• No results found

Cover Page

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle http://hdl.handle.net/1887/62864 holds various files of this Leiden University dissertation

Author: Zhang, Weichun

Title: Plasmonic enhancement of one-photon- and two-photon-excited single-molecule fluorescence by single gold nanorods

Date: 2018-06-28

(2)

Plasmonic Enhancement of One-Photon- and Two-Photon-Excited Single-Molecule Fluorescence by

Single Gold Nanorods

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties te verdedigen op woensdag 27 juni 2018

klokke 16:15 uur

door

Weichun Zhang

geboren te Anhui, China in 1989

(3)

Promotor:

Prof. dr. M. A. G. J. Orrit Universiteit Leiden Copromotor:

Dr. M. Caldarola Universiteit Leiden

Promotiecommissie:

Prof. dr. E. R. Eliel Universiteit Leiden

Prof. dr. T. Schmidt Universiteit Leiden

Prof. dr. E. Bouwman Universiteit Leiden

Prof. dr. M. Lippitz Universität Bayreuth

Prof. dr. H. Zhang Universiteit van Amsterdam

Dr. M. J. A. de Dood Universiteit Leiden

Keywords: Gold nanorods, surface plasmon resonance, fluorescence, single molecules, electrochemistry, two-photon, quantum dots

Printed by: Gildeprint

Front & Back: Photograph by Yang Hong.

Copyright c 2018 by W. Zhang

Casimir PhD Series, Delft-Leiden 2018-20 ISBN 978-90-8593-349-6

An electronic version of this dissertation is available at http://openaccess.leidenuniv.nl/.

The present work is financially supported by the Netherlands Organization for Scientific Re- search (NWO). The author acknowledges a Ph.D. grant from the China Scholarship Council.

(4)

Contents

1 Introduction 1

1.1 Light absorption and emission . . . 2

1.1.1 Jablonski diagram . . . 2

1.1.2 One-photon-excited fluorescence. . . 3

1.1.3 Two-photon-excited fluorescence. . . 3

1.1.4 Hot-band absorption induced anti-Stokes luminescence. . . 4

1.2 Single-molecule fluorescence spectroscopy. . . 4

1.3 Plasmonic nanoantennas and fluorescence enhancement. . . 5

1.3.1 Localized surface plasmons. . . 5

1.3.2 Fluorescence enhancement . . . 6

1.3.3 Gold nanorods . . . 7

1.4 Outline of the thesis . . . 9

References. . . 11

2 Plasmonic enhancement of a near-infrared fluorophore using DNA transient binding 17 2.1 Introduction . . . 18

2.2 Materials and methods . . . 19

2.3 Results and discussion . . . 21

2.3.1 Binding sites on the nanorod surface . . . 21

2.3.2 Binding sites on the substrate. . . 25

2.3.3 Numerical simulations . . . 27

2.4 Conclusions and outlook . . . 28

2.5 Supporting information. . . 28

2.5.1 Sample preparation. . . 28

2.5.2 Correction of gold nanorod spectra. . . 31

2.5.3 Size of the confocal volume. . . 31

2.5.4 Saturation of IRDye800CW . . . 32

2.5.5 Numerical simulations of fluorescence enhancement . . . 32

2.5.6 Calculation of nanorod temperature increase . . . 35

References. . . 35

3 Gold nanorod-enhanced fluorescence enables single-molecule electrochem- istry of methylene blue 41 3.1 Introduction . . . 42

3.2 Results and discussion . . . 42

3.3 Conclusions . . . 46

3.4 Supporting information. . . 47

3.4.1 Experimental setup. . . 47 iii

(5)

Contents

3.4.2 Sample preparation. . . 48

3.4.3 Modeling the ensemble response to the potential . . . 50

3.4.4 Blinking time scales . . . 51

3.4.5 Histogram of single-molecule mid-point potentials . . . 52

3.4.6 Dependence of the electrochemical reaction on the laser intensity. . 52

3.4.7 Fluorescence enhancement analysis. . . 53

3.4.8 Scatter plots . . . 55

References. . . 56

4 Enhancement of hot-band absorption anti-Stokes luminescence of single molecules by individual gold nanorods 61 4.1 Introduction . . . 62

4.2 Materials and methods . . . 63

4.3 Results and discussion . . . 64

4.3.1 Optical characterization at room temperature . . . 64

4.3.2 Temperature-dependent optical characterization. . . 65

4.3.3 Femtosecond laser excitation . . . 67

4.3.4 Enhancing hot-band absorption using gold nanorods . . . 67

4.4 Conclusion. . . 69

4.5 Supporting information. . . 69

References. . . 75

5 Plasmonic enhancement of two-photon-excited luminescence of single quan- tum dots by individual gold nanorods 77 5.1 Introduction . . . 78

5.2 Materials and methods . . . 79

5.3 Results and discussion . . . 80

5.4 Conclusions . . . 88

5.5 Supporting information. . . 88

5.5.1 Two-photon fluorescence correlation spectroscopy . . . 88

5.5.2 Burst analysis: correlation between duration and intensity. . . 90

5.5.3 Blank experiments . . . 90

5.5.4 Quantum dot concentration dependence. . . 91

5.5.5 Enhancement time traces at different NaCl concentration . . . 91

5.5.6 One-photon luminescence decay of quantum dots. . . 93

5.5.7 Excitation saturation . . . 95

5.5.8 Enhancement factor simulations . . . 96

5.5.9 Quantum dot structure . . . 97

5.5.10 Effect of finite size of the quantum dot . . . 98

References. . . 98

6 Plasmonic enhancement of molecular two-photon-excited fluorescence by in- dividual gold nanorods 105 6.1 Introduction . . . 106

6.2 Experimental section. . . 106

6.3 Results and discussion . . . 107

6.4 Conclusion. . . 109 iv

(6)

Contents

6.5 Supporting information. . . 109 References. . . 113

7 Conclusions and outlook 115

References. . . 118

Samenvatting 121

Curriculum Vitæ 125

List of Publications 127

Acknowledgements 129

v

(7)

Referenties

GERELATEERDE DOCUMENTEN

Anti-Stokes emission from gold nanorods, determination of the surface plasmon resonance energy, experimental setup, gold nanorods sample characterization, lumines- cence

In this chapter, the accident phenomena associated with the evolution of a gaseous cloud, ignition and combustion of a flammable gas cloud, the consequences of combustion,

Title: Plasmonic enhancement of one-photon- and two-photon-excited single-molecule fluorescence by single gold nanorods.. Date:

We attribute these bursts to enhanced anti-Stokes luminescence emission of single Seta 670 molecules when freely diffusing molecules approach the near field of the gold nanorod...

In Figure 3(a), along with measured photoluminescence enhancement factors, we plot the calculated overall enhance- ment factors for point emitters that are 5 nm away from the tip of

According to the aforementioned studies, we learn that, by properly choosing the wavelengths of the excitation light and the plasmon resonance, we are able to detect

KEYWORDS: photothermal microscopy, single-molecule imaging, single-particle absorption spectroscopy, nanoparticles, label-free imaging, thermoplasmonics, nonlinear

Omdat er echter geen verschillen tussen beide versies zijn gevonden, kan mogelijk worden gezegd dat de proefpersonen de tekst vrij goed hebben gelezen en de tekst via de