• No results found

How does the oil price risk influence stock returns in five different countries?

N/A
N/A
Protected

Academic year: 2021

Share "How does the oil price risk influence stock returns in five different countries?"

Copied!
39
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

     

MSc  Business  Economics  

Finance  Track  

 

Master  Thesis  

 

 

How  does  the  oil  price  risk  influence  stock  returns  in  

five  different  countries?

   

             

 

 

Name:  Qibei  Qian  

Student  number:  11127643  

Supervisor:  Dr.  L.  Zou  

Date:  July  7

th

,  2016  

(2)

                                           

Abstract  

 

This  paper  analyzes  the  influence  of  oil  price  shocks  on  stock  returns  in  the  United  States,   Norway,  Russia,  Brazil  and  China.  Using  the  data  from  December  29th,  2009  to  April  29th,  

2016,  the  coefficients  of  oil  price  risk  is  found  to  make  different  contribution  in  the   international  multi-­‐factor  pricing  model.  This  paper  analyzes  the  correlation  from  the   perspective  of  five  typical  countries  and  contributes  economic  explanation  about  the   abnormality  to  the  previous  literatures.  

   

Key  words:  Stock  market  risk,  Oil  price  risk,  Multi-­‐factor  pricing  model    

       

(3)

Content

1 Introduction  ...  4

2 Literature  Review  ...  8

3 Methodology  ...  13

4 Data  and  Descriptive  Statistics  ...  18

5 Empirical  Results  ...  23 6 Conclusion  ...  36 Reference  ...  38                                                              

(4)

1   Introduction  

After  World  War  II,  petroleum  took  the  place  of  coal  and  became  the  most  important   industry  materials  in  the  development  of  the  modern  industry.  Countries  which  are  rapidly   developing  are  in  vast  demand  of  oil.  For  example,  China  became  one  of  the  net  importer   countries  of  crude  oil  in  1993  and  overtook  Japan  to  be  the  world’s  second-­‐largest  consumer   of  oil  in  2003.  Table  1  and  Table  2  respectively  show  the  data  of  oil  production  and  

consumption  of  the  major  regions  over  the  world  and  the  data  of  five  selected  countries  in   this  thesis.  Although  world  oil  production  is  less  than  the  world  oil  consumption  in  2015,  the   growth  of  the  world  oil  production  notably  exceeded  the  growth  of  the  world  oil  

consumption  in  2015  for  a  second  consecutive  year.  Oil  production  in  the  North  America   region  increased  most  (43.5%)  over  the  past  ten  years,  and  the  oil  production  of  the  Middle   East  increased  most  (5.4%)  during  the  year.  Oil  consumption  of  the  Asia  Pacific  region   increased  most  (4.1%)  in  the  past  year  while  oil  consumption  of  Brazil  and  China,  two   important  developing  countries  were  chosen  as  the  objects  of  this  paper,  increased  most   over  the  ten  years  (48.7%  and  73.4%).  The  oil  consumption  of  the  United  Stated  decreased   6.8%  over  the  last  ten  years,  which  may  because  of  the  improvement  in  energy  efficiency  or   the  transformation  of  energy  sources.  The  rapid  development  of  new  technology  companies   like  Tesla  is  a  good  example  to  explain  this.  On  the  contrary,  as  mentioned  by  Bhar  and   Nikolova  (2009),  economies  of  emerging  countries  are  in  great  demand  of  energy  as  they  are   experiencing  a  rapid  economic  growth  as  well  as  their  inefficiency  in  energy  using.  In  general,   the  global  oil  consumption  increases  by  1.9  million  barrels  per  day,  almost  doubling  the   10-­‐year  average  amount.  It  is  worth  mentioning  that  the  Asia  Pacific  contributed  74%  of  the   1.9  million,  while  China  once  again  accounted  for  the  largest  national  increase  of  the  growth   of  global  oil  consumption  (770  thousand  barrels  per  day).  

         

(5)

Table  1  

Oil:  Production  in  thousands  of  barrels  per  day  

Region   2010   2011   2012   2013   2014   2015   2015  share   of  total   Change     2014  -­‐  2015   Change   2005  -­‐  2015   North  America   13,843   14,310   15,535   16,934   18,786   19,676   20.9%   4.7%   43.5%  

South  and  Central  America   7,348   7,401   7,322   7,344   7,605   7,712   9.1%   1.5%   5.2%  

Europe  and  Eurasia   17,699   17,390   17,124   17,166   17,206   17,463   19.4%   1.4%   -­‐0.3%  

Middle  East   25,827   28,160   28,532   28,181   28,557   30,098   32.4%   5.4%   17.8%   Africa   10,142   8,548   9,327   8,711   8,371   8,375   9.1%   0.1%   -­‐14.6%   Asia  Pacific   8,424   8,287   8,378   8,254   8,310   8,346   9.1%   0.5%   4.6%   World   83,283   84,097   86,218   86,591   88,834   91,670   100.0%   3.2%   11.9%     Selected  Countries   United  States   7,550   7,853   8,883   10,059   11,723   12,704   13.0%   8.5%   84.1%   Brazil   2,137   2,193   2,149   2,114   2,346   2,527   3.0%   7.9%   47.5%   Norway   2,136   2,040   1,917   1,838   1,889   1,948   2.0%   3.2%   -­‐34.2%   Russian  Federation   10,366   10,518   10,639   10,779   10,838   10,980   12.4%   1.2%   14.4%   China   4,077   4,074   4,155   4,216   4,246   4,309   4.9%   1.5%   18.3%  

Source:  BP  Statistical  Review  of  World  Energy,  June  2016  (www.BP.com)    

Table  2  

Oil:  Consumption  in  thousands  of  barrels  per  day  

Region   2010   2011   2012   2013   2014   2015   2015  share   of  total   Change   2014  -­‐  2015   Change   2005  -­‐  2015   North  America   23,518   23,330   22,926   23,365   23,418   23,644   23.9%   0.9%   -­‐5.9%  

South  and  Central  America   6,384   6,624   6,782   7,035   7,190   7,083   7.5%   -­‐2.1%   32.8%  

Europe  and  Eurasia   19,223   19,075   18,605   18,372   18,266   18,380   19.9%   0.4%   -­‐9.1%  

Middle  East   8,201   8,455   8,770   9,011   9,353   9,570   9.8%   2.1%   45.5%   Africa   3,486   3,413   3,579   3,678   3,763   3,888   4.2%   3.2%   33.3%   Asia  Pacific   27,954   28,893   30,001   30,588   31,119   32,444   34.7%   4.1%   32.1%   World   88,765   89,790   90,663   92,049   93,109   95,008   100.0%   1.9%   12.1%     Selected  Countries   United  States   19,180   18,882   18,490   18,961   19,106   19,396   19.7%   1.6%   -­‐6.8%   Brazil   2,721   2,842   2,905   3,106   3,242   3,157   3.2%   -­‐4.2%   48.7%   Norway   235   239   235   243   232   234   0.2%   0.7%   4.5%   Russian  Federation   2,878   3,074   3,119   3,145   3,255   3,113   3.3%   -­‐5.2%   17.6%   China   9,436   9,791   10,229   10,732   11,201   11,968   12.9%   6.3%   73.4%  

Source:  BP  Statistical  Review  of  World  Energy,  June  2016  (www.BP.com)  

   

(6)

Compared  to  other  commodities,  petroleum  plays  such  a  crucial  role  in  promoting  the   economic  development  all  over  the  world,  especially  in  developing  countries.  Changes  in  oil   price  always  influence  the  global  economy,  which  could  be  reflected  in  the  stock  markets.   Arouri  et  al.  (2012)  attributes  the  impact  of  oil  price  changes  on  the  stock  market  to  the  high   fluctuations  of  oil  price.  Driesprong  et  al.  (2008)  thoroughly  analyze  the  relationship  

between  changes  in  oil  price  and  stock  returns  of  several  important  stock  markets  in  the   world  and  conclude  that  changes  in  oil  price  could  be  used  to  forecast  the  stock  market   returns  on  a  global  scale,  especially  in  developed  countries.  

On  February  16th,  the  four  oil-­‐producing  countries,  Saudi  Arabia,  Russia,  Venezuela  and  

Qatar  proposed  an  accord  to  freeze  oil  output  and  tackled  a  global  surplus.  In  the  following   several  days,  both  S&P  500  Index  and  SSE  Composite  Index  increased  a  little.  The  oil  price   and  the  stock  prices  in  the  United  States,  Norway,  Russia,  Brazil,  and  China  are  shown  in  the   following  Picture  1.  We  could  observe  that  there  exists  similar  fluctuation  after  the  sharp   decrease  in  oil  price  in  the  middle  of  the  1000th  and  the  1500th  observations.  

     

     

Picture  1  

Stock  price  volatility  is  influenced  by  several  economic  factors:  macroeconomic  factors,   macro-­‐political  factors,  microeconomic  factors  and  market  factors.  Fluctuation  in  oil  price   could  be  driven  by  political  factors,  wars,  and  other  force  major  in  the  short  term.  Economic   factors,  such  as  supply  and  demand,  would  affect  oil  price  in  the  long  term.  From  the   oil-­‐demanding  side,  the  United  States  plays  the  most  important  role  in  influencing  the  oil   price,  as  it  is  the  largest  oil-­‐importing  country.  From  the  oil-­‐supplying  side,  the  limited  oil   production  settled  by  the  Organization  of  Petroleum  Exporting  Countries  (OPEC)  

(7)

straightforwardly  affects  the  oil  price.  Generally  speaking,  an  increase  in  oil  price  would   increase  the  manufacturing  cost  of  the  company,  then  decrease  the  operating  achievement,   as  well  as  the  profit,  and  finally,  reduce  the  stock  price.  The  impact  on  the  stock  price  comes   from  1)  the  declines  in  the  market  value  of  an  investment,  and  2)  the  declines  in  expected   stock  returns,  making  investors  have  less  enthusiasm  towards  stock  market.  However,  as   shown  in  the  images  above,  there  exists  a  probability  that  the  oil-­‐stock  correlation  is  positive.   The  reason  might  be  that  both  oil  and  stock  are  responding  to  shifts  in  the  global  demand.   The  relationship  between  oil  price  changes  and  stock  returns  has  been  discussed  for  several   years.  

This  thesis  is  going  to  study  the  extent  to  which  daily  stock  returns  are  correlated  with   changes  in  oil  price,  with  the  period  from  December  29th,  2010  to  April  29th,  2016.  I  would  

use  the  methodology  of  Basher  and  Sadorsky  (2009)  to  examine  the  relationship  in  five   different  countries,  the  United  States,  Norway,  Russia,  China,  and  Brazil.  The  reason  that  I   choose  these  five  countries  is  that  both  China  and  Brazil  are  developing  countries  while  the   other  three  are  developed  countries.  The  United  States,  China,  and  Brazil  are  oil-­‐importing   countries  while  the  Norway  and  Russia  are  oil-­‐exporting  countries.  These  five  countries  are   different  but  typical  in  the  corresponding  continent.  As  far  as  I  know,  Russia,  Brazil,  and   China  are  seldom  examined  in  the  previous  literature.  The  United  States  and  Norway  are   settled  as  study  objects  for  a  long  period,  thus  in  this  paper,  the  conclusion  of  the  study  on   the  other  three  immature  stock  markets  could  be  compared  to  the  results  of  the  two  mature   stock  markets  of  U.S.  and  Norway.  

This  thesis  would  give  a  macroscopic  relationship  between  changes  in  oil  price  and   changes  in  stock  price  within  the  five  different  but  typical  countries.  The  results  complement   Basher  and  Sadorsky  (2006)  from  the  perspective  of  different  countries  and  the  latest  data.   This  study  would  benefit  individual  and  institutional  investors  who  are  interested  in  the   emerging  stock  markets  like  Russia,  Brazil,  and  China.  Together  with  the  economic  

explanation,  this  thesis  would  contribute  to  the  previous  articles  which  mainly  analyzed  the   developed  countries  in  the  early  years.  

(8)

The  rest  of  this  paper  is  organized  as  follows.  Section  2  reviews  the  related  literature.   Section  3  introduces  the  methodology.  Section  4  presents  the  data.  Section  5  discusses  the   empirical  results  from  this  analysis.  Section  6  concludes  the  whole  thesis.  

2   Literature  Review  

At  first,  a  famous  study  of  Hamilton  (1983)  shows  that  almost  each  economic   depression  is  related  to  oil  production  and  oil  price  after  the  World  War  II  in  the  United   States.  Mork  (1994)  then  proves  that  there  exists  a  distinct  and  negative  relationship   between  the  oil  price  and  industrial  production.  The  oil  price  also  negatively  correlates  to   the  employment  rate.  Later  on,  many  studies  investigate  the  relationship  between  oil  price   and  stock  price.  Chen  et  al.  (1986)  firstly  state  that  any  systematic  variable  that  either   influences  the  pricing  operator  or  affects  the  dividends  would  have  an  impact  on  stock   returns.  Oil  price  is  one  of  the  systematic  factors.  According  to  the  efficient-­‐market  theory   and  asset  pricing  theory,  an  increase  in  oil  price  would  directly  or  indirectly  increase  the   production  cost  of  a  certain  firm  and  then  influence  the  future  cash  flows  and  finally,  affect   the  stock  price.  Changes  in  oil  price  would  correlate  with  changes  in  stock  prices,  if  both  the   futures  market  of  oil  and  the  stock  market  are  efficient  enough  (Huang  et  al.,  1996).  If  the   market  is  not  efficient  enough,  there  might  be  lagged  effect  of  changes  in  oil  price  on   changes  in  stock  price.  On  the  other  side,  an  increase  in  the  oil  price  would  raise  the   consumption  cost  of  consumers  and  decrease  their  disposable  income  from  the  demand   side.  However,  Chen  et  al.  (1986)  conclude  that  the  changes  in  oil  price  have  no  overall   effect  on  the  return  of  an  index,  while  interest  rate  and  bond  yield  curve  are  found  to  be   significant  factors  in  influencing  the  stock  returns.  This  statement  leads  to  a  lot  of  debates   on  the  effect  of  oil  price  on  stock  markets.    

Most  of  the  researches  about  the  impact  of  oil  price  shocks  on  financial  markets  are   based  on  the  stock  market  of  the  United  States.  Jones  and  Kaul  (1996)  mainly  examine  the   reaction  of  stock  markets  to  oil  shocks  in  the  postwar  period  (from  1947  to  1991)  and   conclude  that  in  the  United  States  and  Canada,  the  reaction  could  be  explained  by  changes   in  real  cash  flows  and  changes  in  expected  returns.  In  this  research,  Jone  and  Kaul  (1996)  

(9)

employ  both  current  and  three  lagged  terms  of  the  change  in  the  oil  price  as  the  

independent  variable  and  find  that  changes  in  oil  prices  have  a  negative  effect  on  real  stock   returns.  Unlike  Jones  and  Kaul  (1996),  who  use  the  quarterly  data  and  choose  the  Producer   Price  Index  for  fuel  as  the  proxy  of  oil  price  in  the  regression,  Huang  et  al.  (1996)  employ   daily  data  (from  1979  to  1990)  of  stock  prices  and  oil  futures  prices  of  the  United  States  and   conclude  that  the  oil  futures  returns  have  little  correlation  with  stock  market  returns,  and   the  correlation  of  the  volatility  of  the  two  returns  are  not  significant  either.  They  undertake   the  lead-­‐lag  VAR  (Vector  Autoregression)  model  to  study  the  relationship  between  oil   futures  return  and  stock  return,  choosing  the  interest  rate  as  the  control  variable.  They  also   surprisingly  find  the  first  order  lag  term  of  oil  futures  return  is  statistically  significant  in  the   regression,  implying  the  inefficiency  of  the  market.  The  lead-­‐lag  VAR  model  helps  to  examine   the  interaction  of  the  time  series  which  consist  of  oil  futures  returns,  stock  returns  and   interest  rates.  Similar  to  Chen  et  al.  (1986),  interest  rate,  which  here  the  authors  choose  the   3-­‐month  T-­‐bill  returns  as  a  proxy,  is  employed  as  the  control  variable  to  test  the  relative   relationship  between  changes  in  oil  futures  price  and  stock  returns.  The  authors  finally   conclude  that  there  exists  a  leading  relationship  or  a  Granger  causality  of  the  oil  futures   returns  on  stock  returns  of  oil  companies.  However,  there  exist  no  such  relationship   between  oil  futures  returns  and  broad  market  indices.  Sadorsky  (1999)  uses  the  monthly   data  (from  1947  to  1996)  of  the  United  States  and  the  VAR  model  to  investigate  the   interaction  between  oil  prices  and  economic  variables  including  stock  return.  The  author   also  employs  the  GARCH  (Generalized  Autoregressive  Conditional  Heteroskedastic)  model  to   examine  the  oil  price  volatility  and  finally  concludes  that  changes  in  oil  prices  negatively   influence  stock  return,  not  vice  versa.  In  dealing  with  the  data,  Sadorsky  (1999)  tests  the   stationarity  of  the  time  series  and  proves  the  volatility  of  oil  price  shocks  affects  the   economy  asymmetrically.  Kilian  and  Park  (2009)  develop  a  new  SVAR  (Structural  Vector   Autoregression)  model,  instead  of  the  traditional  VAR  model,  to  overcome  one  limitation  of   the  previous  literatures  and  firstly  prove  that  the  respond  of  real  stock  returns  to  the  shocks   of  oil  prices  varies  significantly,  depending  on  whether  the  change  of  oil  price  is  driven  by   the  demand  shock  or  the  supply  shock  in  the  oil  market  of  the  United  States.  So  that  the   investment  decisions  on  portfolio  should  be  adjusted  in  response  to  oil  shocks,  according  to  

(10)

the  underlying  cause  of  the  oil  price  changes.  The  authors  mention  that  an  unexpected   global  economic  expansion  would  boost  the  oil  price,  and  it  would  have  a  consistent  positive   effect  on  the  cumulative  stock  returns.  The  article  takes  the  political  disturbances  in  the   Middle  East  into  consideration  when  examines  the  oil  shocks.  

There  are  also  many  other  types  of  research  which  examine  the  relationship  between   changes  in  oil  prices  and  changes  in  stock  prices  in  the  developed  countries  other  than  the   United  States.  For  example,  Park  and  Ratti  (2008)  estimate  the  dynamic  impact  of  the  oil   price  volatility  on  the  stock  returns  of  the  United  States  and  other  13  European  countries  to   examine  the  world  stock  markets,  using  the  VAR  model  with  the  monthly  data  from  1986  to   2005.  The  authors  find  that  oil  price  shocks  affect  real  stock  returns  contemporaneously  and   /  or  within  the  next  month.  That  is,  there  exist  lagged  effect  of  oil  price  shocks  on  stock   returns.  For  many  of  the  13  European  countries,  the  relationship  between  the  volatility  of  oil   price  and  stock  return  proves  to  be  negative  within  the  following  month.  However,  in  the   examination  of  Norway,  it  shows  a  statistically  significantly  positive  reaction  of  real  stock   returns  to  the  increase  in  oil  price.  The  conclusion  of  the  United  States  in  this  article  is  quite   similar  to  Sadorsky  (1999).  Finally,  the  authors  mention  that  the  asymmetric  effects  of   positive  and  negative  oil  price  shocks  on  stock  returns  are  found  in  the  markets  of  the   United  States  and  Norway  among  all  the  study  objectives.  Faff  and  Brailsford  (1999)  uses   monthly  data  from  1983  to  1996  and  an  augmented  market  model  to  examine  the  sensitivity   of  stock  returns  to  oil  prices  in  Australia  on  the  industry  level.  They  find  changes  in  oil  price   significantly  positively  affect  the  stock  price  of  oil-­‐supply  industries  (the  Oil  and  Gas  Industry   and  the  Diversified  Resources  Industry)  but  negatively  affect  the  stock  returns  of  oil-­‐demand   industries  (the  Paper  and  Packaging  Industry  and  the  Transportation  Industry).  They  also   mention  that  some  firms  may  pass  changes  in  oil  price  to  customers  or  hedge  the  risk  of  oil   price  changes.  

While  lots  of  papers  focus  on  the  developed  countries,  some  studies  of  stock  markets  in   developing  countries  are  just  being  done  in  recent  years.  Bhar  and  Nikolova  (2009)四个国家   examine  the  impact  of  oil  prices  on  stock  returns  and  stock  volatility  in  four  emerging   countries,  Brazil,  Russia,  India,  and  China.  The  article  proves  that  the  level  of  impact  of  oil   price  changes  on  stock  returns  and  volatility  in  these  four  countries  is  determined  by  the  

(11)

degree  to  which  the  country  is  a  net  importer  or  a  net  exporter  of  crude  oil.  Ono  (2011)  find   the  effect  of  oil  price  on  stock  returns  is  statistically  insignificant  in  Brazil.  Hammoudeh  and   Choi  (2006)  use  the  weekly  data  from  1994  to  2004  and  the  Vector  Error  Correction  (VEC)   model  to  examine  the  relationship  between  six  countries  (the  United  Arab  Emirates,  Bahrain,   Kuwait,  Oman,  Qatar  and  Saudi  Arabia)  of  the  Gulf  Cooperation  Council  (GCC)  and  three   global  factors  (oil  price,  S&P  500  index  and  T-­‐bill  rates),  and  conclude  that  most  GCC  markets   would  benefit  from  the  positive  shocks  of  oil  price.  Using  the  daily  closing  prices  of  21   emerging  markets  from  1992  to  2005,  Basher  and  Sadorsky  (2006)  use  an  international   multi-­‐factor  model,  an  improvement  of  the  Capital  Assets  Price  Model  (CAPM),  and  uniquely   include  both  conditional  and  unconditional  risk  factors  to  examine  the  relationship  between   the  movement  of  oil  price  and  stock  returns  and  find  that  oil  price  risk  did  significantly  affect   stock  returns  in  the  emerging  markets  of  21  countries.  The  authors  also  take  account  of  the   skewness  and  kurtosis  as  additional  risk  factors.  This  paper  firstly  uses  the  multi-­‐factor   model  to  represent  a  comprehensive  study  of  how  oil  price  risk  affect  the  emerging  market   returns.  However,  the  countries  examined  in  the  article  do  not  include  China  and  Russia,   because  the  data  of  these  two  countries  is  not  as  many  as  other  selected  countries.  

Some  articles  make  a  comparison  between  the  oil-­‐importing  countries  and  the   oil-­‐exporting  countries,  paying  less  concentration  on  the  difference  between  developed   countries  and  developing  countries.  Generally  speaking,  increases  in  crude  oil  price  may   positively  affect  the  economy  of  oil-­‐exporting  countries.  Bjørnland  (2009)  concludes  that  a   10%  increase  in  oil  price  would  cause  a  2.5%  increase  in  stock  price  in  Norway,  a  developed   oil-­‐exporting  country,  using  the  structural  VAR  model  the  linear  and  non-­‐linear  specifications   in  the  robustness  test.  Park  and  Ratti  (2008)  prove  that  the  increase  in  oil  price  significantly   and  positively  affects  the  stock  return.  However,  the  conclusion  is  opposite  to  some   oil-­‐importing  countries.  By  tests  for  asymmetric  effect  and  nonlinear  Granger  causality,   Wang  et  al.  (2013)  find  the  correlation  between  oil  price  shocks  and  stock  returns  are   nonlinear  and  use  the  VAR  model  to  inspect  the  dynamic  linkages.  They  adopt  the  structural   VAR  model  from  Kilian  and  Park  (2009)  and  conclude  that  the  different  effect  of  oil  price   shocks  on  stock  return  depending  on  whether  the  oil  price  shock  is  caused  by  oil-­‐demand  or   oil-­‐supply.  Jung  and  Park  (2011)  study  the  oil  demand  and  supply  shocks  on  stock  markets  in  

(12)

Norway  and  Korea  and  find  the  impacts  on  oil-­‐exporting  and  importing  countries  are   heterogeneous.  However,  most  paper  focus  only  on  Norway  and  seldom  involves  other   oil-­‐exporting  countries  (Wang  et  al.,  2013).  Little  attention  has  been  paid  to  the  newly   industrialized  economies  in  examining  the  effect  of  crude  oil  price  changes  on  stock  markets   (Lin  et  al.,  2014).  Russia  is  one  of  the  biggest  oil-­‐producing  countries  and  owns  most  reserves   of  natural  gas  in  the  world.  However,  it  is  seldom  studied  in  the  existing  literature.  

In  studying  the  impact  of  oil  price  shocks  on  stock  return  in  China,  Jin  and  Jin  (2010)   employ  a  two-­‐factor  GED-­‐GARCH(1,1)-­‐M  model  with  data  from  2001  to  2009,  and  analyze   the  effect  of  the  international  oil  price  on  stock  returns  from  14  Chinese  industries,  and  find   that  the  reactions  of  each  industry  to  the  changes  in  oil  price  are  quite  different.  For  

example,  changes  in  oil  price  positively  affect  the  stock  returns  in  the  Oil  &  Gas  Industry  but   negatively  affect  the  Auto  Industry,  Construction  &  Materials  Industry,  Finance  Industry,   Travel  &  Leisure  Industry  and  etc.,  and  have  no  significant  influence  on  stock  returns  in  some   other  industries.  Zhu  et  al.  (2015)  also  investigate  the  correlation  between  changes  in  crude   oil  price  and  returns  of  the  stock  market  of  China  on  the  industry  level.  Using  the  monthly   data  from  1994  to  2013,  the  authors  divide  the  driving  factors  of  oil  price  changes  into   cost-­‐side  and  demand-­‐side  and  conclude  that  the  sensitivity  to  changes  of  oil  price  differs   according  to  different  industries.  The  article  takes  structural  breaks  and  asymmetric  effects   into  consideration.  Lin  et  al.  (2014)  use  the  structural  vector  autoregressive  model  (SVAR)  of   Kilian  and  Park  (2009),  with  the  monthly  data  from  1997  to  2008,  to  examine  the  dynamic   impact  of  oil  price  shocks  on  the  stock  market  of  the  mainland  of  China.  The  authors  prove   that  the  influence  of  oil  price  shocks  on  stock  price  in  China’s  stock  market  mixes.  The   conclusion  is  quite  different  from  the  conclusion  of  the  United  States  from  Kilian  and  Park   (2009).  This  article  implies  that  the  stock  market  of  China  is  to  some  extent  insulated  from   crude  oil  market  and  is  just  partially  integrated  with  stock  markets  of  other  countries  and   the  world  economy,  which  occurs  because  of  China’s  unique  regulatory  environment  or  the   rapid  economic  growth  of  China.  

As  mentioned  above,  there  are  already  lots  of  arguments  about  the  relationship   between  oil  price  and  stock  price.  But  most  existing  articles  take  the  developed  countries  as   the  objects  of  study  and  analyze  the  effect  of  oil  shocks  on  the  stock  market.  China  could  be  

(13)

quite  different  with  these  countries,  not  only  because  China  is  one  of  the  most  important   developing  countries,  but  also  because  of  its  great  demand  of  oil  since  it  joined  the  WTO  in   2001  and  its  rapid  growth  of  each  industry.  Moreover,  this  paper  would  include  other  four   countries:  1)  the  United  States,  which  is  one  of  the  biggest  oil-­‐importing  developed  

countries  and  is  being  examined  from  decades  ago  till  now,  could  be  used  as  the  controlled   object  in  this  thesis;  2)  Norway,  one  of  the  biggest  oil-­‐exporting  developed  countries,  is   famous  for  its  geographical  position  in  North  part  of  Europe  and  is  being  studied  for  several   times  because  of  its  uniqueness;  3)  Russia,  the  largest  oil-­‐export  country  other  than  the   Organization  of  Petroleum  Exporting  Countries  (OPEC);  4)  Brazil,  one  of  the  most  important   emerging  countries  and  a  typical  developing  country  in  the  South  America,  ranks  the  18th  of  

oil-­‐importing  country  in  the  world  (according  to  the  Wikipedia)  and  is  worth  studying.   Oil-­‐exporting  countries  are  more  likely  to  benefit  from  the  increase  in  oil  price,  while   oil-­‐importing  countries  would  suffer  more  if  the  oil  price  increases.  As  far  as  I  know,  these   five  countries  have  never  been  examined  together  before.  The  research  focused  on  the  five   different  (oil-­‐importing  versus  oil-­‐exporting  and  developing  versus  developed)  countries   would  provide  a  broad  variety  of  evidence  in  different  parts  of  the  world  and  explain  the   correlation  analysis  better.  

3   Methodology  

The  capital  asset  pricing  model  (CAPM),  which  is  developed  by  William  Sharpe  (1964),   John  Lintner  (1965),  Jack  Treynor  (1961)  and  Jan  Mossin  (1966)  based  on  the  modern   portfolio  theory  (MPT)  by  Harry  Markowitz  (1952),  is  used  determine  the  theoretical  

expected  rate  of  return  of  an  asset.  The  relationship  of  the  expected  rate  of  return  (𝐸 𝑟# )  of  

asset   𝑖   and  the  expected  rate  of  return  of  the  market  portfolio  (𝐸 𝑟% )  is  

      𝐸 𝑟# − 𝑟' = 𝛽#% 𝐸 𝑟% − 𝑟'                     (1)  

𝛽#%   denotes  the  sensitivity  of  the  expected  excess  return  of  the  asset  to  the  expected  

excess  return  of  the  market  portfolio,   𝑟'   denotes  the  risk-­‐free  rate,   𝐸 𝑟% − 𝑟'   denotes  

the  market  premium,  and   𝐸 𝑟# − 𝑟'   denotes  the  risk  premium  of  the  asset.  However,  the  

(14)

Fama-­‐French  three-­‐factor  model  is  derived.  The  Fama-­‐MacBeth  regression,  which  works   with  panel  data,  is  put  forward  by  Fama  and  MacBeth  (1973).  The  regression  consists  of  two   steps.  First,  the  CAPM  is  employed  for  each  asset  to  determine  the  asset’s  beta  for  that  risk   factor.  Second,  all  asset  returns  are  regressed  to  the  estimated  betas  to  obtain  the  risk   premium  for  each  risk  factor  for  a  fixed  period.  However,  this  methodology  omits  the   estimation  error  in  the  first  step,  which  would  lead  to  errors  in  the  second  step.  Pettengill,   Sundaram,  and  Mathur  (1995)  employ  a  conditional  approach  to  separate  positive  and   negative  market  returns  to  examine  the  difference  between  the  expected  and  realized   returns.  A  conditional  relationship  between  realized  returns  and  beta  is  determined  by  the   sign  and  magnitude  of  the  excess  market  returns.  The  relationship  should  be  positive   (negative)  if  the  excess  market  returns  are  positive  (negative).  

Basher  and  Sadorsky  (2006)  derives  a  combination  of  the  CAPM,  which  focuses  on  the   market  risk,  and  an  international  multi-­‐factor  model,  including  unconditional  and  conditional   approaches.  Both  of  the  two  models  are  linear.  Following  the  methodology  of  Basher  and   Sadorksy  (2006),  this  thesis  is  going  to  study  the  relationship  between  the  stock  returns  of   the  five  selected  countries  and  three  various  risk  factors.  The  empirical  regression  is   separated  to  steps:  1)  the  time-­‐series  rolling  regression  to  obtain  the  risk  factors;  2)  the   cross-­‐sectional  regression  of  risk  factor  and  excess  stock  returns.  The  advantage  of  the   rolling  regression  over  the  standard  ordinary  least  squares  in  the  first  step  is  that  it  could   capture  the  potential  instabilities  in  the  coefficients  of  the  model.  

3.1   Time-­‐series  rolling  regression  

A  time-­‐series  rolling  ordinary  least  squares  regression  estimation  is  employed  to   estimate  the  following  multi-­‐factor  model,  in  which  the  daily  excess  return  of  the  stock   market  depends  linearly  on  three  risk  factors:  daily  excess  stock  returns  of  the  world  stock   market,  returns  of  oil  price  and  daily  changes  in  the  global  exchange  rates.  Betas  of  the   world  stock  market,  betas  of  the  oil  prices  and  betas  of  exchange  rates  are  estimated  from   the  following  model.  

      𝑅#+ =  𝛼 + 𝛽#+%𝑅

%++ 𝛽#+/#0𝑂𝐼𝐿++ 𝛽#+45𝐸𝑋𝑟++ 𝜀#+               (2)  

In  equation  (2)   𝑅#+   denotes  the  daily  excess  return  of  the  stock  market  of  country   𝑖   at  

(15)

return  of  the  oil  price,  and   𝐸𝑋𝑟+   denotes  the  return  of  exchange  rate  (the  fluctuation  in  

exchange  rate).   𝛽#+%,   𝛽#+/#0   and   𝛽#+45   respectively  denotes  the  sensitivity  of  the  daily  excess  

market  returns  of  country   𝑖   to   𝑅%+,   𝑂𝐼𝐿+,  and   𝐸𝑋𝑟+.  It  is  assumed  that   𝜀#+,  which  

denotes  the  residuals,  is  independently  and  identically  distributed  with  the  mean  of  zero  and   the  variance  of   𝜎:.  

The  time-­‐series  rolling  ordinary  least  squares  regression  estimation  is  employed  to   estimate  equation  (2)  for  each  country.  The  rolling  fixed  window  length  is  predetermined  to   500  trading  days,  approximates  trading  date  of  a  2-­‐year  period.  In  each  estimation  step,   ordinary  least  squares  regression  is  employed,  and  the  corresponding  coefficients  of  the   multi-­‐  factor  model  (the  constant,  the  world  stock  market  beta,  the  oil  price  beta  and  the   exchange  rate  beta)  are  recorded.  Then  one  observation  is  advanced  at  a  time,  and  the   model  is  re-­‐estimated  again,  keeping  the  same  window  length.  The  repeated  regression   stops  when  the  last  observation  is  regressed.  As  mentioned  by  Basher  and  Sadorsky  (2006)   that  the  empirical  results  are  reasonably  robust  to  small  changes,  the  2-­‐year  window  length   is  chosen  in  this  paper.  By  the  rolling  regression,  the  structural  shocks  do  not  have  the   lasting  effect  through  the  whole  data  range.  

From  the  rolling  regression  approach,  the  time  series  of  the  betas  of  world  stock  market   (𝛽#+%),  the  betas  of  oil  price  (𝛽#+/#0)  and  the  betas  of  the  weighted  exchange  rate  (𝛽#+45)  are  

obtained  for  the  five  selected  countries.    

3.1   Cross-­‐section  regression  

3.2.1  Unconditional  and  conditional  regression  

The  cross  section  analysis  could  be  implemented  by  the  ordinary  least  square  (OLS),  on   the  basis  of  the  dataset  of  daily  excess  stock  returns  of  each  country  and  the  risk  parameters   (sensitivities)  obtained  in  3.1.  The  regression  is  as  follows.  

  𝑅#+ =   𝛾<+ 𝛾%𝛽#,+>?% + 𝛾

/#0𝛽#,+>?/#0 + 𝛾45𝛽#,+>?45 + 𝜀:+               (3)  

Equation  (3)  represents  an  unconditional  model,  examining  the  relationship  between   the  daily  stock  returns  and  risk  parameters.  It  should  be  noticed  that  the  one-­‐period  lagged   value  of  each  risk  parameter  is  employed  to  explain  the  daily  excess  return  of  the  stock   market,  in  order  to  better  reflect  the  volatility  effects  of  the  risk  factors  on  the  stock  market.  

(16)

Following  Pettengill  et  al.  (1995)  and  Basher  and  Sadorsky  (2006),  the  conditional   relationship  between  excess  returns  of  the  stock  market  and  risk  factors  is  taken  into   consideration,  to  examine  the  daily  excess  stock  returns  in  bullish  and  bearish  markets  more   accurately.  From  Sadorsky  (1999),  Park  and  Ratti  (2008)  and  Zhu  et  al.  (2015),  changes  in  oil   price  also  have  asymmetric  effects  on  stock  returns.  The  unconditional  approach  is  modified   to  the  conditional  approach  as  follows.  

  𝑅#+ =   𝛾<+ 𝛾%@𝐷+>?% 𝛽#,+>?% + 𝛾%> 1 − 𝐷+>?% 𝛽#,+>?% + 𝛾/#0@ 𝐷+>?/#0𝛽#,+>?/#0  

      +𝛾/#0> 1 − 𝐷+>?/#0 𝛽#,+>?/#0 + 𝛾45𝛽#,+>?45 + 𝜀C+                 (4)  

In  Equation  (4),  the  dummy  variable   𝐷+>?%   takes  the  value  of  1  (0),  indicating  that  the  

daily  excess  return  of  world  stock  market  is  positive  (negative).  Thus  by  Pettengill  et  al.   (1995),   𝛾:%@   and   𝛾:%>   are  reasonably  expected  to  have  positive  and  negative  signs  

respectively.  Similarly,  the  dummy  variable   𝐷+>?/#0   takes  the  value  of  1  (0),  indicating  that    

the  return  of  oil  price  is  positive  (negative).   𝛾/#0@   and   𝛾/#0>   are  expected  to  have  positive  

and  negative  signs  for  an  oil-­‐exporting  country  and  to  have  the  inverse  signs  for   oil-­‐importing  countries.  

  𝑯𝟎𝟏:  𝛾

:%@+ 𝛾:%>= 0,  symmetry  between  up  and  down  world  stock  markets;  

  𝑯𝟏𝟏:  𝛾

:%@+ 𝛾:%>≠ 0,  asymmetry  between  up  and  down  world  stock  markets.  

  𝑯𝟎𝟐:  𝛾

/#0@ + 𝛾/#0> = 0,  symmetry  between  up  and  down  oil  changes;  

  𝑯𝟏𝟐:  𝛾/#0@ + 𝛾/#0> ≠ 0,  asymmetry  between  up  and  down  oil  changes.  

3.2.2  Unconditional  and  conditional  regression  with  the  total  risk  factor  

In  the  capital  asset  pricing  model  (CAPM),  market  risk  (systematic  risk)  is  the  risk  that   affects  all  investments,  most  of  which  are  either  economic  or  politic  (e.g.  recession,  interest   rate  etc.).  However,  systematic  risk  cannot  be  diversified  if  the  investor  invests  in  distinct   assets.  Diversifiable  risk  (unsystematic  risk),  on  the  other  hand,  is  more  firm  specific  (e.g.   lawsuits,  labor  trouble  etc.).  The  sum  of  systematic  risk  and  unsystematic  risk  is  known  as   the  total  risk.  When  making  investment  decisions,  investors  are  suggested  to  pay  attention   to  the  total  risk  of  the  certain  asset.  Standard  deviation  is  one  of  the  commonly  used   measurements  of  risk.  In  this  thesis,  the  variance  of  the  daily  market  returns  is  employed  as   the  total  risk  (𝑇𝑅#,+>?)  for  country   𝑖.   𝑇𝑅#,+>?   is  gathered  based  on  the  same  rolling  

(17)

models  including  the  total  risk  factor  are  displayed  as  follows.  The  hypotheses  are  the  same   as  hypotheses  in  3.2.1.  

    𝑅#+ =   𝛾<+ 𝛾%𝛽#,+>?% + 𝛾 /#0𝛽#,+>?/#0 + 𝛾45𝛽#,+>?45 + 𝛾+L𝑇𝑅#,+>?+ 𝜀M+         (5)   𝑅#+ =   𝛾<+ 𝛾%@𝐷 +>?% 𝛽#,+>?% + 𝛾%> 1 − 𝐷+>?% 𝛽#,+>?% + 𝛾/#0@ 𝐷+>?/#0𝛽#,+>?/#0       +𝛾/#0> 1 − 𝐷 +>?/#0 𝛽#,+>?/#0 + 𝛾+L@𝐷+>?% 𝑇𝑅#,+>?+ 𝛾+L> 1 − 𝐷+>?% 𝑇𝑅#,+>?       (6)     +𝛾45𝛽#,+>?45 + 𝜀N+  

3.2.3  Unconditional  and  conditional  regression  with  skewness  and  kurtosis  

Skewness  and  kurtosis  indicate  that  the  data  are  not  normally  distributed,  which  are   significantly  important  to  financing  and  investing.  So  that  more  and  more  advanced   economic  analysis  models  examine  the  skewness  and  kurtosis  of  the  data  (Harvey  and   Siddique,  2000  and  Bekaert  et  al.,  1998).  Skewness  is  used  to  measure  the  asymmetry  of  the   probability  distribution  around  the  mean.  Positive  (negative)  skew  indicates  the  tail  on  the   right  (left)  side  is  longer  or  fatter  than  the  left  (right)  side.  Kurtosis  (the  volatility  of  volatility)   measures  whether  the  data  are  heavy-­‐tailed  or  light-­‐tailed  compared  with  a  normal  

distribution.  The  distribution  of  data  tends  to  have  fat  (thin)  tails  if  the  kurtosis  is  more  (less)   than  three.  Generally  speaking,  most  investors  are  risk-­‐averse.  With  the  mean  and  variance   constant,  investors  prefer  portfolios  with  positive  skewness  (mean  is  larger  than  median)   because  of  the  large  chance  of  small  loss  and  the  small  chance  of  large  gain.  Assets  with   lower  kurtosis  are  preferable  because  higher  kurtosis  indicates  more  likelihood  of  either   extremely  large  or  extremely  small  returns  of  the  portfolios.  The  following  equation  (7)  and   (8)  respectively  express  the  model  conditional  and  unconditional  relationship  between  the   daily  stock  returns  and  risk,  including  the  explanatory  variable  of  skewness.  

    𝑅#+ =   𝛾<+ 𝛾%𝛽#,+>?% + 𝛾/#0𝛽#,+>?/#0 + 𝛾45𝛽#,+>?45 + 𝛾OP𝑆𝐾𝐸𝑊#,+>?+ 𝜀T+       (7)   𝑅#+ =   𝛾<+ 𝛾%@𝐷 +>?% 𝛽#,+>?% + 𝛾%> 1 − 𝐷+>?% 𝛽#,+>?% + 𝛾/#0@ 𝐷+>?/#0𝛽#,+>?/#0       +𝛾/#0> 1 − 𝐷 +>?/#0 𝛽#,+>?/#0 + 𝛾OP@𝐷+>?% 𝑆𝐾𝐸𝑊#,+>?+ 𝛾OP> 1 − 𝐷+>?% 𝑆𝐾𝐸𝑊#,+>?   (8)     +𝛾45𝛽#,+>?45 + 𝜀U+  

Equation  (9)  and  (10)  are  the  conditional  and  unconditional  relationship  incorporating   the  kurtosis.  

  𝑅#+ =   𝛾<+ 𝛾%𝛽#,+>?% + 𝛾/#0𝛽#,+>?/#0 + 𝛾45𝛽#,+>?45 + 𝛾PV𝐾𝑈𝑅𝑇#,+>?+ 𝜀X+       (9)  

(18)

  +𝛾/#0> 1 − 𝐷+>?/#0 𝛽

#,+>?/#0 + 𝛾PV@𝐷+>?% 𝐾𝑈𝑅𝑇#,+>?+ 𝛾PV> 1 − 𝐷+>?% 𝐾𝑈𝑅𝑇#,+>?     (10)  

  +𝛾45𝛽#,+>?45 + 𝜀

Y+  

  Here   𝑆𝐾𝐸𝑊#,+>?   and   𝐾𝑈𝑅𝑇#,+>?   are  respectively  the  relative  skewness  and  kurtosis  

risk  factors  and  are  obtained  in  the  same  way  as  the  total  risk  factor  (𝑇𝑅#,+>?)  in  3.2.2.  The  

hypotheses  are  the  same  as  hypotheses  in  3.2.1.  The  model  including  all  the  risk  factors  is   not  favorable  because  of  the  multicollinearity  across  the  different  risk  factors.  

4   Data  and  Descriptive  Statistics  

The  variables  constructing  this  paper  consist  of  1)  daily  closing  oil  price;  2)  daily  closing   stock  index  prices  of  five  selected  countries  (United  States,  Norway,  Russia,  Brazil  and  China);   3)  daily  closing  prices  of  the  world  index;  4)  trade  weighted  exchange  rate;  5)  the  

three-­‐month  Treasury  Bills  rate.  

The  dataset  covers  the  period  from  December  31,  2006,  to  April  29,  2016,  for  a  total  of   1652  daily  observations.  The  data  from  2008  to  2009  are  excluded  to  get  rid  of  the  

unexpected  impact  of  the  Global  Financial  Crisis  on  the  relationships  between  oil  market  and   the  stock  market.  Compared  to  Basher  and  Sadorsky  (2006),  a  shorter  but  more  recent   dataset  is  emoloyed  in  this  paper.  

4.1   Daily  return  of  oil  price  

As  several  existing  articles  (Hammoudeh  and  Choi,  2006;  Jin  and  Jin,  2010  and  Zhu  et   al.,2015)  indicate  that  West  Texas  Intermediate  (WTI),  which  is  the  underlying  commodity  of   New  York  Mercantile  Exchange’s  (NYMEX)  oil  futures  contracts,  is  a  grade  of  crude  oil  used   as  a  benchmark  in  oil  pricing.  This  paper  also  employs  the  daily  closing  price  of  WTI  crude  oil   futures  contract  as  the  proxy  of  oil  price.  The  data  could  be  gathered  from  the  FRED  

Economic  Data1.  Daily  oil  returns  (𝑂𝐼𝐿

+)  are  presented  as  the  log  difference2   in  oil  prices  

(𝑃𝑂+),  which  is  expressed  as  dollars  per  barrel.  

  𝑂𝐼𝐿+ = ln ]^]^_`a_ ×100% = ln 𝑃𝑂+− ln 𝑃𝑂+>? ×100%               (11)  

                                                                                                                         

1  https://research.stlouisfed.org/fred2/series/DCOILWTICO/downloaddata   2   The  log  change  is  more  precise  than  the  percentage  change:   ∆ ln 𝑋

(19)

4.2   Daily  return  of  stock  price  

The  data  for  this  paper  consist  of  the  daily  closing  index  prices  of  five  selected  countries   (the  United  States,  Norway,  Russia,  Brazil,  and  China)  and  the  World  Index  (𝑊𝐼#+)  of  the  

Morgan  Stanley  Capital  International  (MSCI).  The  proxy  of  index  stock  price  of  each  country   is  listed  in  Table  3.  The  available  data  could  be  collected  from  DATASTREAM.  

  Table  3  

Proxies  of  stock  price  of  selected  country   Country   Index  

 

Currency  

United  States   S&P  500   Standard  and  Poors  (S&P)   US  Dollars  

Norway   OSEAX   Oslo  Exchange  All-­‐Share  Index   Norwegian  Krone  

Russia   MICEX  

 

Russian  Ruble  

Brazil   BOVESPA   Sao  Paulo  Stock  Exchange   Brazilian  Real  

China   SSE   Shanghai  Stock  Exchange  Composite  Index   Chinese  RMB  

 

The  daily  closing  index  prices  are  presented  in  the  country’s  home  currency.  So  in  order   to  avoid  the  impact  of  the  currency  risk  as  well  as  benefit  the  investors  who  own  U.S.  dollar   to  trade,  all  the  index  prices  are  converted  to  U.S.  dollar  by  merging  and  calculating  with  the   daily  exchange  rates  in  STATA.  The  exchange  rates  of  the  five  countries  over  the  period  are   available  on  DATASTREAM.   𝑃𝑆#+∗   represents  the  stock  index  in  the  form  of  each  home  

country’s  currency  at  time   𝑡.   𝐸𝑋#+   represents  the  value  of  one  U.S.  dollar  in  terms  of  the  

currency  of  country   𝑖   at  time   𝑡.  Calculating  by  the  following  formula,  stock  index  prices   settled  in  dollars  of  country   𝑖   are  obtained.  

  𝑃𝑆#+ = 𝑃𝑆#+∗/𝐸𝑋#+                                 (12)  

Then,  the  daily  log  stock  returns  of  each  country  (𝑆𝑅#+)  and  the  daily  log  stock  return  of  

the  world  stock  market  (𝑆𝑅%+)  are  both  settled  in  U.S.  dollar.  

  𝑆𝑅#+ = ln ]h]hi_

i,_`a ×100% = ln 𝑃𝑆#+− ln 𝑃𝑆#,+>? ×100%               (13)  

  𝑆𝑅%+ = ln jki_

jki,_`a ×100% = ln 𝑊𝐼#+− ln 𝑊𝐼#,+>? ×100%             (14)  

4.3   Risk-­‐free  rate  

In  this  thesis,  the  rates  of  the  3-­‐month  Treasury  Bills  (T-­‐Bills)  are  employed  as  the   risk-­‐free  rates.  As  one  of  the  most  marketable  money  market  securities  which  are  issued  by  

(20)

the  U.S.  government,  T-­‐Bills  are  affordable  to  individual  investors  and  are  widely  regarded  as   the  least  risky  Wealth  Management  Products  all  over  the  world.  The  variable  is  noted  as   𝑟'+  

and  is  used  for  the  calculation  of  the  excess  return.  The  data  could  be  collected  from  the   Board  of  Governors  of  the  Federal  Reserve  System3.  

4.4   Daily  excess  return  

The  daily  excess  return,  the  dependent  variable  which  is  indicated  as   𝑅#+,  is  calculated  

by  subtracting  the  rate  of  the  3-­‐month  T-­‐Bills  (𝑟'+)  from  the  daily  log  return  of  the  stock  

market  index  (𝑆𝑅#+)  of  each  country   𝑖.  In  order  to  get  the  daily  excess  return  of  the  world  

index  of  MSCI  (𝑅%+),  the  same  procedure  is  taken  by  subtracting  the  rate  of  the  3-­‐month  

T-­‐Bills  (𝑟'+)  from  the  daily  return  of  the  world  index  (𝑆𝑅%+).  The  daily  excess  return  of  the  

world  index  of  MSCI  is  regarded  to  be  the  world  market  excess  returns  in  the  multi-­‐factor   model.    

    𝑅#+ = 𝑆𝑅#+− 𝑟'+                                 (15)  

    𝑅%+ = 𝑆𝑅%+− 𝑟'+                                 (16)  

4.5   Daily  return  of  exchange  rate  

Adler  and  Dumas  (1983)  proves  that  the  international  investors  face  exchange  risk  if   purchasing  power  parity  is  violated.  While  the  asset  pricing  model  requires  the  assumption   of  purchasing  power  parity,  the  exchange  rate  risk  should  be  considered  to  be  an  additional   risk  factor  as  an  independent  variable  in  the  international  multi-­‐factor  asset  pricing  formula.   Instead  of  the  Trade  Weighted  U.S  Dollar  Index:  Major  Currencies  (DTWEXM)4,  the  Trade  

Weighted  U.S.  Dollar  Index:  Broad  (DTWEXB)5   is  chosen  to  approximate  the  exchange  rate  

in  this  thesis,  because  China,  Brazil,  and  Russia  are  taken  as  study  objectives.  The  Trade   Weighted  U.S.  Dollar  Index  (TWDI)  aggregates  and  summarizes  information  contained  in  a   collection  of  foreign  exchange  rates  of  U.S.  trading  partners.  The  main  objective  of  TWDI  is   to  summarize  the  appreciation  (an  increase  of  the  index)  and  depreciation  (a  decrease  of  the   index)  of  U.S.  dollar  against  foreign  currencies.  So  the  log  change  of  the  Traded  Weighted                                                                                                                            

3  http://www.federalreserve.gov/econresdata/    

4   Major  currencies  index  includes  Canada,  Japan,  United  Kingdom,  Switzerland,  Australia,  Sweden  and  the  Euro  

Area.  

5   Broad  currencies  index  includes  countries  in  DTWEXM,  Mexico,  China,  Taiwan,  Korea,  Singapore,  Hong  Kong,  

Malaysia,  Brazil,  Thailand,  Philippines,  Indonesia,  Israel,  Saudi  Arabia,  Russia,  Argentina,  Venezuela,  Chile  and   Colombia.  

(21)

U.S.  Dollar  Index  could  be  employed  as  the  proxy  for  fluctuations  in  exchange  rates  (𝐸𝑋𝑟+).  

The  data  could  be  collected  on  Federal  Reserve  Economic  Data6.  

    𝐸𝑋𝑟+ = ln ljmkljmki_

i,_`a ×100% = ln 𝑇𝑊𝐷𝐼#+− ln 𝑇𝑊𝐷𝐼#,+>? ×100%       (17)  

4.6   Descriptive  statistics    

The  summary  of  the  data  is  provided  in  Table  4.  The  average  of  daily  excess  return  in   the  five  countries  ranges  from  -­‐0.1520%  (Brazil)  to  -­‐0.0439%  (United  States).  All  of  the  five   selected  countries  have  negative  average  daily  excess  stock  returns.  However,  compared   with  the  standard  deviation,  the  average  daily  excess  stock  returns  are  quite  small.  Standard   deviation,  used  as  the  unconditional  risk  measurement,  shows  that  stock  markets  of  all  the   five  countries  are  more  volatile  than  the  world  market  index,  because  each  standard   deviation  of  the  five  countries  is  larger  than  the  standard  deviation  of  the  world  stock   market  (0.9154).  Among  the  five  countries,  the  highest  level  of  risk  is  observed  in  Brazil,  with   the  maximum  of  standard  deviation  (1.8968),  while  the  United  States  is  the  least  risky   country,  with  the  minimum  of  standard  deviation  (1.0049).  The  stock  market  of  Russia  owns   the  largest  range  of  daily  excess  return  (22.7422%)  while  the  United  States  owns  the  

smallest  one  (11.5476).  Skewness  measures  the  asymmetry  of  the  probability  distribution.   Statistics  in  Table  4  indicate  that  none  of  the  daily  excess  stock  returns  follows  the  

symmetric  distribution.  The  daily  excess  stock  returns  of  Brazil  skews  to  the  right  (the  right   tail  is  longer,  and  the  mass  distribution  is  concentrated  on  the  left  side)  while  the  daily   excess  stock  returns  of  the  other  four  countries  skew  to  the  left  (the  left  tail  is  longer).  The   statistics  of  kurtosis  indicate  the  probability  of  appearance  of  extreme  values  in  the  dataset   is  relatively  high.  All  the  daily  excess  stock  returns  of  the  five  countries  exhibit  a  high  degree   of  kurtosis,  larger  than  three  and  known  as  leptokurtic,  and  indicate  each  one  produces   more  outliers  than  the  normal  distribution.  It  could  be  explained  that  all  the  five  stock   markets  have  a  comparatively  great  possibility  of  extremely  large  or  extremely  small  stock   returns,  especially  the  stock  market  of  China  which  fluctuates  significantly  during  the  chosen   period.  Skewness  and  kurtosis  of  stock  returns  are  separately  added  into  the  international   multi-­‐factor  pricing  model  to  test  whether  each  of  those  could  be  an  additional  risk  factor.                                                                                                                            

Referenties

GERELATEERDE DOCUMENTEN

An alarming finding from our study is that a large proportion of COVID- 19 trials test the same treatments or drugs, creating a thicket of redundant, uncoordinated, and

combined policies. The high market penetration in Norway has been achieved through a broad package of incentives, which include reductions in the cost differences between

No one can do this alone, and there were more pioneers in the theatre landscape at the time of Breth, Bausch and Jelinek, but they were a part of the generation that started to

The conceptual design of an integrated energy efficient ore reduction plant 135 performed by the CFPP at an efficiency of 37.5% minus a 4.61% loss in the grid, or 32.9% of the

The World Bank (2004b) also concerns itself with building efficient and accountable public sector institutions because the Bank contends that dysfunctional public

However, until now, little is known about how this limited time interval should be used in an efficient and consistent manner with respect to operational variables

(1997) report that contractionary monetary policy accounts for the decline in aggregate economic activity following an oil price increase. If prices are sticky downward, an oil

The number shown in parentheses is the Monte Carlo constructed standard error of the variable on the return of the real stock market after 1000 repetitions (the number of