• No results found

University of Groningen Light switchable surface topographies Liu, Ling

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Light switchable surface topographies Liu, Ling"

Copied!
23
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Light switchable surface topographies

Liu, Ling

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Liu, L. (2018). Light switchable surface topographies: Modelling and design of photo responsive topographical changes of liquid crystal polymer films. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Bibliography

[1] Bhushan, B., Jung, Y.C., and Koch, K. (2009). Micro-, nano-and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, 367, 1631–1672.

[2] Yu, H., Boschitsch, S.B., Nan, S., et al. A switchable cross-species liquid repel-lent surface. Advanced Materials, 29, 1604641.

[3] Chen, H., Zhang, P., Zhang, L., et al. (2016). Continuous directional water transport on the peristome surface of nepenthes alata. Nature, 532, 85–89. [4] Hansen, W.R. and Autumn, K. (2005). Evidence for self-cleaning in gecko

setae. Proceedings of the National Academy of Sciences of the United States of

America, 102, 385–389.

[5] Hamed, S., Muhammad, S.S., Antal, J., and Boxin, Z. Thermally active liquid crystal network gripper mimicking the self-peeling of gecko toe pads. Advanced

Materials, 29, 1604021.

[6] Tallinen, T., Chung, J.Y., Rousseau, F., et al. (2016). On the growth and form of cortical convolutions. Nature Physics, 12, 588.

[7] Godinho, M., Canejo, J., Feio, G., and Terentjev, E. (2010). Self-winding of helices in plant tendrils and cellulose liquid crystal fibers. Soft Matter, 6, 5965– 5970.

[8] Chen, X. (2012). Mechanical Self-assembly: Science and Applications. Springer. [9] Budday, S., Steinmann, P., and Kuhl, E. (2014). The role of mechanics during brain development. Journal of the Mechanics and Physics of Solids, 72, 75–92. [10] Priimagi, A., Barrett, C.J., and Shishido, A. (2014). Recent twists in pho-toactuation and photoalignment control. Journal of Materials Chemistry C, 2, 7155–7162.

[11] Pieranski, P., Baranska, J., and Skjeltorp, A. (2004). Tendril perversion-a physical implication of the topological conservation law. European journal of physics, 25, 613.

[12] McMillen, T. and Goriely, A. (2002). Tendril perversion in intrinsically curved rods. Journal of Nonlinear Science, 12, 241–281.

[13] Goriely, A. and Tabor, M. (1998). Spontaneous helix hand reversal and tendril perversion in climbing plants. Physical Review Letters, 80, 1564.

(3)

tendril for ultrastretchable and integratable electronics, muscles, and sensors.

ACS Nano, 12, 3898–3907.

[15] Li, C., Liu, Y., Huang, X., and Jiang, H. (2012). Direct sun-driven artificial heliotropism for solar energy harvesting based on a photo-thermomechanical

liquid-crystal elastomer nanocomposite. Advanced Functional Materials,

22, 5166–5174.

[16] Ohm, C., Brehmer, M., and Zentel, R. (2010). Liquid crystalline elastomers as actuators and sensors. Advanced Materials, 22, 3366–3387.

[17] Cheng, F., Yin, R., Zhang, Y., Yen, C.C., and Yu, Y. (2010). Fully plastic microrobots which manipulate objects using only visible light. Soft Matter, 6, 3447–3449.

[18] Ware, T.H., McConney, M.E., Wie, J.J., Tondiglia, V.P., and White, T.J. (2015). Voxelated liquid crystal elastomers. Science, 347, 982–984.

[19] Gladman, A.S., Matsumoto, E.A., Nuzzo, R.G., Mahadevan, L., and Lewis, J.A. (2016). Biomimetic 4d printing. Nature materials, 15, 413.

[20] Yamada, M., Kondo, M., Miyasato, R., et al. (2008). Photomobile polymer materials–various three-dimensional movements. Journal of Materials Chem-istry, 19, 60–62.

[21] Daniele, M., Sara, N., Dmitry, N., Camilla, P., and S., W.D. Photonic micro-hand with autonomous action. Advanced Materials, 29, 1704047.

[22] Wani, O.M., Zeng, H., and Priimagi, A. (2017). A light-driven artificial flytrap.

Nature communications, 8, 15546.

[23] Yamada, M., Kondo, M., Mamiya, J.i., et al. (2008). Photomobile polymer ma-terials: Towards light-driven plastic motors. Angewandte Chemie International

Edition, 47, 4986–4988.

[24] Hao, Z., M., W.O., Piotr, W., and Arri, P. Light-driven, caterpillar-inspired miniature inching robot. Macromolecular Rapid Communications, 39, 1700224. [25] Xili, L., Shengwei, G., Xia, T., Hesheng, X., and Yue, Z. Tunable photo-controlled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators. Advanced Materials, 29, 1606467.

[26] Hao, Z., M., W.O., Piotr, W., Radoslaw, K., and Arri, P. Self-regulating iris based on light-actuated liquid crystal elastomer. Advanced Materials, 29, 1701814.

[27] Sánchez-Ferrer, A., Fischl, T., Stubenrauch, M., et al. (2009). Photo-crosslinked side-chain liquid-crystalline elastomers for microsystems.

Macro-molecular Chemistry and Physics, 210, 1671–1677.

[28] Modes, C., Warner, M., Sanchez-Somolinos, C., de Haan, L., and Broer, D. (2013). Angular deficits in flat space: remotely controllable apertures in ne-matic solid sheets. Proceedings of the Royal Society of London A: Mathene-matical,

Physical and Engineering Sciences, 469, 20120631.

[29] Petsch, S., Khatri, B., Schuhladen, S., et al. (2016). Muscular mems-the engi-neering of liquid crystal elastomer actuators. Smart Materials and Structures, 25, 085010.

[30] Sánchez-Ferrer, A., Fischl, T., Stubenrauch, M., et al. (2011). Liquid-crystalline elastomer microvalve for microfluidics. Advanced Materials, 23, 4526–4530. [31] Huang, C., Lv, J.a., Tian, X., et al. (2016). A remotely driven and controlled

micro-gripper fabricated from light-induced deformation smart material. Smart

Materials and Structures, 25, 095009.

[32] Liu, D. and Broer, D.J. (2014). Light controlled friction at a liquid crystal polymer coating with switchable patterning. Soft Matter, 10, 7952–7958. [33] Liu, D. and Broer, D.J. (2014). Self-assembled dynamic 3d fingerprints in

liquid-crystal coatings towards controllable friction and adhesion. Angewandte

(4)

[34] Liu, D., Liu, L., Onck, P.R., and Broer, D.J. (2015). Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating. Proceedings of

the National Academy of Sciences of the United States of America, 112, 3880–

3885.

[35] Rand, C.J. and Crosby, A.J. (2009). Friction of soft elastomeric wrinkled surfaces. Journal of Applied Physics, 106, 064913.

[36] Suzuki, K. and Ohzono, T. (2016). Wrinkles on a textile-embedded elastomer surface with highly variable friction. Soft Matter, 12, 6176–6183.

[37] Chen, C.M., Chiang, C.L., Lai, C.L., Xie, T., and Yang, S. (2013). Buckling-based strong dry adhesives via interlocking. Advanced Functional Materials, 23, 3813–3823.

[38] Varenberg, M. and Gorb, S.N. (2009). Hexagonal surface micropattern for dry and wet friction. Advanced Materials, 21, 483–486.

[39] Jeong, H.E., Kwak, M.K., and Suh, K.Y. (2010). Stretchable, adhesion-tunable dry adhesive by surface wrinkling. Langmuir, 26, 2223–2226.

[40] Camargo, C.J., Campanella, H., Marshall, J.E., et al. (2011). Localised ac-tuation in composites containing carbon nanotubes and liquid crystalline elas-tomers. Macromolecular Rapid Communications, 32, 1953–1959.

[41] Camargo, C., Campanella, H., Marshall, J., et al. (2012). Batch fabrication of optical actuators using nanotube–elastomer composites towards refreshable braille displays. Journal of Micromechanics and Microengineering, 22, 075009. [42] Torras, N., Zinoviev, K., Camargo, C., et al. (2014). Tactile device based on opto-mechanical actuation of liquid crystal elastomers. Sensors and Actuators

A: Physical, 208, 104–112.

[43] Jiang, H., Li, C., and Huang, X. (2013). Actuators based on liquid crystalline elastomer materials. Nanoscale, 5, 5225–5240.

[44] Miruchna, V., Walter, R., Lindlbauer, D., et al. Geltouch: Localized tactile feedback through thin, programmable gel. In Proceedings of the 28th Annual

ACM Symposium on User Interface Software & Technology, pages 3–10. ACM,

(2015).

[45] Liu, D. and Broer, D.J. (2017). Responsive Polymer Surfaces: Dynamics in

Surface Topography. John Wiley & Sons.

[46] Torras, N., Zinoviev, K.E., Esteve, J., and Sánchez-Ferrer, A. (2013). Liquid-crystalline elastomer micropillar array for haptic actuation. Journal of Materials

Chemistry C, 1, 5183–5190.

[47] Ichimura, K., Oh, S.K., and Nakagawa, M. (2000). Light-driven motion of liquids on a photoresponsive surface. Science, 288, 1624–1626.

[48] Patankar, N.A. (2003). On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 19, 1249–1253.

[49] Wenzel, R.N. (1949). Surface roughness and contact angle. Journal of Physical

Chemistry, 53, 1466–1467.

[50] Marmur, A. (2003). Wetting on hydrophobic rough surfaces: to be heteroge-neous or not to be? Langmuir, 19, 8343–8348.

[51] Yang, S., Khare, K., and Lin, P.C. (2010). Harnessing surface wrinkle patterns in soft matter. Advanced Functional Materials, 20, 2550–2564.

[52] Sidorenko, A., Krupenkin, T., and Aizenberg, J. (2008). Controlled switching of the wetting behavior of biomimetic surfaces with hydrogel-supported nanos-tructures. Journal of Materials Chemistry, 18, 3841–3846.

[53] Wu, Z.L., Wei, R., Buguin, A., et al. (2013). Stimuli-responsive topologi-cal change of microstructured surfaces and the resultant variations of wetting properties. ACS applied materials & interfaces, 5, 7485–7491.

[54] Lin, P.C. and Yang, S. (2009). Mechanically switchable wetting on wrinkled elastomers with dual-scale roughness. Soft Matter, 5, 1011–1018.

(5)

[55] Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P., and Aizenberg, J. (2007). Reversible switching of hydrogel-actuated nanostructures into complex mi-cropatterns. Science, 315, 487–490.

[56] Zarzar, L.D., Kim, P., and Aizenberg, J. (2011). Bio-inspired design of sub-merged hydrogel-actuated polymer microstructures operating in response to ph.

Advanced materials, 23, 1442–1446.

[57] Gelebart, A.H., Mc Bride, M., Schenning, A.P.H.J., Bowman, C.N., and Broer, D.J. (2016). Photoresponsive fiber array: Toward mimicking the collective mo-tion of cilia for transport applicamo-tions. Advanced Funcmo-tional Materials, 26, 5322– 5327.

[58] Khaderi, S., Craus, C., Hussong, J., et al. (2011). Magnetically-actuated arti-ficial cilia for microfluidic propulsion. Lab on a Chip, 11, 2002–2010.

[59] Blossey, R. (2003). Self-cleaning surfaces - virtual realities. Nature materials, 2, 301–306.

[60] Yu, N., Wang, S., Liu, Y., et al. (2017). Thermal-responsive anisotropic wetting microstructures for manipulation of fluids in microfluidics. Langmuir, 33, 494– 502.

[61] ter Schiphorst Jeroen, , G., M.G., Eslami, A.H., et al. Photoresponsive passive micromixers based on spiropyran size-tunable hydrogels. Macromolecular Rapid

Communications, 39, 1700086.

[62] Whitesides, G.M. (2006). The origins and the future of microfluidics. Nature, 442, 368–373.

[63] Blake, J. (1971). A spherical envelope approach to ciliary propulsion. Journal

of Fluid Mechanics, 46, 199–208.

[64] den Toonder, J.M. and Onck, P.R. (2013). Microfluidic manipulation with artificial/bioinspired cilia. Trends in biotechnology, 31, 85–91.

[65] Khaderi, S., den Toonder, J., and Onck, P. (2011). Microfluidic propulsion by the metachronal beating of magnetic artificial cilia: a numerical analysis.

Journal of Fluid Mechanics, 688, 44–65.

[66] den Toonder, J., Bos, F., Broer, D., et al. (2008). Artificial cilia for active micro-fluidic mixing. Lab on a Chip, 8, 533–541.

[67] van Oosten, C.L., Bastiaansen, C.W., and Broer, D.J. (2009). Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature

Materials, 8, 677–682.

[68] Khatavkar, V.V., Anderson, P.D., den Toonder, J.M., and Meijer, H.E. (2007). Active micromixer based on artificial cilia. Physics of Fluids, 19, 083605. [69] Gau, H., Herminghaus, S., Lenz, P., and Lipowsky, R. (1999). Liquid

mor-phologies on structured surfaces: from microchannels to microchips. Science, 283, 46–49.

[70] Khare, K., Zhou, J., and Yang, S. (2009). Tunable open-channel microflu-idics on soft poly (dimethylsiloxane)(pdms) substrates with sinusoidal grooves.

Langmuir, 25, 12794–12799.

[71] Shahsavan, H., Salili, S.M., Jákli, A., and Zhao, B. (2015). Smart muscle-driven self-cleaning of biomimetic microstructures from liquid crystal elastomers.

Ad-vanced Materials, 27, 6828–6833.

[72] Zhan, Y., Zhao, J., Liu, W., et al. (2015). Biomimetic submicroarrayed cross-linked liquid crystal polymer films with different wettability via colloidal lithog-raphy. ACS applied materials & interfaces, 7, 25522–25528.

[73] Yao, X., Hu, Y., Grinthal, A., et al. (2013). Adaptive fluid-infused porous films with tunable transparency and wettability. Nature materials, 12, 529–534. [74] Liu, C., Ding, H., Wu, Z., et al. (2016). Tunable structural color surfaces with

visually self-reporting wettability. Advanced Functional Materials, 26, 7937– 7942.

(6)

[75] Wu, Z.L., Wang, Z.J., Keller, P., and Zheng, Q. (2016). Light responsive microstructured surfaces of liquid crystalline network with shape memory and tunable wetting behaviors. Macromolecular rapid communications, 37, 311–317. [76] Rhee, D., Lee, W.K., and Odom, T.W. (2017). Crack-free, soft wrinkles en-able switchen-able anisotropic wetting. Angewandte Chemie International Edition, 56, 6523–6527.

[77] Prathapan, R., Berry, J.D., Fery, A., Garnier, G., and Tabor, R.F. (2017). Decreasing the wettability of cellulose nanocrystal surfaces using wrinkle-based alignment. ACS Applied Materials & Interfaces, 9, 15202–15211.

[78] Wang, T., Chen, H., Liu, K., et al. (2014). Janus si micropillar arrays with thermal-responsive anisotropic wettability for manipulation of microfluid mo-tions. ACS applied materials & interfaces, 7, 376–382.

[79] Dong, L. and Jiang, H. (2007). Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter, 3, 1223–1230.

[80] Chen, C.M., Chiang, C.L., and Yang, S. (2015). Programming tilting angles in shape memory polymer janus pillar arrays with unidirectional wetting against the tilting direction. Langmuir, 31, 9523–9526.

[81] Kieviet, B.D., Schön, P.M., and Vancso, G.J. (2014). Stimulus-responsive poly-mers and other functional polymer surfaces as components in glass microfluidic channels. Lab on a Chip, 14, 4159–4170.

[82] Luzinov, I., Minko, S., and Tsukruk, V.V. (2004). Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Progress

in Polymer Science, 29, 635–698.

[83] Yao, X., Song, Y., and Jiang, L. (2011). Applications of bio-inspired special wettable surfaces. Advanced Materials, 23, 719–734.

[84] Liu, M., Wang, S., and Jiang, L. (2017). Nature-inspired superwettability systems. Nature Reviews Materials, 2, 17036.

[85] Liu, K. and Jiang, L. (2012). Bio-inspired self-cleaning surfaces. Annual Review

of Materials Research, 42, 231–263.

[86] Kizilkan, E., Strueben, J., Staubitz, A., and Gorb, S.N. (2017). Bioinspired pho-tocontrollable microstructured transport device. Science Robotics, 2, eaak9454. [87] Cui, J., Drotlef, D.M., Larraza, I., et al. (2012). Bioinspired actuated adhesive

patterns of liquid crystalline elastomers. Advanced Materials, 24, 4601–4604. [88] Fuller, K. and Tabor, D. The effect of surface roughness on the adhesion of

elastic solids. In Proceedings of the Royal Society of London A:

Mathemati-cal, Physical and Engineering Sciences, volume 345, pages 327–342. The Royal

Society, (1975).

[89] Kinloch, A.J. (2012). Adhesion and adhesives: science and technology. Springer Science & Business Media.

[90] Autumn, K., Liang, Y.A., Hsieh, S.T., et al. (2000). Adhesive force of a single gecko foot-hair. Nature, 405, 681–685.

[91] Aksak, B., Murphy, M.P., and Sitti, M. Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces. In Robotics and

Automation, 2008. ICRA 2008. IEEE International Conference on, pages 3058–

3063. IEEE, (2008).

[92] Gao, H., Wang, X., Yao, H., Gorb, S., and Arzt, E. (2005). Mechanics of hierarchical adhesion structures of geckos. Mechanics of Materials, 37, 275–285. [93] Yao, H. and Gao, H. (2006). Mechanics of robust and releasable adhesion in biology: Bottom–up designed hierarchical structures of gecko. Journal of the

Mechanics and Physics of Solids, 54, 1120–1146.

[94] Lin, P.C., Vajpayee, S., Jagota, A., Hui, C.Y., and Yang, S. (2008). Mechani-cally tunable dry adhesive from wrinkled elastomers. Soft Matter, 4, 1830–1835. [95] Del Campo, A., Greiner, C., and Arzt, E. (2007). Contact shape controls

(7)

adhesion of bioinspired fibrillar surfaces. Langmuir, 23, 10235–10243.

[96] Sheparovych, R., Motornov, M., and Minko, S. (2009). Low adhesive surfaces that adapt to changing environments. Advanced Materials, 21, 1840–1844. [97] Li, C., Cheng, F., Lv, J.a., et al. (2012). Light-controlled quick switch of

adhesion on a micro-arrayed liquid crystal polymer superhydrophobic film. Soft

Matter, 8, 3730–3733.

[98] Northen, M.T., Greiner, C., Arzt, E., and Turner, K.L. (2008). A gecko-inspired reversible adhesive. Advanced Materials, 20, 3905–3909.

[99] Reddy, S., Arzt, E., and del Campo, A. (2007). Bioinspired surfaces with switchable adhesion. Advanced materials, 19, 3833–3837.

[100] Li, C., Zhang, Y., Ju, J., et al. (2012). In situ fully light-driven switching of superhydrophobic adhesion. Advanced Functional Materials, 22, 760–763. [101] Jin, C., Khare, K., Vajpayee, S., et al. (2011). Adhesive contact between

a rippled elastic surface and a rigid spherical indenter: from partial to full contact. Soft Matter, 7, 10728–10736.

[102] Chan, E.P., Smith, E.J., Hayward, R.C., and Crosby, A.J. (2008). Surface wrinkles for smart adhesion. Advanced Materials, 20, 711–716.

[103] Davis, C.S. and Crosby, A.J. (2011). Mechanics of wrinkled surface adhesion.

Soft Matter, 7, 5373–5381.

[104] Xue, L., Kovalev, A., Dening, K., et al. (2013). Reversible adhesion switching of porous fibrillar adhesive pads by humidity. Nano letters, 13, 5541–5548. [105] Drotlef, D.M., Blümler, P., and del Campo, A. (2014). Magnetically actuated

patterns for bioinspired reversible adhesion (dry and wet). Advanced Materials, 26, 775–779.

[106] Amador, G.J., Endlein, T., and Sitti, M. (2017). Soiled adhesive pads shear clean by slipping: a robust self-cleaning mechanism in climbing beetles. Journal

of The Royal Society Interface, 14, 20170134.

[107] Shahsavan, H. and Zhao, B. (2013). Bioinspired functionally graded adhesive materials: synergetic interplay of top viscous–elastic layers with base micropil-lars. Macromolecules, 47, 353–364.

[108] Cho, Y., Kim, G., Cho, Y., et al. (2015). Orthogonal control of stability and tunable dry adhesion by tailoring the shape of tapered nanopillar arrays.

Advanced Materials, 27, 7788–7793.

[109] Boesel, L.F., Greiner, C., Arzt, E., and Del Campo, A. (2010). Gecko-inspired surfaces: a path to strong and reversible dry adhesives. Advanced Materials, 22, 2125–2137.

[110] Zhu, H., Guo, Z., and Liu, W. (2014). Adhesion behaviors on superhydrophobic surfaces. Chemical Communications, 50, 3900–3913.

[111] Rahmawan, Y., Chen, C.M., and Yang, S. (2014). Recent advances in wrinkle-based dry adhesion. Soft Matter, 10, 5028–5039.

[112] Tiwari, A., Dorogin, L., Bennett, A., et al. (2017). The effect of surface rough-ness and viscoelasticity on rubber adhesion. Soft Matter, 13, 3602–3621. [113] Li, C.C., Chen, C.W., Yu, C.K., et al. (2017). Arbitrary beam steering enabled

by photomechanically bendable cholesteric liquid crystal polymers. Advanced

Optical Materials, 5, 1600824–1600824.

[114] Yan, Z., Ji, X., Wu, W., Wei, J., and Yu, Y. (2012). Light-switchable behavior of a microarray of azobenzene liquid crystal polymer induced by photodeformation.

Macromolecular Rapid Communications, 33, 1362–1367.

[115] Stumpel, J.E., Gil, E.R., Spoelstra, A.B., et al. (2015). Stimuli-responsive materials based on interpenetrating polymer liquid crystal hydrogels. Advanced

Functional Materials, 25, 3314–3320.

[116] Kim, P., Hu, Y., Alvarenga, J., et al. (2013). Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent

(8)

wrinkling patterns. Advanced Optical Materials, 1, 381–388.

[117] Stover, J.C. (1995). Optical scattering: measurement and analysis, volume 2. SPIE optical engineering press Bellingham.

[118] Robinson, I.K. (1986). Crystal truncation rods and surface roughness. Physical

Review B, 33, 3830.

[119] Berreman, D. and Scheffer, T. (1970). Bragg reflection of light from single-domain cholesteric liquid-crystal films. Physical Review Letters, 25, 577. [120] John, W.S., Fritz, W., Lu, Z., and Yang, D.K. (1995). Bragg reflection from

cholesteric liquid crystals. Physical Review E, 51, 1191.

[121] Broer, D., Lub, J., and Mol, G. (1995). Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature, 378, 467.

[122] Shanshan, L., Yue, L., Chuanyong, L., Zhijian, C., and Kai, S. Bioinspired adaptive microplate arrays for magnetically tuned optics. Advanced Optical

Materials, 5, 1601043.

[123] Stumpel, J.E., Broer, D.J., and Schenning, A.P. (2014). Stimuli-responsive photonic polymer coatings. Chemical Communications, 50, 15839–15848. [124] de Haan, L.T., Schenning, A.P., and Broer, D.J. (2014). Programmed morphing

of liquid crystal networks. Polymer, 55, 5885–5896.

[125] Zhao, J., Liu, Y., and Yu, Y. (2014). Dual-responsive inverse opal films based on a crosslinked liquid crystal polymer containing azobenzene. Journal of Materials

Chemistry C, 2, 10262–10267.

[126] Yao, L. and He, J. (2014). Recent progress in antireflection and self-cleaning technology–from surface engineering to functional surfaces. Progress in Mate-rials Science, 61, 94–143.

[127] Lee, E., Zhang, M., Cho, Y., et al. (2014). Tilted pillars on wrinkled elastomers as a reversibly tunable optical window. Advanced Materials, 26, 4127–4133. [128] Wang, Z., Fan, W., He, Q., et al. (2017). A simple and robust way towards

reversible mechanochromism: Using liquid crystal elastomer as a mask. Extreme

Mechanics Letters, 11, 42–48.

[129] Yu, C., OâĂŹBrien, K., Zhang, Y.H., Yu, H., and Jiang, H. (2010). Tunable op-tical gratings based on buckled nanoscale thin films on transparent elastomeric substrates. Applied Physics Letters, 96, 041111.

[130] Stuart, M.A.C., Huck, W.T., Genzer, J., et al. (2010). Emerging applications of stimuli-responsive polymer materials. Nature Materials, 9, 101–113.

[131] Holmes, D. and Crosby, A. (2007). Snapping surfaces. Advanced Materials, 19, 3589–3593.

[132] Bae, J., Bende, N.P., Evans, A.A., et al. (2017). Programmable and reversible assembly of soft capillary multipoles. Materials Horizons, 4, 228–235.

[133] Ohzono, T., Monobe, H., and Shimizu, Y. (2008). Liquid crystal alignment on self-organized microwrinkles. Applied physics express, 1, 065001.

[134] Ohzono, T., Monobe, H., Yamaguchi, R., Shimizu, Y., and Yokoyama, H. (2009). Dynamics of surface memory effect in liquid crystal alignment on re-configurable microwrinkles. Applied Physics Letters, 95, 014101.

[135] Viswanathan, N., Kim, D., and Tripathy, S. (1999). Surface relief structures on azo polymer films. Journal of Materials Chemistry, 9, 1941–1955.

[136] Liu, H., Liu, X., Meng, J., et al. (2013). Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces.

Advanced Materials, 25, 922–927.

[137] Kelley, E.G., Albert, J.N., Sullivan, M.O., and Epps III, T.H. (2013). Stimuli-responsive copolymer solution and surface assemblies for biomedical applica-tions. Chemical Society Reviews, 42, 7057–7071.

[138] Takezawa, T., Mori, Y., and Yoshizato, K. (1990). Cell culture on a thermo-responsive polymer surface. Nature Biotechnology, 8, 854–856.

(9)

[139] Kim, J., Yoon, J., and Hayward, R.C. (2010). Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels.

Nature materials, 9, 159–164.

[140] Kuroki, H., Tokarev, I., and Minko, S. (2012). Responsive surfaces for life science applications. Annual Review of Materials Research, 42, 343–372. [141] Cole, M.A., Voelcker, N.H., Thissen, H., and Griesser, H.J. (2009).

Stimuli-responsive interfaces and systems for the control of protein–surface and cell– surface interactions. Biomaterials, 30, 1827–1850.

[142] Wang, Z., Tonderys, D., Leggett, S.E., et al. (2016). Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment and morphology. Carbon, 97, 14–24.

[143] Zeng, Z., Jin, L., and Huo, Y. (2010). Strongly anisotropic elastic moduli of nematic elastomers: Analytical expressions and nonlinear temperature depen-dence. European Physical Journal E: Soft Matter, 32, 71–79.

[144] Nikkhah, M., Eshak, N., Zorlutuna, P., et al. (2012). Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 33, 9009–9018.

[145] Ikeda, T., Mamiya, J., and Yu, Y. (2007). Photomechanics of liquid-crystalline elastomers and other polymers. Angewandte Chemie International Edition, 46, 506–528.

[146] Meng, H. and Li, G. (2013). Reversible switching transitions of

stimuli-responsive shape changing polymers. Journal of Materials Chemistry A,

1, 7838–7865.

[147] White, T.J. and Broer, D.J. (2015). Programmable and adaptive mechan-ics with liquid crystal polymer networks and elastomers. Nature Materials, 14, 1087–1098.

[148] Roy, D., Cambre, J.N., and Sumerlin, B.S. (2010). Future perspectives and recent advances in stimuli-responsive materials. Progress in Polymer Science, 35, 278–301.

[149] Yu, H. and Ikeda, T. (2011). Photocontrollable liquid-crystalline actuators.

Advanced Materials, 23, 2149–2180.

[150] Liu, D. and Broer, D.J. (2014). Liquid crystal polymer networks: prepara-tion, properties, and applications of films with patterned molecular alignment.

Langmuir, 30, 13499–13509.

[151] Broer, D.J., Boven, J., Mol, G.N., and Challa, G. (1989). In-situ pho-topolymerization of oriented liquid-crystalline acrylates, 3. oriented polymer networks from a mesogenic diacrylate. Macromolecular Chemistry and Physics, 190, 2255–2268.

[152] Mol, G.N., Harris, K.D., Bastiaansen, C.W., and Broer, D.J. (2005). Thermo-mechanical responses of liquid-crystal networks with a splayed molecular orga-nization. Advanced Functional Materials, 15, 1155–1159.

[153] Liu, D., Bastiaansen, C.W.M., den Toonder, J.M.J., and Broer, D.J. (2012). Photo-switchable surface topologies in chiral nematic coatings. Angewandte

Chemie International Edition, 51, 892–896.

[154] de Haan, L.T., Sánchez-Somolinos, C., Bastiaansen, C.M., Schenning, A.P., and Broer, D.J. (2012). Engineering of complex order and the macroscopic defor-mation of liquid crystal polymer networks. Angewandte Chemie International

Edition, 51, 12469–12472.

[155] Seki, T., Nagano, S., and Hara, M. (2013). Versatility of photoalignment techniques: from nematics to a wide range of functional materials. Polymer, 54, 6053–6072.

[156] Zhao, Y. and Ikeda, T. (2009). Smart light-responsive materials:

azobenzene-containing polymers and liquid crystals. John Wiley & Sons.

(10)

networks formed by liquid crystalline acrylates. Polymer, 32, 1627–1632. [158] van Oosten, C.L., Corbett, D., Davies, D., et al. (2008). Bending dynamics and

directionality reversal in liquid crystal network photoactuators. Macromolecules, 41, 8592–8596.

[159] van Oosten, C.L., Harris, K., Bastiaansen, C., and Broer, D. (2007). Glassy photomechanical liquid-crystal network actuators for microscale devices.

Euro-pean Physical Journal E: Soft Matter, 23, 329–336.

[160] Broer, D.J., Hikmet, R.A., and Challa, G. (1989). In-situ photopolymeriza-tion of oriented liquid-crystalline acrylates, 4. influence of a lateral methyl sub-stituent on monomer and oriented polymer network properties of a mesogenic diacrylate. Macromolecular Chemistry and Physics, 190, 3201–3215.

[161] Liu, D. and Broer, D.J. (2013). Liquid crystal polymer networks: switchable surface topographies. Liquid Crystals Reviews, 1, 20–28.

[162] Sousa, M.E., Broer, D.J., Bastiaansen, C.W., Freund, L., and Crawford, G.P. (2006). Isotropic "fislands" in a cholesteric "sea": patterned thermal expansion for responsive surface topologies. Advanced Materials, 18, 1842–1845.

[163] Liu, D., Tito, N.B., and Broer, D.J. (2017). Protruding organic surfaces trig-gered by in-plane electric fields. Nature Communications, 8, 1526.

[164] Ryabchun, A., Lancia, F., Nguindjel, A.D., and Katsonis, N. (2017). Humidity-responsive actuators from integrating liquid crystal networks in an orienting scaffold. Soft Matter, 13, 8070–8075.

[165] Yu, Y., Nakano, M., and Ikeda, T. (2003). Photomechanics: directed bending of a polymer film by light. Nature, 425, 145–145.

[166] Wermter, H. and Finkelmann, H. (2001). Liquid crystalline elastomers as artificial muscles. e-Polymers, 1, 111–123.

[167] Warner, M. and Terentjev, E.M. (2003). Liquid crystal elastomers, volume 120. Oxford University Press.

[168] Finkelmann, H., Nishikawa, E., Pereira, G., and Warner, M. (2001). A new opto-mechanical effect in solids. Physical Review Letters, 87, 015501–015501. [169] Kularatne, R.S., Kim, H., Boothby, J.M., and Ware, T.H. (2017). Liquid

crystal elastomer actuators: Synthesis, alignment, and applications. Journal of

Polymer Science Part B: Polymer Physics, 55, 395–411.

[170] Thomsen, D.L., Keller, P., Naciri, J., et al. (2001). Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules, 34, 5868–5875. [171] Woltman, S.J., Jay, G.D., and Crawford, G.P. (2007). Liquid-crystal materials

find a new order in biomedical applications. Nature materials, 6, 929–938. [172] Terentjev, E. and Warner, M. (2001). Linear hydrodynamics and viscoelasticity

of nematic elastomers. European Physical Journal E: Soft Matter, 4, 343–353. [173] Gelebart, A.H., Mulder, D.J., Varga, M., et al. (2017). Making waves in a

photoactive polymer film. Nature, 546, 632–636.

[174] Harris, K.D., Cuypers, R., Scheibe, P., et al. (2005). Large amplitude light-induced motion in high elastic modulus polymer actuators. Journal of Materials

Chemistry, 15, 5043–5048.

[175] Liu, D. and Broer, D.J. (2015). New insights into photoactivated volume gener-ation boost surface morphing in liquid crystal coatings. Nature communicgener-ations, 6, 8334.

[176] White, T.J., Tabiryan, N.V., Serak, S.V., et al. (2008). A high frequency photodriven polymer oscillator. Soft Matter, 4, 1796–1798.

[177] J., K.A.J., J., B.D., and J., S.A.P.H. Easily processable and programmable re-sponsive semi-interpenetrating liquid crystalline polymer network coatings with changing reflectivities and surface topographies. Advanced Functional Materials, 28, 1704756.

(11)

elas-tomers. Philosophical Transactions of the Royal Society of London A:

Mathe-matical, Physical and Engineering Sciences, 364, 2763–2777.

[179] Barrett, C.J., Mamiya, J.i., Yager, K.G., and Ikeda, T. (2007). Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter, 3, 1249– 1261.

[180] Natansohn, A. and Rochon, P. (2002). Photoinduced motions in azo-containing polymers. Chemical reviews, 102, 4139–4176.

[181] Warner, M., Modes, C., and Corbett, D. (2010). Curvature in nematic elastica responding to light and heat. Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 466, 2975–2989.

[182] Warner, M., Modes, C., and Corbett, D. (2010). Suppression of curvature in nematic elastica. Proceedings of the Royal Society A, 466, 3561–3578.

[183] Elias, A., Harris, K., Bastiaansen, C., Broer, D., and Brett, M. (2006). Pho-topatterned liquid crystalline polymers for microactuators. Journal of Materials

Chemistry, 16, 2903–2912.

[184] Liu, D., Bastiaansen, C.W.M., den Toonder, J.M.J., and Broer, D.J. (2012). Light-induced formation of dynamic and permanent surface topologies in chiral-nematic polymer networks. Macromolecules, 45, 8005–8012.

[185] Liu, Y., Wu, W., Wei, J., and Yu, Y. (2016). Visible light responsive liquid crystal polymers containing reactive moieties with good processability. ACS applied materials & interfaces, 9, 782–789.

[186] Bisoyi, H.K. and Li, Q. (2016). Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications.

Chemical reviews, 116, 15089–15166.

[187] Jiang, Z., Xu, M., Li, F., and Yu, Y. (2013). Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet–triplet an-nihilation. Journal of the American Chemical Society, 135, 16446–16453. [188] Wu, W., Yao, L., Yang, T., et al. (2011). Nir-light-induced deformation of

cross-linked liquid-crystal polymers using upconversion nanophosphors. Journal of the

American Chemical Society, 133, 15810–15813.

[189] Liu, Y., Shaw, B., Dickey, M.D., and Genzer, J. (2017). Sequential self-folding of polymer sheets. Science Advances, 3, e1602417.

[190] Davis, D., Mailen, R., Genzer, J., and Dickey, M.D. (2015). Self-folding of polymer sheets using microwaves and graphene ink. RSC Advances, 5, 89254– 89261.

[191] Ahir, S.V. and Terentjev, E.M. (2005). Photomechanical actuation in polymer– nanotube composites. Nature materials, 4, 491.

[192] Wang, T., Torres, D., Fernández, F.E., Wang, C., and Sepúlveda, N. (2017). Maximizing the performance of photothermal actuators by combining smart materials with supplementary advantages. Science Advances, 3, e1602697. [193] Vantomme, G., Gelebart, A., Broer, D., and Meijer, E. (2017). A four-blade

light-driven plastic mill based on hydrazone liquid-crystal networks.

Tetrahe-dron, 73, 4963–4967.

[194] Helene, G.A., Ghislaine, V., W., M.E., and J., B.D. Mastering the photother-mal effect in liquid crystal networks: A general approach for selfâĂŘsustained mechanical oscillators. Advanced Materials, 29, 1606712.

[195] Liu, X., Wei, R., Hoang, P.T., et al. (2015). Reversible and rapid laser actuation of liquid crystalline elastomer micropillars with inclusion of gold nanoparticles.

Advanced Functional Materials, 25, 3022–3032.

[196] Hauser, A.W., Liu, D., Bryson, K.C., Hayward, R.C., and Broer, D.J. (2016). Reconfiguring nanocomposite liquid crystal polymer films with visible light.

Macromolecules, 49, 1575–1581.

(12)

shape-morphing elastomeric liquid crystal microparticles doped with gold nanocrys-tals. Applied Physics Letters, 100, 241901.

[198] Serak, S., Tabiryan, N., Vergara, R., et al. (2010). Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter, 6, 779–783.

[199] Kumar, K., Knie, C., Bléger, D., et al. (2016). A chaotic self-oscillating sunlight-driven polymer actuator. Nature communications, 7, 11975.

[200] Fuchi, K., Ware, T.H., Buskohl, P.R., et al. (2015). Topology optimization for the design of folding liquid crystal elastomer actuators. Soft Matter, 11, 7288– 7295.

[201] de Haan, L.T., Gimenez-Pinto, V., Konya, A., et al. (2014). Accordion-like actu-ators of multiple 3d patterned liquid crystal polymer films. Advanced Functional

Materials, 24, 1251–1258.

[202] Iamsaard, S., Aßhoff, S.J., Matt, B., et al. (2014). Conversion of light into macroscopic helical motion. Nature chemistry, 6, 229.

[203] Warner, M. and Mahadevan, L. (2004). Photoinduced deformations of beams, plates, and films. Physical Review Letters, 92, 134302.

[204] Liu, Y., Boyles, J.K., Genzer, J., and Dickey, M.D. (2012). Self-folding of polymer sheets using local light absorption. Soft Matter, 8, 1764–1769.

[205] Iamsaard, S., Villemin, E., Lancia, F., et al. (2016). Preparation of biomimetic photoresponsive polymer springs. Nature Protocols, 11, 1788–1797.

[206] Liu, L. and Onck, P.R. (2018). Topographical modulations via tunable photo-polymerization induced diffusion of azobenzene-doped liquid crystal polymer films. Journal of the Mechanics and Physics of Solids, submitted.

[207] Wang, M., Lin, B.P., and Yang, H. (2016). A plant tendril mimic soft ac-tuator with phototunable bending and chiral twisting motion modes. Nature

communications, 7, 13981.

[208] Boothby, J. and Ware, T. (2017). Dual-responsive, shape-switching bilayers enabled by liquid crystal elastomers. Soft Matter, 13, 4349–4356.

[209] Dai, M., Picot, O.T., Verjans, J.M., et al. (2013). Humidity-responsive bilayer actuators based on a liquid-crystalline polymer network. ACS applied materials & interfaces, 5, 4945–4950.

[210] Stoychev, G., Zakharchenko, S., Turcaud, S., Dunlop, J.W., and Ionov, L. (2012). Shape-programmed folding of stimuli-responsive polymer bilayers. ACS

Nano, 6, 3925–3934.

[211] Liu, D., Bastiaansen, C.W., den Toonder, J.M., and Broer, D.J. (2013). Single-composition three-dimensionally morphing hydrogels. Soft Matter, 9, 588–596. [212] Hendrikx, M., Schenning, A.P.H.J., and Broer, D.J. (2017). Patterned oscil-lating topographical changes in photoresponsive polymer coatings. Soft Matter, 13, 4321–4327.

[213] Liu, L., Broer, D.J., and Onck, P.R. (2018). Travelling waves on photo-switchable polymer films by rotating polarized light. submitted.

[214] Liu, D., Bastiaansen, C.W., den Toonder, J.M., and Broer, D.J. (2013). (Photo-) thermally induced formation of dynamic surface topographies in polymer hy-drogel networks. Langmuir, 29, 5622–5629.

[215] Palagi, S., Mark, A.G., Reigh, S.Y., et al. (2016). Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft micro-robots. Nature Materials, 15, 647–653.

[216] Liu, L. and Onck, P.R. (2018). Topographical changes in photo-responsive liquid crystal films: a computational analysis. Soft matter, 14, 2411–2428. [217] Liu, L. and Onck, P.R. (2017). Computational modelling of light-triggered

topography changes of azobenzene-modified liquid crystal polymer coatings. In Liu, D. and Broer, D.J., editors, Responsive Polymer Surfaces -Dynamics in

(13)

[218] Gritsai, Y., Goldenberg, L.M., and Stumpe, J. (2011). Efficient single-beam light manipulation of 3d microstructures in azobenzene-containing materials.

Optics express, 19, 18687–18695.

[219] Viswanathan, N.K., Balasubramanian, S., Li, L., Kumar, J., and Tripathy, S.K. (1998). Surface-initiated mechanism for the formation of relief gratings on azo-polymer films. The Journal of Physical Chemistry B, 102, 6064–6070.

[220] Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., and Whitesides, G.M. (1998). Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature, 393, 146–149.

[221] Huck, W.T., Bowden, N., Onck, P., et al. (2000). Ordering of spontaneously formed buckles on planar surfaces. Langmuir, 16, 3497–3501.

[222] Chen, X. and Hutchinson, J.W. (2004). Herringbone buckling patterns of compressed thin films on compliant substrates. Journal of applied mechanics, 71, 597–603.

[223] Cai, S., Breid, D., Crosby, A.J., Suo, Z., and Hutchinson, J.W. (2011). Periodic patterns and energy states of buckled films on compliant substrates. Journal of

the Mechanics and Physics of Solids, 59, 1094–1114.

[224] Chen, X. and Hutchinson, J.W. (2004). A family of herringbone patterns in thin films. Scripta materialia, 50, 797–801.

[225] Huang, Z., Hong, W., and Suo, Z. (2005). Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. Journal of the Mechanics and Physics of Solids, 53, 2101–2118.

[226] Song, J., Jiang, H., Liu, Z., et al. (2008). Buckling of a stiff thin film on a compliant substrate in large deformation. International Journal of Solids and

Structures, 45, 3107–3121.

[227] Jiang, H., Khang, D.Y., Song, J., et al. (2007). Finite deformation mechanics in buckled thin films on compliant supports. Proceedings of the National Academy

of Sciences, 104, 15607–15612.

[228] Guvendiren, M., Yang, S., and Burdick, J.A. (2009). Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Advanced Functional

Materials, 19, 3038–3045.

[229] Guvendiren, M., Burdick, J.A., and Yang, S. (2010). Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients.

Soft Matter, 6, 5795–5801.

[230] Hong, W., Zhao, X., and Suo, Z. (2009). Formation of creases on the surfaces of elastomers and gels. Applied Physics Letters, 95, 111901.

[231] Li, B., Cao, Y.P., Feng, X.Q., and Gao, H. (2012). Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter, 8, 5728–5745.

[232] Chen, C.M. and Yang, S. (2012). Wrinkling instabilities in polymer films and their applications. Polymer International, 61, 1041–1047.

[233] Rodriguez-Hernandez, J. (2015). Wrinkled interfaces: taking advantage of surface instabilities to pattern polymer surfaces. Progress in Polymer Science, 42, 1–41.

[234] Chung, J.Y., Nolte, A.J., and Stafford, C.M. (2011). Surface wrinkling: a ver-satile platform for measuring thin-film properties. Advanced Materials, 23, 349– 368.

[235] Genzer, J. and Groenewold, J. (2006). Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter, 2, 310–323. [236] Agrawal, A., Luchette, P., Palffy-Muhoray, P., et al. (2012). Surface wrinkling

in liquid crystal elastomers. Soft Matter, 8, 7138–7142.

[237] Agrawal, A., Yun, T., Pesek, S.L., Chapman, W.G., and Verduzco, R. (2014). Shape-responsive liquid crystal elastomer bilayers. Soft Matter, 10, 1411–1415.

(14)

[238] An, N., Li, M., and Zhou, J. (2015). Instability of liquid crystal elastomers.

Smart Materials and Structures, 25, 015016.

[239] Destgeer, G. and Sung, H.J. (2015). Recent advances in microfluidic actua-tion and micro-object manipulaactua-tion via surface acoustic waves. Lab on a Chip, 15, 2722–2738.

[240] Yamaoka, D., Hara, M., Nagano, S., and Seki, T. (2015). Photoalignable radi-cal initiator for anisotropic polymerization in liquid crystalline media.

Macro-molecules, 48, 908–914.

[241] Soni, H., Pelcovits, R.A., and Powers, T.R. (2016). Wrinkling of a thin film on a nematic liquid-crystal elastomer. Physical Review E, 94, 012701.

[242] Greco, F., Domenici, V., Romiti, S., et al. (2013). Reversible heat-induced microwrinkling of pedot: Pss nanofilm surface over a monodomain liquid crystal elastomer. Molecular Crystals and Liquid Crystals, 572, 40–49.

[243] Kang, S.H., Na, J.H., Moon, S.N., et al. (2012). Self-organized anisotropic wrinkling of molecularly aligned liquid crystalline polymer. Langmuir, 28, 3576– 3582.

[244] Fu, C., Xu, F., and Huo, Y. (2018). Photo-controlled patterned wrinkling of liquid crystalline polymer films on compliant substrates. International Journal

of Solids and Structures, 132-133, 264 – 277.

[245] Yang, D. and He, L. (2014). Photo-triggered wrinkling of glassy nematic films.

Smart Materials and Structures, 23, 045012.

[246] Takeshima, T., Liao, W.y., Nagashima, Y., et al. (2015). Photoresponsive sur-face wrinkle morphologies in liquid crystalline polymer films. Macromolecules, 48, 6378–6384.

[247] Yang, D. and He, L.H. (2015). Nonlinear analysis of photo-induced wrinkling of glassy twist nematic films on compliant substrates. Acta Mechanica Sinica, 31, 672–678.

[248] Na, J.H., Kim, S.U., Sohn, Y., and Lee, S.D. (2015). Self-organized wrinkling patterns of a liquid crystalline polymer in surface wetting confinement. Soft

Matter, 11, 4788–4792.

[249] Song, S.E., Choi, G.H., Yi, G.R., and Yoo, P.J. (2017). Competitive concurrence of surface wrinkling and dewetting of liquid crystalline polymer films on non-wettable substrates. Soft Matter, 13, 7753–7759.

[250] Rofouie, P., Pasini, D., and Rey, A.D. (2015). Nano-scale surface wrinkling in chiral liquid crystals and plant-based plywoods. Soft Matter, 11, 1127–1139. [251] Rofouie, P., Pasini, D., and Rey, A. (2015). Tunable nano-wrinkling of chiral

surfaces: Structure and diffraction optics. The Journal of chemical physics, 143, 09B613.

[252] Rofouie, P., Pasini, D., and Rey, A. (2017). Multiple-wavelength surface pat-terns in models of biological chiral liquid crystal membranes. Soft Matter, 13, 541–545.

[253] Thompson, J.M.T. and Hunt, G.W. (1973). A general theory of elastic stability. Wiley.

[254] Brush, D.O., Almroth, B.O., and Hutchinson, J. (1975). Buckling of bars, plates, and shells. Journal of Applied Mechanics, 42, 911.

[255] Jones, R.M. (2006). Buckling of bars, plates, and shells. Bull Ridge Corporation. [256] Riks, E. (1979). An incremental approach to the solution of snapping and buckling problems. International Journal of Solids and Structures, 15, 529–551. [257] Crisfield, M. (1981). A fast incremental/iterative solution procedure that

han-dles "snap-through". Computers & Structures, 13, 55–62.

[258] Skandani, A.A., Chatterjee, S., Smith, M.L., et al. (2016). Discrete-state pho-tomechanical actuators. Extreme Mechanics Letters, 9, 45–54.

(15)

of large-deflected liquid crystalline polymer plates. International Journal of

Applied Mechanics, 8, 1640007.

[260] Aßhoff, S.J., Lancia, F., Iamsaard, S., et al. (2017). High-power actuation from molecular photoswitches in enantiomerically paired soft springs. Angewandte

Chemie International Edition, 56, 3261–3265.

[261] Jeong, J., Cho, Y., Lee, S.Y., et al. (2017). Topography-guided buckling of swollen polymer bilayer films into three-dimensional structures. Soft Matter, 13, 956–962.

[262] Modes, C.D., Bhattacharya, K., and Warner, M. (2010). Disclination-mediated thermo-optical response in nematic glass sheets. Physical Review E, 81, 060701. [263] Modes, C.D., Bhattacharya, K., and Warner, M. Gaussian curvature from flat elastica sheets. In Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, volume 467, pages 1121–1140. The Royal

Society, (2011).

[264] Modes, C.D. and Warner, M. (2011). Blueprinting nematic glass: Systematically constructing and combining active points of curvature for emergent morphology.

Physical Review E, 84, 021711.

[265] Mostajeran, C., Warner, M., Ware, T.H., and White, T.J. (2016). Encoding gaussian curvature in glassy and elastomeric liquid crystal solids. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering

Sci-ences, 472, 20160112.

[266] Mostajeran, C., Warner, M., and Modes, C.D. (2017). Frame, metric and geodesic evolution in shape-changing nematic shells. Soft Matter, 13, 8858– 8863.

[267] He, L., Zheng, Y., and Ni, Y. (2018). Programmed shape of glassy nematic sheets with varying in-plane director fields: A kinetics approach. International

Journal of Solids and Structures, 130, 183–189.

[268] Aharoni, H., Xia, Y., Zhang, X., Kamien, R.D., and Yang, S. (2017). Making faces: Universal inverse design of surfaces with thin nematic elastomer sheets.

arXiv preprint arXiv:1710.08485.

[269] Modes, C.D. and Warner, M. (2015). Negative gaussian curvature from induced metric changes. Physical Review E, 92, 010401.

[270] Modes, C. and Warner, M. (2012). Responsive nematic solid shells: topology, compatibility, and shape. EPL (Europhysics Letters), 97, 36007.

[271] Cirak, F., Long, Q., Bhattacharya, K., and Warner, M. (2014). Computational analysis of liquid crystalline elastomer membranes: Changing gaussian curva-ture without stretch energy. International Journal of Solids and Struccurva-tures, 51, 144–153.

[272] Kowalski, B.A., Mostajeran, C., Godman, N.P., Warner, M., and White, T.J. (2018). Curvature by design and on demand in liquid crystal elastomers.

Phys-ical Review E, 97, 012504.

[273] McConney, M.E., Martinez, A., Tondiglia, V.P., et al. (2013). Topography from topology: photoinduced surface features generated in liquid crystal polymer networks. Advanced Materials, 25, 5880–5885.

[274] Lv, J., Liu, Y., Wei, J., et al. (2016). Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature, 537, 179–184.

[275] Lindsey, H., Kirstin, P., Zhan, L.G., and Metin, S. Soft actuators for small-scale robotics. Advanced Materials, 29, 1603483.

[276] Ube, T., Minagawa, K., and Ikeda, T. (2017). Interpenetrating polymer net-works of liquid-crystalline azobenzene polymers and poly (dimethylsiloxane) as photomobile materials. Soft Matter, 13, 5820–5823.

[277] Chatani, S., Kloxin, C.J., and Bowman, C.N. (2014). The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties. Polymer Chemistry, 5, 2187–2201.

(16)

[278] Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P., and Shelley, M. (2004). Fast liquid-crystal elastomer swims into the dark. Nature Materials, 3, 307–310.

[279] Wagner, N. and Theato, P. (2014). Light-induced wettability changes on poly-mer surfaces. Polypoly-mer, 55, 3436 – 3453.

[280] Roy, P.K., Pant, R., Nagarajan, A.K., and Khare, K. (2016). Mechanically tun-able slippery behavior on soft poly (dimethylsiloxane)-based anisotropic wrin-kles infused with lubricating fluid. Langmuir, 32, 5738–5743.

[281] Olga, G., Jan, S., Pavel, P., et al. Fast and reproducible wettability switching on functionalized pvdf/pmma surface controlled by external electric field. Advanced

Materials Interfaces, 4, 1600886.

[282] Kim, H.N., Jang, K.J., Shin, J.Y., et al. (2017). Artificial slanted nanocilia array as a mechanotransducer for controlling cell polarity. ACS Nano, 11, 730–741. [283] Corbett, D. and Warner, M. (2006). Nonlinear photoresponse of disordered

elastomers. Physical Review Letters, 96, 237802.

[284] Corbett, D. and Warner, M. (2007). Linear and nonlinear photoinduced defor-mations of cantilevers. Physical Review Letters, 99, 174302.

[285] Smith, M.L., Lee, K.M., White, T.J., and Vaia, R.A. (2014). Design of polarization-dependent, flexural-torsional deformation in photo responsive liq-uid crystalline polymer networks. Soft Matter, 10, 1400–1410.

[286] Cheng, L., Torres, Y., Min Lee, K., et al. (2012). Photomechanical bending me-chanics of polydomain azobenzene liquid crystal polymer network films. Journal

of Applied Physics, 112, 013513–013513.

[287] Knežević, M., Warner, M., Čopič, M., and Sánchez-Ferrer, A. (2013). Photody-namics of stress in clamped nematic elastomers. Physical Review E, 87, 062503. [288] Choi, J., Chung, H., Yun, J.H., and Cho, M. (2014). Photo-isomerization effect of the azobenzene chain on the opto-mechanical behavior of nematic polymer: A molecular dynamics study. Applied Physics Letters, 105, 221906.

[289] Hogan, P.M., Tajbakhsh, A.R., and Terentjev, E.M. (2002). Uv manipulation of order and macroscopic shape in nematic elastomers. Physical Review E, 65, 041720.

[290] Kondo, M., Sugimoto, M., Yamada, M., et al. (2010). Effect of concentration of photoactive chromophores on photomechanical properties of crosslinked azoben-zene liquid-crystalline polymers. Journal of Materials Chemistry, 20, 117–122. [291] Yu, Y., Nakano, M., Shishido, A., Shiono, T., and Ikeda, T. (2004).

Ef-fect of cross-linking density on photoinduced bending behavior of oriented liquid-crystalline network films containing azobenzene. Chemistry of Materi-als, 16, 1637–1643.

[292] Braun, L.B., Linder, T.G., Hessberger, T., and Zentel, R. (2016). Influence of a crosslinker containing an azo group on the actuation properties of a photoac-tuating lce system. Polymers, 8, 435.

[293] Zhu, B., Barnes, M., Kim, H., et al. (2017). Molecular engineering of step-growth liquid crystal elastomers. Sensors and Actuators B: Chemical, 244, 433 – 440.

[294] Kumar, K., Schenning, A.P., Broer, D.J., and Liu, D. (2016). Regulating the modulus of a chiral liquid crystal polymer network by light. Soft Matter, 12, 3196–3201.

[295] Corbett, D. and Warner, M. (2008). Polarization dependence of optically driven polydomain elastomer mechanics. Physical Review E, 78, 061701.

[296] Corbett, D. and Warner, M. (2008). Bleaching and stimulated recovery of dyes and of photocantilevers. Physical Review E, 77, 051710.

[297] Statman, D. and Janossy, I. (2003). Study of photoisomerization of azo dyes in liquid crystals. The Journal of Chemical Physics, 118, 3222.

(17)

[298] Hibbett, and et. al., . (1998). ABAQUS/standard: User’s Manual, volume 1. [299] Heynderickx, I., Broer, D., Van Den Boom, H., and Teesselink, W. (1992).

Liquid-crystalline ordering in polymeric networks as studied by polarized raman scattering. Journal of Polymer Science, Part B: Polymer Physics, 30, 215–220. [300] Liu, Q., Zhan, Y., Wei, J., et al. (2017). Dual-responsive deformation of a crosslinked liquid crystal polymer film with complex molecular alignment. Soft

Matter, 13, 6145–6151.

[301] Zeng, H., Martella, D., Wasylczyk, P., et al. (2014). High-resolution 3d direct laser writing for liquid-crystalline elastomer microstructures. Advanced Materi-als, 26, 2319–2322.

[302] Zeng, H., Wasylczyk, P., Cerretti, G., et al. (2015). Alignment engineering in liquid crystalline elastomers: Free-form microstructures with multiple function-alities. Applied Physics Letters, 106, 111902.

[303] Koen, N., M., B.G., Carlos, S.S., et al. 3d orientational control in self-assembled thin films with sub-5 nm features by light. Small, 13, 1701043.

[304] Gadelmawla, E., Koura, M., Maksoud, T., Elewa, I., and Soliman, H. (2002). Roughness parameters. Journal of Materials Processing Technology, 123, 133 – 145.

[305] Arbizu, I.P. and Perez, C.L. (2003). Surface roughness prediction by factorial design of experiments in turning processes. Journal of Materials Processing

Technology, 143, 390–396.

[306] Crawford, R.J., Webb, H.K., Truong, V.K., Hasan, J., and Ivanova, E.P. (2012). Surface topographical factors influencing bacterial attachment. Advances in

Colloid and Interface Science, 179, 142–149.

[307] Sedlaček, M., Podgornik, B., and Vižintin, J. (2012). Correlation between stan-dard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribology International, 48, 102–112.

[308] Wenzel, R.N. (1936). Resistance of solid surfaces to wetting by water. Industrial

and Engineering Chemistry Research, 28, 988–994.

[309] Goulet-Hanssens, A., Corkery, T.C., Priimagi, A., and Barrett, C.J. (2014). Effect of head group size on the photoswitching applications of azobenzene disperse red 1 analogues. Journal of Materials Chemistry C, 2, 7505–7512. [310] Liu, D. Responsive Surface Topographies-Liquid crystal networks and polymer

hydrogel forming micrometer sized surface structures trigged by light, heat or

pH. PhD thesis, Eindhoven University of Technology, (2013).

[311] Kurik, M.V. and Lavrentovich, O. (1988). Defects in liquid crystals: homotopy theory and experimental studies. Physics-Uspekhi, 31, 196–224.

[312] Donald, A. and Windle, A. (1984). Walls in liquid crystalline polymers: an electron microscopy study. Polymer, 25, 1235–1246.

[313] Poulin, P., Stark, H., Lubensky, T., and Weitz, D. (1997). Novel colloidal interactions in anisotropic fluids. Science, 275, 1770–1773.

[314] Eelkema, R., Pollard, M.M., Vicario, J., et al. (2006). Molecular machines: nanomotor rotates microscale objects. Nature, 440, 163–163.

[315] Nagai, H., Liang, X., Nishikawa, Y., Nakajima, K., and Urayama, K. (2016). Periodic surface undulation in cholesteric liquid crystal elastomers.

Macro-molecules, 49, 9561–9567.

[316] Kularatne, R.S., Kim, H., Ammanamanchi, M., Hayenga, H.N., and Ware, T.H. (2016). Shape-morphing chromonic liquid crystal hydrogels. Chemistry of

Materials, 28, 8489–8492.

[317] Zheng, Z.g., Li, Y., Bisoyi, H.K., et al. (2016). Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature, 531, 352–356. [318] Zhi-gang, Z., S., Z.R., Krishna, B.H., et al. Controllable dynamic zigzag pattern

(18)

[319] Eelkema, R., Pollard, M.M., Katsonis, N., et al. (2006). Rotational reorga-nization of doped cholesteric liquid crystalline films. Journal of the American

Chemical Society, 128, 14397–14407.

[320] K., M.M., Matthew, H., Danqing, L., et al. Photoinduced plasticity in cross-linked liquid crystalline networks. Advanced Materials, 29, 1606509.

[321] Mavroidis, C., Pfeiffer, C., Celestino, J., and Bar-Cohen, Y. Controlled com-pliance haptic interface using electrorheological fluids. In SPIE’s 7th Annual

International Symposium on Smart Structures and Materials, pages 300–310.

International Society for Optics and Photonics, (2000).

[322] Chen, Z., Jimao, F., Wenhong, Y., Qinghai, S., and Shumin, X. Enhancing the magnetic resonance via strong coupling in optical metamaterials. Advanced

Optical Materials, 5, 1700469.

[323] Verho, T., Korhonen, J.T., Sainiemi, L., et al. (2012). Reversible switching between superhydrophobic states on a hierarchically structured surface.

Pro-ceedings of the National Academy of Sciences of the United States of America,

109, 10210–10213.

[324] Ijspeert, A.J., Crespi, A., Ryczko, D., and Cabelguen, J.M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model.

Science, 315, 1416–1420.

[325] Ijspeert, A.J. (2014). Biorobotics: Using robots to emulate and investigate agile locomotion. Science, 346, 196–203.

[326] Gemmell, B.J., Colin, S.P., Costello, J.H., and Dabiri, J.O. (2015). Suction-based propulsion as a basis for efficient animal swimming. Nature communica-tions, 6, 8790.

[327] Park, S.J., Gazzola, M., Park, K.S., et al. (2016). Phototactic guidance of a tissue-engineered soft-robotic ray. Science, 353, 158–162.

[328] Rogóż, M., Zeng, H., Xuan, C., Wiersma, D.S., and Wasylczyk, P. (2016). Light-driven soft robot mimics caterpillar locomotion in natural scale. Advanced

Optical Materials, 4, 1689–1694.

[329] Nistor, V., Cannell, J., Gregory, J., and Yeghiazarian, L. (2016). Stimuli-responsive cylindrical hydrogels mimic intestinal peristalsis to propel a solid object. Soft Matter, 12, 3582–3588.

[330] Diller, E., Zhuang, J., Lum, G.Z., Edwards, M.R., and Sitti, M. (2014). Con-tinuously distributed magnetization profile for millimeter-scale elastomeric un-dulatory swimming. Applied Physics Letters, 104, 174101.

[331] Huang, C., Lv, J.a., Tian, X., et al. (2015). Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Scientific reports, 5, 17414.

[332] Li, T., Li, J., Zhang, H., et al. (2016). Magnetically propelled fish-like nanoswimmers. Small, 12, 6098–6105.

[333] Namdeo, S., Khaderi, S., den Toonder, J., and Onck, P. (2011). Swimming direction reversal of flagella through ciliary motion of mastigonemes a. Biomi-crofluidics, 5, 034108.

[334] Liu, X., Kim, S.K., and Wang, X. (2016). Thermomechanical liquid crystalline elastomer capillaries with biomimetic peristaltic crawling function. Journal of

Materials Chemistry B, 4, 7293–7302.

[335] Murase, Y., Maeda, S., Hashimoto, S., and Yoshida, R. (2008). Design of a mass transport surface utilizing peristaltic motion of a self-oscillating gel. Langmuir, 25, 483–489.

[336] Zeng, H., Wasylczyk, P., Parmeggiani, C., et al. (2015). Light-fueled microscopic walkers. Advanced Materials, 27, 3883–3887.

[337] Jafferis, N.T., Stone, H.A., and Sturm, J.C. (2011). Traveling wave-induced aerodynamic propulsive forces using piezoelectrically deformed substrates.

(19)

[338] Nakahara, K., Yamamoto, M., Okayama, Y., et al. (2013). A peristaltic microp-ump using traveling waves on a polymer membrane. Journal of Micromechanics

and Microengineering, 23, 085024.

[339] Na, J.H., Bende, N.P., Bae, J., Santangelo, C.D., and Hayward, R.C. (2016). Grayscale gel lithography for programmed buckling of non-euclidean hydrogel plates. Soft Matter, 12, 4985–4990.

[340] Liu, L. and Onck, P.R. (2017). Enhanced deformation of azobenzene-modified liquid crystal polymers under dual wavelength exposure: A photophysical model. Physical Review Letters, 119, 057801.

[341] Namdeo, S., Khaderi, S., and Onck, P. Numerical modelling of chirality-induced bi-directional swimming of artificial flagella. In Proceedings of the Royal Society

of London A: Mathematical, Physical and Engineering Sciences, volume 470,

page 20130547. The Royal Society, (2014).

[342] Uchida, E., Azumi, R., and Norikane, Y. (2015). Light-induced crawling of crystals on a glass surface. Nature communications, 6, 7310.

[343] Shiraki, Y. and Yoshida, R. (2012). Autonomous intestine-like motion of tubular self-oscillating gel. Angewandte Chemie International Edition, 51, 6112–6116. [344] You, Y., Xu, C., Ding, S., and Huo, Y. (2012). Coupled effects of director

ori-entations and boundary conditions on light induced bending of monodomain nematic liquid crystalline polymer plates. Smart Materials and Structures, 21, 125012.

[345] Taylor, G. (1951). Analysis of the swimming of microscopic organisms. Proceed-ings of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences, 209, 447–461.

[346] Felderhof, B. (2009). Swimming and peristaltic pumping between two plane parallel walls. Journal of Physics: Condensed Matter, 21, 204106.

[347] Lauga, E. and Powers, T.R. (2009). The hydrodynamics of swimming microor-ganisms. Reports on Progress in Physics, 72, 096601.

[348] Pozrikidis, C. (1987). A study of peristaltic flow. Journal of Fluid Mechanics, 180, 515–527.

[349] Maeda, S., Hara, Y., Yoshida, R., and Hashimoto, S. (2008). Peristaltic motion of polymer gels. Angewandte Chemie, 120, 6792–6795.

[350] Nguyen, N.T., Huang, X., and Chuan, T.K. (2002). Mems-micropumps: a review. Journal of fluids Engineering, 124, 384–392.

[351] Nickmans, K., Murphy, J.N., de Waal, B., et al. (2016). Sub-5 nm patterning by directed self-assembly of oligo (dimethylsiloxane) liquid crystal thin films.

Advanced Materials, 28, 10068–10072.

[352] Teymoori, M.M. and Abbaspour-Sani, E. (2005). Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applica-tions. Sensors and Actuators A: Physical, 117, 222–229.

[353] Ricotti, L., Trimmer, B., Feinberg, A.W., et al. (2017). Biohybrid actuators for robotics: A review of devices actuated by living cells. Science Robotics, 2, eaaq0495.

[354] Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H., and Kajiyama, T. (2002). Polymer-stabilized liquid crystal blue phases. Nature materials, 1, 64–68. [355] Terentjev, E. (1995). Disclination loops, standing alone and around solid

par-ticles, in nematic liquid crystals. Physical Review E, 51, 1330.

[356] Schopohl, N. and Sluckin, T. (1987). Defect core structure in nematic liquid crystals. Physical review letters, 59, 2582.

[357] Chuang, I. and Durrer, R. (1991). Cosmology in the laboratory: Defect dy-namics in liquid crystals. Science, 251, 1336.

[358] Mermin, N.D. (1979). The topological theory of defects in ordered media.

(20)

[359] Ahn, S.k., Ware, T.H., Lee, K.M., Tondiglia, V.P., and White, T.J. (2016). Photoinduced topographical feature development in blueprinted azobenzene-functionalized liquid crystalline elastomers. Advanced Functional Materials, 26, 5819–5826.

[360] Vizsnyiczai, G., Frangipane, G., Maggi, C., et al. (2017). Light controlled 3d micromotors powered by bacteria. Nature Communications, 8, 15974.

[361] Safdar, M., Simmchen, J., and Jänis, J. (2017). Light-driven micro-and nanomo-tors for environmental remediation. Environmental Science: Nano, 4, 1602– 1616.

[362] Zhang, Y.L., Dong, C.H., Zou, C.L., et al. (2017). Optomechanical devices based on traveling-wave microresonators. Physical Review A, 95, 043815. [363] Babakhanova, G., Turiv, T., Guo, Y., et al. (2018). Liquid crystal elastomer

coatings with programmed response of surface profile. Nature Communications, 9, 456.

[364] Ikeda, T., Nakano, M., Yu, Y., Tsutsumi, O., and Kanazawa, A. (2003). Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Advanced Materials, 15, 201–205.

[365] Lee, K.M., Smith, M.L., Koerner, H., et al. (2011). Photodriven, flexural– torsional oscillation of glassy azobenzene liquid crystal polymer networks.

Ad-vanced Functional Materials, 21, 2913–2918.

[366] Wie, J.J., Shankar, M.R., and White, T.J. (2016). Photomotility of polymers.

Nature Communications, 7, 13260.

[367] Tolbert, S.H., Firouzi, A., Stucky, G.D., and Chmelka, B.F. (1997). Magnetic field alignment of ordered silicate-surfactant composites and mesoporous silica.

Science, 278, 264–268.

[368] van Nostrum, C.F., Nolte, R.J., Broer, D.J., Fuhrman, T., and Wendorff, J.H. (1998). Photoinduced opposite diffusion of nematic and isotropic monomers during patterned photopolymerization. Chemistry of Materials, 10, 135–145. [369] Broer, D.J., Mol, G.N., van Haaren, J.A., and Lub, J. (1999). Photo-induced

diffusion in polymerizing chiral-nematic media. Advanced Materials, 11, 573– 578.

[370] Sánchez, C., de Gans, B.J., Kozodaev, D., et al. (2005). Photoembossing of pe-riodic relief structures using polymerization-induced diffusion: A combinatorial study. Advanced Materials, 17, 2567–2571.

[371] Broer, D. (2002). Deformed chiral-nematic networks obtained by polarized excitation of a dichroic photoinitiator. Current Opinion in Solid State and

Materials Science, 6, 553–561.

[372] de Gans, B.J., Sánchez, C., Kozodaev, D., et al. (2006). Optimizing photo-embossed gratings: a gradient library approach. Journal of Combinatorial

Chemistry, 8, 228–236.

[373] Hermans, K., Wolf, F.K., Perelaer, J., et al. (2007). High aspect ratio surface relief structures by photoembossing. Applied Physics Letters, 91, 174103. [374] Bartlett, N.W., Tolley, M.T., Overvelde, J.T., et al. (2015). A 3d-printed,

functionally graded soft robot powered by combustion. Science, 349, 161–165. [375] Ware, T.H., Biggins, J.S., Shick, A.F., Warner, M., and White, T.J. (2016).

Localized soft elasticity in liquid crystal elastomers. Nature communications, 7, 10781.

[376] Wang, J., Li, B., Cao, Y.P., Feng, X.Q., and Gao, H. (2016). Wrinkling mi-cropatterns regulated by a hard skin layer with a periodic stiffness distribution on a soft material. Applied Physics Letters, 108, 021903.

[377] Guvendiren, M. and Burdick, J.A. (2010). The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials, 31, 6511–6518. [378] Klein, Y., Efrati, E., and Sharon, E. (2007). Shaping of elastic sheets by

(21)

prescription of non-euclidean metrics. Science, 315, 1116–1120.

[379] Hakan, C., Ceren, Y.I., and Metin, S. 3d chemical patterning of micromaterials for encoded functionality. Advanced Materials, 29, 1605072.

[380] Truby, R.L. and Lewis, J.A. (2016). Printing soft matter in three dimensions.

Nature, 540, 371–378.

[381] Flory, P.J. (1953). Principles of polymer chemistry. Cornell University Press. [382] Leewis, C.M., de Jong, A.M., van IJzendoorn, L.J., and Broer, D.J. (2004).

Reaction–diffusion model for the preparation of polymer gratings by patterned ultraviolet illumination. Journal of Applied Physics, 95, 4125–4139.

[383] Leewis, C.M., de Jong, A.M., van IJzendoorn, L.J., and Broer, D.J. (2004). Simulations with a dynamic reaction–diffusion model of the polymer grating preparation by patterned ultraviolet illumination. Journal of Applied Physics, 95, 8352–8356.

[384] Corbett, D. and Warner, M. (2008). Bleaching and stimulated recovery of dyes and of photocantilevers. Physical Review E, 77, 051710.

[385] Marshall, J.E. and Terentjev, E.M. (2013). Photo-sensitivity of dye-doped liquid crystal elastomers. Soft Matter, 9, 8547–8551.

[386] Lee, K.M., Tabiryan, N.V., Bunning, T.J., and White, T.J. (2012). Photome-chanical mechanism and structure-property considerations in the generation of photomechanical work in glassy, azobenzene liquid crystal polymer networks.

Journal of Materials Chemistry, 22, 691–698.

[387] Lee, K.M., Koerner, H., Vaia, R.A., Bunning, T.J., and White, T.J. (2010). Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks. Macromolecules, 43, 8185–8190.

[388] Shimamura, A., Priimagi, A., Mamiya, J.i., et al. (2011). Simultaneous anal-ysis of optical and mechanical properties of cross-linked azobenzene-containing liquid-crystalline polymer films. ACS Applied Materials & Interfaces, 3, 4190– 4196.

[389] Wang, D.H., Lee, K.M., Yu, Z., et al. (2011). Photomechanical response of glassy azobenzene polyimide networks. Macromolecules, 44, 3840–3846. [390] Sánchez-Ferrer, A. and Finkelmann, H. (2013). Opto-mechanical effect in

pho-toactive nematic main-chain liquid-crystalline elastomers. Soft Matter, 9, 4621– 4627.

[391] White, T.J., Serak, S.V., Tabiryan, N.V., Vaia, R.A., and Bunning, T.J. (2009). Polarization-controlled, photodriven bending in monodomain liquid crystal elas-tomer cantilevers. Journal of Materials Chemistry, 19, 1080–1085.

[392] Enkhbayar, P., Damdinsuren, S., Osaki, M., and Matsushima, N. (2008). Helfit: Helix fitting by a total least squares method. Computational Biology and Chem-istry, 32, 307–310.

[393] Silva, P., de Abreu, F.V., and Godinho, M.H. (2017). Shaping helical electro-spun filaments: a review. Soft Matter, 13, 6678–6688.

[394] Wang, D.H., Lee, K.M., Koerner, H., et al. (2012). Flexural-torsional photome-chanical responses in azobenzene-containing crosslinked polyimides.

Macro-molecular Materials and Engineering, 297, 1167–1174.

[395] Sawa, Y., Ye, F., Urayama, K., et al. (2011). Shape selection of twist-nematic-elastomer ribbons. Proceedings of the National Academy of Sciences of the

United States of America, 108, 6364–6368.

[396] Wie, J.J., Lee, K.M., Smith, M.L., Vaia, R.A., and White, T.J. (2013). Torsional mechanical responses in azobenzene functionalized liquid crystalline polymer networks. Soft Matter, 9, 9303–9310.

[397] Wie, J.J., Lee, K.M., Ware, T.H., and White, T.J. (2015). Twists and turns in glassy, liquid crystalline polymer networks. Macromolecules, 48, 1087–1092.

Referenties

GERELATEERDE DOCUMENTEN

voor proactieve zorgplanning WIJZER OMGAAN MET DEMENTIE & LEVENSEINDE DAGELIJKS PLEZIER MEDISCHE BEHANDELING & BELEID DAGELIJKSE

Light switchable surface topographies: Modelling and design of photo responsive topographical changes of liquid crystal polymer films..

Light switchable surface topographies: Modelling and design of photo responsive topographical changes of liquid crystal polymer films..

A non-uniform in-plane distribution of the liquid crystal molecules allows for the generation of travelling surface waves whose amplitude, speed and direction can be controlled

For the Case-I diffusion scheme, diacrylates and azobenzenes diffuse to the region with higher polymerization light intensities and thus only stiffness gradients are created. For

Light inside this wavelength range can be effectively absorbed by both trans and cis azobenzenes, but the absorbance by trans is still large enough to trigger the dynamic

As the second method, Chapter 5 contains a thorough investigation of the inter- action between light, azobenzenes and the LC polymer network aimed at explaining a surprising boost

Als tweede methode bevat hoofdstuk 5 een onderzoek naar de interactie tussen licht, azobenzeen en het LC-polymeernetwerk, gericht op het verklaren van een verrassende versterking van