular Swiss army knife for simultaneous in-troduction of multiple genetic modifications in Saccharomyces cerevi-siae. FEMS Yeast Res 15:fov004–fov004.

138. van Maris AJ, Winkler AA, Kuyper M, de Laat WT, van Dijken JP, Pronk JT. 2007. Development of efficient xylose fermentation in Saccharomy-ces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 108:179–204.

139. Suga H, Matsuda F, Hasunuma T, Ishii J, Kondo A. 2013. Implementa-tion of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Appl Microbiol Bio-technol 97:1669–78.

140. Brown CJ, Todd  KM, Rosenzweig  RF. 1998. Multiple duplications of yeast hexose transport genes in response to selection in a glucose-lim-ited environment. Mol Biol Evol 15:931–942.

141. Platt  A, Reece RJ. 1998. The yeast galactose genetic switch is me-diated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J 17:4086–91.

142. Lakshmanan J, Mosley AL, Ozcan S. 2003. Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1. Curr Genet 44:19–25.

143. Flick KM, Spielewoy N, Kalashnikova TI, Guaderrama M, Zhu Q, Chang H-C, Wittenberg C. 2003. Grr1-dependent inactivation of Mth1 medi-ates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell 14:3230–41.

144. Rolland F, Winderickx J, Thevelein JM. 2002. Glucose-sensing and -sig-nalling mechanisms in yeast. FEMS Yeast Res 2:183–201.

145. Johnston M, Kim J-H. 2005. Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem Soc Trans 33:247–52.

146. Kim J-H, Roy A, Jouandot D, Cho KH. 2013. The glucose signaling net-work in yeast. Biochim Biophys Acta 1830:5204–10.

147. Horák J. 2013. Regulations of sugar transporters: insights from yeast. Curr Genet 59:1–31.

148. Finley D, Ulrich HD, Sommer T, Kaiser P. 2012. The ubiquitin-protea-some system of Saccharomyces cerevisiae. Genetics 192:319–60. 149. Diderich  JA, Schuurmans  JM, Van  Gaalen  MC, Kruckeberg  AL, Van

Dam K. 2001. Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae. Yeast 18:1515–24.

(9)

150. van Suylekom D, van Donselaar E, Blanchetot C, Do Ngoc LN, Humbel BM, Boonstra J. 2007. Degradation of the hexose transporter Hxt5p in Saccharomyces cerevisiae. Biol Cell 99:13–23.

151. Romaní A, Pereira F, Johansson B, Domingues L. 2015. Metabolic engi-neering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Bioresour Technol 179:150–8. 152. Reifenberger E, Freidel K, Ciriacy M. 1995. Identification of novel HXT

genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol Microbiol 16:157–167. 153. Jeffries TW, Jin YS. 2004. Metabolic engineering for improved

fermen-tation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509. 154. Peng B, Chen X, Shen Y, Bao X. 2011. [Effect of controlled

overexpres-sion of xylulokinase by different promoters on xylose metabolism in Saccharomyces cerevisiae]. Wei Sheng Wu Xue Bao 51:914–22. 155. Traff KL, Otero Cordero RR, van Zyl WH, Hahn-Hagerdal B. 2001.

Dele-tion of the GRE3 Aldose Reductase Gene and Its Influence on Xylose Me-tabolism in Recombinant Strains of Saccharomyces cerevisiae Expressing the xylA and XKS1 Genes. Appl Environ Microbiol 67:5668–5674. 156. Shao Z, Zhao H, Zhao H, Yang J, Jiang Y, Yang S, Abt T Den, Bonini B,

Liden G, Dumortier F. 2009. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16–e16.

157. Canelas AB, Ras C, ten Pierick A, van Dam JC, Heijnen JJ, van Gulik WM. 2008. Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 4:226–239.

158. Deatherage DE, Barrick JE. 2014. Identification of mutations in labo-ratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol 1151:165–88.

159. Van Hoek P, Van Dijken JP, Pronk JT. 1998. Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl Environ Microbiol 64:4226–33.

160. Hanscho M, Ruckerbauer DE, Chauhan N, Hofbauer HF, Krahulec S, Ni-detzky  B, Kohlwein SD, Zanghellini J, Natter  K. 2012. Nutritional re-quirements of the BY series of Saccharomyces cerevisiae strains for opti-mum growth. FEMS Yeast Res 12:796–808.

161. Moysés D, Reis V, Almeida J, Moraes L, Torres F. 2016. Xylose Fermen-tation by Saccharomyces cerevisiae: Challenges and Prospects. Int J Mol Sci 17:207.

162. Kayikci Ö, Nielsen J. 2015. Glucose repression in Saccharomyces cerevi-siae. FEMS Yeast Res 15:fov068.

163. Gancedo JM. 2008. The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32:673–704.

164. Jenjaroenpun P, Wongsurawat T, Pereira R, Patumcharoenpol P, Ussery  DW, Nielsen J, Nookaew I. 2018. Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D. Nucleic Acids Res.

165. Hohmann S. 2009. Control of high osmolarity signalling in the yeast Sac-charomyces cerevisiae. FEBS Lett 583:4025–4029.

166. Tomás-Cobos L, Casadomé L, Mas G, Sanz P, Posas F. 2004. Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways. J Biol Chem 279:22010–9.

167. Blázquez  MA, Lagunas  R, Gancedo  C, Gancedo  JM. 1993. Treha-lose-6-phosphate, a new regulator of yeast glycolysis that inhibits hex-okinases. FEBS Lett 329:51–4.

168. Fernandez R, Herrero P, Fernandez MT, Moreno F. 1986. Mechanism of Inactivation of Hexokinase PII of Saccharomyces cerevisiae by D-Xylose. Microbiology 132:3467–3472.

169. Katja  Heidrich, Albrecht  Otto, Joachim Behlke, John  Rush, Klaus-  Wolfgang Wenzel and Kriegel T. 1997. Autophosphorylation−Inactiva-tion Site of Hexokinase 2 in Saccharomyces cerevisiae.

170. Bergdahl  B, Sandström  AG, Borgström  C, Boonyawan T, van Niel EWJ, Gorwa-Grauslund  MF. 2013. Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation. PLoS One 8:e75055.

171. Bonini  BM, Van  Dijck  P, Thevelein JM. 2003. Uncoupling of the glu-cose growth defect and the deregulation of glycolysis in Saccharomyces cerevisiae Tps1 mutants expressing trehalose-6-phosphate-insensitive hexokinase from Schizosaccharomyces pombe. Biochim Biophys Acta 1606:83–93.

172. Blázquez MA, Stucka R, Feldmann H, Gancedo C. 1994. Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germi-nation in Schizosaccharomyces pombe. J Bacteriol 176:3895–902. 173. BELL  W, KLAASSEN  P, OHNACKER  M, BOLLER  T, HERWEIJER  M,

SCHOPPINK P, VANDERZEE P, WIEMKEN A. 1992. Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and

Referenties

GERELATEERDE DOCUMENTEN

Engineering endogenous hexose transporters in Saccharomyces cerevisiae for efficient D- xylose transport..

However, a drawback of all of the endogenous Hxt transporters is their low affinity for D-xylose as compared to D-glucose, which results in D-glucose being the preferred substrate

Using the transporter deletion strain DS68625, in which the main hexose transporters Hxt1–7 and Gal2 are deleted, we screened 5 shuffling libraries at a low D-xylose con-

mutations found in the evolved strain (126), the expression levels of the genes involved in xylose metabolism (e.g. XYL1 and XYL2) were increased causing improved D-xylose

Furthermore, the ethanol production rate of the Hxt36-N367A mutant strain was improved almost throughout the whole fermentation with the exception of the early growth phase where

dogenous hexose transporters Hxt1 and Hxt36 that are subjected to catabolite degradation results in improved retention at the cytoplas- mic membrane in the absence of glucose

Now, the DS71054-evo6 strain showed significant improved D-xylose uptake in the presence of high concentrations of D-glucose as compared to DS71054-evoB and DS71054-evo3 (Figure

Although the evolved hexokinase deletion DS71054-evoB strain bearing the Hxt36 N367I mutation from chapter 4 showed significantly improved growth on D-xylose in the presence of