• No results found

University of Groningen Exploring (per)oxidases as biocatalysts for the synthesis of valuable aromatic compounds Habib, Mohamed H M

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Exploring (per)oxidases as biocatalysts for the synthesis of valuable aromatic compounds Habib, Mohamed H M"

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Exploring (per)oxidases as biocatalysts for the synthesis of valuable aromatic compounds

Habib, Mohamed H M

DOI:

10.33612/diss.109693881

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Habib, M. H. M. (2020). Exploring (per)oxidases as biocatalysts for the synthesis of valuable aromatic compounds. University of Groningen. https://doi.org/10.33612/diss.109693881

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Propositions

accompanying the thesis

Exploring (per)oxidases as biocatalysts for the synthesis of

valuable aromatic compounds

by Mohamed Habib

1. The bigger the better does not always hold true for synthesized lignin-like oligomers. It all depends on the application intended for the synthesized oligomer. (Chapter 3)

2. The synthesis of lignin-like oligomers from eugenol using eugenol oxidase and a peroxidase results in insoluble lignin-like material that is very similar to natural lignin. (Chapter 3)

3. Structure-inspired mutagenesis can be very powerful to improve the kinetic properties of an enzyme. (Chapter 4)

4. The aspartate in the GXXDG motif found in DyP-type peroxidases is not essential for enzyme activity. (Chapter 5)

5. The most interesting yet sometimes overwhelming peculiarity of Dutch culture is the ‘Dutch directness’.

6. One should always carry a jacket in the Netherlands as the Dutch weather is unpredictable.

Referenties

GERELATEERDE DOCUMENTEN

The research described in this thesis has been carried out at Molecular Enzymology group of Groningen Biotechnology and Biomolecular Sciences Institute, University of the

Based on homology searches using the sequences of known deazaflavoproteins, F420 producing bacteria are predicted to con- tain many (uncharacterized) F420-dependent enzymes. Future

immobilized column. FMN and other flavin binding proteins may also bind, but with lower af- finity. b) unbound or loosely bound proteins will be removed during the washing step.

All the generated Tfu-FNO mutants had melting temperatures similar to the wild-type enzyme (data not shown).. This indicates that FNO is remarkably thermostable and is

Three specific ancestral states were selected for further analysis: the node between the dehydrogenases and reductases (named AncDR), the cenancestor of the three

Among the biocatalytic routes developed for the reduction of activated C=C double bonds in α,β-unsaturated compounds, flavin-dependent enzymes from the 'Old Yellow

Lignin-like oligomers were created by having eugenol converted by eugenol oxidase and horse radish peroxidase in a one-pot process.. The first step of the two-step conversion results

DyP-type peroxidases (DyPs) are heme-containing enzymes known for their ability to degrade dyes through their peroxidase activity.. Recent studies have shown that DyPs are