• No results found

Carlsson’s rank conjecture and a conjecture on square-zero upper triangular matrices

N/A
N/A
Protected

Academic year: 2022

Share "Carlsson’s rank conjecture and a conjecture on square-zero upper triangular matrices"

Copied!
23
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Carlsson’s rank conjecture and a conjecture on square-zero upper triangular matrices

Berrin Şentürk, Özgün Ünlü1

DepartmentofMathematics,BilkentUniversity,Ankara,06800,Turkey

a r t i cl e i n f o a b s t r a c t

Articlehistory:

Received26May2017

Receivedinrevisedform20July 2018

Availableonlinexxxx CommunicatedbyS.Iyengar

MSC:

55M35;13D22;13D02

Keywords:

Rankconjecture Square-zeromatrices Projectivevariety Borelorbit

Letk bean algebraicallyclosedfieldandA thepolynomialalgebrainr variables withcoefficientsink.Incasethecharacteristicof k is2,Carlsson[9] conjectured thatforanyDG-A-moduleM ofdimensionN asafreeA-module,ifthehomology ofM isnontrivialandfinitedimensionalasak-vectorspace,then2r≤ N.Herewe stateastrongerconjectureaboutvarietiesofsquare-zerouppertriangularN× N matriceswithentriesinA.UsingstratificationsofthesevarietiesviaBorelorbits, weshow that thestronger conjecture holds when N < 8 orr < 3 without any restrictiononthecharacteristicofk.Asaconsequence,weobtainanewprooffor manyoftheknowncasesofCarlsson’sconjectureandgivenewresultswhenN > 4 andr = 2.

©2018PublishedbyElsevierB.V.

1. Introduction

Awell-knownconjectureinalgebraictopologystatesthatif(Z/pZ)ractsfreelyandcellularlyonafinite CW-complex homotopyequivalent to Sn1 × . . . × Snm, thenr is lessthan orequal to m.This conjecture is known to be true in several cases: In the equidimensional case n1 = . . . = nm =: n, Carlsson [7], Browder [6], and Benson–Carlson[5] proved theconjectureunderthe assumptionthattheinduced action on homologyis trivial.Without the homologyassumption,the equidimensionalconjecture wasproved by Conner[11] for m= 2,Adem–Browder [1] for p= 2 or n= 1,3,7,andYalçın[25] for p= 2,n= 1. Inthe non-equidimensionalcase,theconjectureisprovedbySmith[23] form= 1, Heller[13] form= 2,Carlsson [10] forp= 2 andm= 3,Refai[20] forp= 2 andm= 4,andOkutan–Yalçın[19] forproductsinwhichthe averageofthe dimensionsissufficientlylargecompared tothe differencesbetweenthem.Thegeneralcase m≥ 5 is stillopen.

* Correspondingauthor.

E-mailaddresses:berrin@fen.bilkent.edu.tr(B. Şentürk),unluo@fen.bilkent.edu.tr(Ö. Ünlü).

1 ThesecondauthorispartiallysupportedbyTÜBA-GEBİP/2013-22.

https://doi.org/10.1016/j.jpaa.2018.09.007 0022-4049/©2018PublishedbyElsevierB.V.

(2)

LetG= (Z/pZ)randk beanalgebraicallyclosedfieldofcharacteristicp.AssumethatG actsfreelyand cellularlyonafiniteCW-complexX homotopyequivalenttoaproductofm spheres.Onecanconsiderthe cellularchaincomplexC(X;k) asafinitechaincomplexoffreekG-moduleswithhomologyH(X;k) that has dimension2mas ak-vector space. Hence,astrongerandpurely algebraic conjecturecanbe stated as follows: IfC isafinite chaincomplexoffreekG-moduleswithnonzerohomologythendimkH(C)≥ 2r. However,Iyengar–Walker in[15] disprovedthisalgebraic conjecturewhenp= 2,butthealgebraic version forp= 2 remainsopen.

LetR beagradedring.Apair(M,∂) isadifferential graded R-moduleifM isagradedR-module and

∂ is anR-linearendomorphismofM thathasdegree−1 andsatisfies2= 0.Moreover,aDG-R-moduleis free if theunderlyingR-module isfree.

LetA= k[y1,. . . ,yr] bethepolynomialalgebrainr variables,wherek isafieldandeachyihasdegree−1.

Using afunctorfrom thecategoryof chaincomplexes ofkG-modulestothecategory ofdifferentialgraded A-modules, Carlsson showed in [8], [9] that the above algebraic conjecture is equivalent to the following conjecture whenthecharacteristicofk is2:

Conjecture1.Letk bean algebraicallyclosedfield, A thepolynomial algebrainr variables withcoefficients in k,andN apositiveinteger.If (M,∂) isafreeDG-A-module ofrankN whose homologyisnonzeroand finite dimensional asak-vectorspace, thenN ≥ 2r.

When the characteristic of k is 2, Conjecture 1was proved by Carlsson [10] for r ≤ 3 and Refai [20]

for N ≤ 8. Avramov,Buchweitz, andIyengarin[4] dealtwith regularrings andinparticular theyproved Conjecture 1 for r ≤ 3 without any restriction on the characteristic of k. See also Proposition 1.1 and Corollary 1.2 in[2],Theorem 5.3 in[24] forresultsincharacteristicnotequalto2.

In thispaper weconsider the conjecturefrom theviewpoint ofalgebraic geometry. Weshow thatCon- jecture1isimpliedbythefollowinginSection2:

Conjecture 2. Let k be an algebraically closed field, r a positive integer, and N = 2n an even positive integer.Assumethatthereexistsanonconstantmorphismψ fromtheprojectivevarietyPrk−1 totheweighted quasi-projectivevarietyofrankn square-zerouppertriangularN×N matrices(xij) withdeg(xij)= di−dj+1 forsome N -tupleofnonincreasing integers(d1,d2,. . . ,dN). ThenN ≥ 2r.

Wewill giveamoreprecise statementofConjecture2inSection3after discussingnecessarydefinitions and notation.Weproposethefollowing,whichisstrongerthanConjecture2:

Conjecture 3.Let k,r, N , n and ψ be asin Conjecture 2.Assume 1≤ R,C ≤ N andthe value of xij at every pointin theimageof ψ is 0 wheneveri≥ N − R+ 1 orj≤ C. ThenN ≥ 2r−1(R+C).

Note thatinConjecture 3we have2r−1(R+C)≥ 2r because1≤ R and 1≤ C. The main result of the paper isaproof ofConjecture3whenN < 8 orr < 3,see Theorem2and Theorem6.As Conjecture3is thestrongestconjecturementionedabove,weobtainproofsofalltheconjecturesinthisintroductionunder the sameconditions, includingthe main result ofCarlsson in[9]. Alsonote thatfor r = 2, takingN > 4 gives novel results not coveredin the literature. However, when the characteristic of the fieldk is not2, Iyengar–Walker [15] gaveacounterexampletoConjecture1foreachr≥ 8.HencebySection2,wecansay thatConjectures 2and 3are alsofalse whenr≥ 8 andthe characteristicof thefieldk isnot2.Allthese conjectures arestill open incasethe characteristicof k is2.InSection4, weconcludewith examplesand problems.

Wethanktherefereeforgivingus extensivefeedback, ashorterproofofTheorem 1andencouraging us toextendourresultstofieldswithcharacteristicsotherthan2.WearealsogratefultoMatthewGelvinfor commentsandsuggestions.

(3)

2. Some notesonConjectures1,2,and3

To show thatConjecture 3is thestrongest conjecture inSection1, itis enoughto prove thefollowing theorem.

Theorem1.Conjecture 2impliesConjecture1.

Proof. Letk,r, andA beasinConjecture1.Let(M,∂) beafreeDG-A-moduleofrankN whichsatisfies thehypothesisinConjecture1.Withoutlossofgenerality,wecanassumethatN isthesmallestrankofall suchDG-A-modules.

Suppose the image of the differential ∂ is not contained in (y1,. . . ,yr)M . Then, there exists a basis b1,. . . ,bN of M and there are some i and j so that ∂(bi) = cbj +

l=jglbl for some non-zero c ∈ k and some gl ∈ A. Replacing bj with ∂(bi) gives a new basis b1,...,bN such that ∂(bi) = bj. Now form the acyclic sub-DG-A-module (E,∂) of (M,∂) spanned by bi, bj. The map (M,∂) → (M,∂)/(E,∂) is a surjective quasi-isomorphismand M/E isfreeof rankN− 2.This isacontradiction.Hence,theimageof thedifferential∂ iscontainedin(y1,. . . ,yr)M .

Now pick any basis c1,. . . ,cN of M such that deg(c1) ≤ · · · ≤ deg(cN). Let m be such that deg(cN−m+1) = · · · = deg(cN) and deg(ci) < deg(cN−m+1) for all i < N− m + 1. For each i, we have

∂(ci) = 

jgijcj, for some homogeneous polynomials gij ∈ A. Since the image of ∂ is contained in (y1,. . . ,yr)M , no gij is anon-zero constant.Thus, whenever gij is non-zero, we havedeg(gij) ≤ −1 and hence deg(cj) = deg(ci)− 1 − deg(gij)≥ deg(ci). It follows thatthe differential on M restricts to one on thesubmodule

L = AcN−m+1⊕ · · · ⊕ AcN. Moreprecisely,foralli∈ {N − m+ 1,. . . ,N} wehave∂(ci) =N

j=N−m+1gijcj whereeachnonzerogij isa linearpolynomial.Hence,relativetothebasiscN−m+1,. . . ,cN,thedifferential∂ on L isgivenbyamatrix intheform y1X1+· · · + yrXr whereeachXi isanm× m matrixwith entriesink.Since 2 = 0 wehave Xi2= 0 andXiXj+ XjXi = 0 foralli,j.Incasethecharacteristicof thefieldk is2,byaclassicalresult aboutcommutingsetofmatrices,forexampleseeTheorem7 onpage207 in[14],thereexistsaninvertible m×m matrixT withcoefficientsink suchthatT−1XiT isuppertriangularforalli∈ {1,. . . ,r}.Incasethe characteristicofthefieldk isnot2,foreverypolynomialQ innoncommutativer variables,thesquareofthe matrixQ(X1,. . . Xr)(XiXj−XjXi) iszero.Therefore,byatheoremofMcCoyasstatedin[22] (seealso[12], [17]), againthere existsamatrixT as abovewhichsimultaneouslyconjugates allXi’sto uppertriangular matrices.Inotherwords,thereisak-linearchangeofbasisinwhicheachXiisuppertriangular.Itfollows that,relativetothisnewbasiscN−m+1,. . . ,cNofL onehas∂(ci)∈ ⊕Nj=i+1Acjforalli∈ {N −m+1,. . . N}.

Note thatM/L is afree DG-A-module whose differential has an image in (y1,. . . ,yr)(M/L) and so, by inductivearguments onrank,wemayassumethatM/L admits abasiswhich makesitsdifferential upper triangular. Theunion ofany lift ofthis basis to M withthe basiscN−m+1,. . . ,cN givesabasis B forM where ∂ is representedbyanupper triangularmatrix Ψ. Moreover,Propositions8 and 9 in [10] workfor any characteristic. HenceN is divisibleby 2 andfor any γ inkr− {0} the evaluation of Ψ at γ gives a matrixofrankN/2.

LetS = k[x1,. . . ,xr] bethepolynomialalgebrawithdeg(xi)= 1.For1≤ i≤ r,replaceyi withxiinΨ toobtainΨ.NotethatΨ canbeconsideredasa nonconstantmorphismfromtheprojectivevarietyPr−1k to theweightedquasi-projectivevarietyofrankN/2 square-zero uppertriangularN× N matrices(xij) with deg(xij)= di− dj+ 1 wheredi=−(degree of theith element in B). 2

(4)

3. Varietiesofsquare-zeromatrices

Weassumethatk isanalgebraically closedfield,n apositiveinteger,N = 2n,andd= (d1,d2,. . . ,dN) anN -tupleofnonincreasing integers.

3.1. Statementsofconjectures

Wegive herethenotation fortheaffineandprojective varietiesusedto provetheconjecturesdiscussed above.FirstwefixanaffinevarietyUN,aringR(UN),andasubvarietyVN as follows:

• UN istheaffinevarietyofstrictly uppertriangularN× N matricesover k.

• R(UN)= k[ xij | 1≤ i< j≤ N ] isthecoordinateringofUN.

• VN isthesubvarietyofsquarezeromatricesinUN.

Define an actionof theunitgroupk on UN byλ· (xij)= (λdi−dj+1xij) for λ∈ k.Using thisaction we set twomorenotation.

• U (d) istheweightedprojectivespacegivenbythequotientofUN− {0} bytheactionofk.

• R(U (d)) isthehomogeneouscoordinateringofU (d).Inother words,R(U (d)) isR(UN) consideredas agraded ringwithdeg(xij)= di− dj+ 1.

Note thatthepolynomialpij =

j−1



m=i+1

ximxmj inR(U (d)) ishomogeneous ofdegreedi− dj+ 2 whenever 1≤ i< j ≤ N.Similarly, then× n-minorsof (xij) are homogeneouspolynomials inR(U (d)). Hence,we define twosubvarietiesofU (d) asfollows:

• V (d) istheprojective varietyofsquare zeromatricesinU (d).

• L(d) isthesubvarietyofmatrices ofranklessthann inV (d).

Wecanusethisterminologytorestate Conjecture2:

Conjecture4.Letk beanalgebraicallyclosed field, r apositiveinteger,andd an N -tupleof nonincreasing integers. If there existsa nonconstantmorphismψ from theprojective varietyPrk−1 tothequasi-projective variety V (d)− L(d), thenN ≥ 2r.

Let U beanopen subsetof V (d).We sayψ :Prk−1 → U isanonconstantmorphismifψ isrepresentedby ij) sothatthefollowing conditionsaresatisfied:

(I) there exists a positive integer m so that each ψij is a homogeneous polynomial in the variables x1,x2,. . . ,xr inS ofdegreem(di− dj+ 1) for1≤ i< j≤ N,

(II) foreveryγ∈ Prk−1 thereexistsi,j suchthatψij(γ)= 0.

Inparticular, ifψ :Prk−1→ U isanonconstantmorphism,ψ canbeconsideredas afunctionfrom Prk−1 to U representedbyanonconstantpolynomialmapψ from Ark totheconeoverU suchthatψ(Ark− {0}) does not contain thezero matrixin VN.Each indeterminatexij canbe viewedas homogeneouspolynomialin R(U (d)).Hencefor1≤ R,C ≤ N wedefine animportantsubvarietyofV (d):

• V (d)RC isthesubvarietyofV (d) givenbytheequationsxij= 0 for i≥ N − R+ 1 orj≤ C.

(5)

Nowwerestate theConjecture 3as follows:

Conjecture5.Letk bean algebraicallyclosedfield, r a positiveinteger,andd anN -tupleof nonincreasing integers. If thereexists anonconstant morphismψ fromthe projectivevariety Pr−1k to thequasi-projective varietyV (d)RC− L(d), thenN ≥ 2r−1(R+C).

Hence,thesevarietiesarethemaininterestinthispaper.

3.2. Action ofaBorelsubgroup onVN

HereweintroduceanactionofaBorelsubgroupinthegroupofinvertibleN×N matricesonthevarieties discussedintheprevioussubsection.FirstwesetanotationfortheBorelsubgroup.

• BN isthegroupofinvertibleuppertriangularN× N matriceswithcoefficientsink.

ThegroupBN actsonVN byconjugation.

• VN/BN denotesthesetoforbitsoftheactionofBN onVN.

• BX denotes theBN-orbitthatcontainsX ∈ VN.

A partial permutation matrix is amatrix having at mostone nonzero entry, which is 1, ineach row and column. A result of Rothbach (Theorem 1 in [21]) implies that each BN-orbit of VN contains a unique partialpermutationmatrix.Henceweintroducethefollowingnotation:

• PM(N ) denotes the set of nonzero N× N strictly upper triangular square-zero partial permutation matrices.

Thereisaone-to-onecorrespondencebetweenPM(N ) andVN/BNsendingP toBP.Wecanidentifythese partialpermutationmatriceswith asubsetofthesymmetricgroupSym(N ):

• P(N ) isthesetofinvolutionsinSym(N );i.e., thesetofnon-identitypermutationswhosesquareisthe identity ().

ForP ∈ PM(N) andσ∈ P(N),

• σP denotesthepermutationinP(N ) thatsendsi to j ifPij = 1;

• Pσ denotesthe partialpermutation matrixinPM(N ) that satisfies(Pσ)ij = 1 if andonly ifσ(i)= j and i< j.

ClearlytheassignmentsP → σP andσ→ Pσaremutualinversesandsodefineaone-to-onecorrespondence betweenP(N ) andPM(N ).

3.3. A partialorder onthesetof orbits

There are important partial orders on VN/BN, P(N ), PM(N ), all of which are equivalent under the one-to-one correspondence mentioned above (cf. [21]). We begin with VN/BN. For Borel orbits B,B VN/BN,

(6)

• B≤ B meanstheclosureofB, consideredas asubspaceofVN,containsB.

Second, we define apartial order on PM(N ). To do this, we consider ranksof certain minors of partial permutationmatrices. Ingeneral,foranN× N matrixX,

• rij(X) denotestherankofthelowerleft ((N− i+ 1)× j) submatrix ofX,where1≤ i< j≤ N.

Forpartial permutationmatricesP,P ∈ PM(N),

• P≤ P meansrij(P)≤ rij(P ) foralli,j.

Third, wedefine apartial order onP(N ).For positiveintegersi< j, letσ(i,j) denotetheproduct ofthe permutationsσ and (i,j) andσ(i,j) theconjugateofσ by(i,j).Forσ,σ ∈ P(N),

• σ≤ σ ifσ canbeobtainedfrom σ byasequenceofmovesofthefollowingform:

– TypeIreplacesσ with σ(i,j) ifσ(i)= j andi= j.

– TypeIIreplacesσ withσ(i,i) ifσ(i)= i< i< σ(i).

– TypeIIIreplacesσ withσ(j,j) ifσ(j)< σ(j)< j < j.

– TypeIVreplacesσ withσ(j,j)ifσ(j)< j< j = σ(j).

– TypeVreplacesσ withσ(i,j) ifi< σ(i)< σ(j)< j.

The ideaof describingorderviathese movescomesfrom [16]. Althoughweuse differentnamesformoves, the set of possible moves are same. We represent apermutation (i1,j1)(i2,j2). . . (is,js) in P(N ) by the matrix



i1 i2 . . . is

j1 j2 . . . js

 .

Forexample,wedrawtheHassediagramofP(4) inwhicheachedgeislabelled bythetypeofthemove itrepresents(seeFig.1).

WhenN ≥ 6,theHasse diagramforP(N ) is toolargeto drawhere.Weareactuallyonlyinterestedin asmallpartofthisdiagram,whichwediscussinSection3.6.

One canconsiderFig.1as astratification of V4. Inthenext section,we usethe stratificationof VN to stratifyV (d).

3.4. Stratificationof V (d)

Ford= (d1,d2,. . . ,dN) anN -tupleofnonincreasingintegers,λ∈ k,and X = (xij)∈ VN, wehave λ· X = λ · (xij) = (λdi−dj+1xij) = DλIλXD−1λ

where Dλ denotes the diagonal matrix with entries λd1d2,. . . ,λdN and Iλ is the scalarmatrix with all diagonal entries λ. Let PX ∈ PM(N) be the unique partial permutation matrixin theBorel orbitof X.

Considerb∈ BN suchthat

PX= b−1Xb.

Let Iλ,X be thediagonal matrixwhose jth entry is λ if (PX)ij = 1 for somei and 1 otherwise. Then we have

(7)

Fig. 1. Hasse diagram of P(4).

IλPX = Iλ,X−1 PXIλ,X. Hence,wehave

λ· X = Dλb Iλ,X−1 b−1X b Iλ,Xb−1Dλ−1= Z−1XZ

where Z = bIλ,Xb−1Dλ−1 is in BN. Thus, for any X ∈ V (d) there exists a well-defined Borel orbit in VN/BN thatcontainsarepresentative ofX inVN.Hencewecanset thefollowingnotation.ForX ∈ V (d),

• BX denotes theBorelorbitinVN/BN thatcontainsarepresentativeofX inVN.

Letψ :Prk−1 → V (d)− L(d) beanonconstantmorphism.Thereisaliftofthismorphismtoamorphism from Ark− {0} to the cone over V (d)− L(d) that can be extended to a morphism ψ : Ark → VN. Since Ark is anirreducible affine variety,there exists auniquemaximal Borel orbitamong theBorel orbitsthat intersects the image of ψ nontrivially. Note that this maximal Borel orbit is independent of the lift and extension we selectedbecause it is also maximal in the set {BX|X ∈ V (d)}. Hencewe may associate a permutationtothenonconstantmorphismψ:

• σψ isthepermutationthatcorrespondstotheuniquemaximalBorelorbitBX whereX isintheimage of ψ.

Note that every point in the image of a morphism ψ as above must have rank n. Hence σψ must be a productofn distinct transpositions.InSection3.6,wewillrestrictourattentiontosuchpermutations.

3.5. Operations onpolynomial mapsfromArk toVN

Another way to see that BX is well-defined for X ∈ V (d) is to consider the fact that a minor of a representativeofX iszeroifandonlyifthecorrespondingminor ofanotherrepresentativeiszero.Weuse thisfactseveraltimesto proveourmainresult.Henceweintroducethefollowingnotation.ForX ∈ VN,

• mij11ij22... i... jkk(X) denotesthedeterminantofthek×k submatrixobtainedbytakingthei1th,i2th,. . . , ikth rowsandj1th, j2th,. . . , jkth columnsofX.

(8)

Firstnotethatmij11ij22... i... jkk canbeconsideredasamorphismfromVN tok,andhencecanbecomposedwith the morphism ψ mentioned in theprevious subsection. Here we discuss several other morphisms thatwe cancompose withsuchmorphisms.Foru∈ k,

• Ri,j(u) is thefunctionthattakesasquare matrixM and multipliestheith rowofM byu andaddsit tothejth rowofM whilemultiplyingthejth columnofM byu andaddingittotheith columnofM . Note thatRi,j(u)(M ) is aconjugate of M . In fact,they are in the sameBorel orbit when M ∈ VN and i > j. Hence, for i > j, we canconsider Ri,j(u) as an operation that takes a morphism from Ask to VN

and transformsit toamorphism from As+1k to VN byconsideringu as anewindeterminateand applying Ri,j(u) tothemorphism. Forv∈ k,

• Di(v) denotesthefunctionthattakesasquarematrixM andmultipliestheith rowofM byv andthe ith columnofM by1/v.

Letq beapolynomialins indeterminates.WedefineDi(q) asanoperationthattakes arationalmapfrom thequasi-affinevarietyAsk− Z toVN andtransformsitinto arationalmapfrom Ask− Z ∪ V (q) toVN by applying Di(q),usingthefollowing notation:

• V (q1,q2,. . . ,qk) isthevarietydetermined bytheequationsq1= q2= . . . qk= 0.

Weusetheabovenotationalsoforvarietiesinprojectivespacesdeterminedbythehomogeneouspolynomials q1,q2,. . . ,qk.

3.6. Rankof orbitsandproof offirst mainresult

Each σ∈ P(N) is aproductof disjoint transpositions.Henceforσ∈ P(N), we definethe rank ofσ to be thenumberof transpositionsinσ. Note thatunder theone-to-one correspondence between P(N ) and PM(N ),therankofapermutationisequaltotherankofthecorrespondingpartialpermutationmatrix.

• RP(N ) denotesthepermutationsinP(N ) of rankn.

NotethatallmovesotherthantypeIpreservetherankofσ.Indeed,theonlywayofobtainingσ ofsmaller rankbyapplying ourmovesisbydeletingatransposition,whichisthe effectof moveoftypeI.Alsonote thatitisimpossibleto haveamoveoftypeII oramoveof typeIVbetweentwopermutationsinRP(N ).

Forexample,wedrawtheHasse diagramforRP(6) whereeachdottedlinedenotes amoveoftypeIIIand solidlinedenotesamoveoftypeV(seeFig.2).SuchHassediagrams,withparticularattentionpaidtothe maximal elements,will leadto theproof ofourfirstmain result.

Theorem 2.Conjecture5holdsforN < 8.

Proof. TakeN < 8,d= (d1,d2,. . . ,dN) anN -tupleofnonincreasingintegers,andψ :Prk−1→ V (d)− L(d) anonconstantmorphism.Thenσ = σψisinRP(N ).ByconsideringFigs.1and2,wenotethatthereexists a uniquemaximal σ ∈ RP(N) such thatσ can be obtainedfrom σ by asequence of movesof type III.

Since moves of type III do not change the number of leading zero rows and ending zero columns of the corresponding partial permutationmatrices, the Borelorbit corresponding to σ iscontained inV (d)RC if and only ifthe Borelorbitcorresponding toσ is containedin V (d)RC forall R,C. Henceit isenough to

(9)

Fig. 2. Hasse diagram of RP(6).

consider thecaseswhere σ islessthanor equaltoamaximalelement inRP(N ) forN = 2,4,6.Wecover thesecasesbyprovinginthefollowingeightstatements:

(i) Ifσ = (1,2) thenr < 2.

Assumetothecontrarythatσ = (1,2) andr≥ 2.Ifwealsowriteψ foritsrestrictiontoP1k ⊆ Pr−1k ,weget amapoftheform

ψ(x : y) =

0 p12

0 0

 ,

where p12 is ahomogeneouspolynomialink[x,y]. Since k isalgebraicallyclosed, there existsγ ∈ P1k such thatp12(γ)= 0.Thismeansψ(γ) isinL(d),whichisacontradiction.

(ii) Ifσ≤ (1,2)(3,4) thenr < 3.

Supposetothecontrarythatσ≤ (1,2)(3,4) andr≥ 3.Whenwerestrictψ toP2k,wegetamapoftheform

ψ(x : y : z) =

⎢⎢

⎢⎣

0 p12 p13 p14

0 0 0 p24

0 0 0 p34

0 0 0 0

⎥⎥

⎥⎦.

Notethatthereexists γ inP2k suchthat

p12(γ) = 0 and p13(γ) = 0.

Againthismeansψ(γ)∈ L(d).Hencethis caseisprovedbycontradictionas well.

(iii) Ifσ≤ (1,4)(2,3) thenr < 2.

(10)

Supposewehave

ψ(x : y) =

⎢⎢

⎢⎣

0 0 p13 p14

0 0 p23 p24

0 0 0 0

0 0 0 0

⎥⎥

⎥⎦.

Letmij11ij22... i... jkk beasinSection3.5andusethesamenotationtodenoteitscompositionwithψ.Thenthere exists γ inP1k suchthat

m1234(γ) = (p13p24− p23p14)(γ) = 0.

This againgivesacontradiction.

(iv) Ifσ≤ (1,2)(3,4)(5,6) then r < 3.

Supposeotherwise.Wehave

ψ(x : y : z) =

⎢⎢

⎢⎢

⎢⎢

⎢⎣

0 p12 p13 p14 p15 p16

0 0 0 p24 p25 p26 0 0 0 p34 p35 p36

0 0 0 0 0 p46

0 0 0 0 0 p56

0 0 0 0 0 0

⎥⎥

⎥⎥

⎥⎥

⎥⎦ .

If p12 andp13 arenotrelativelyprimehomogeneouspolynomialsthenthere existsγ∈ P2k suchthat

p12(γ) = 0, p13(γ) = 0, and m123456(γ) = 0.

Moreover, ifp46(γ)= 0 andp56(γ)= 0,thentherankofψ(γ) isat most2,whichleadstoacontradiction.

Hencewehavep46(γ)= 0 orp56(γ)= 0.Let

c4(γ) :=

⎢⎣ p14(γ) p24(γ) p34(γ)

⎦ and c5(γ) :=

⎢⎣ p15(γ) p25(γ) p35(γ)

⎦ .

Since ψ2= 0,c4(γ)p46(γ)+ c5(γ)p56(γ)= 0.Bythefactthatp46(γ)= 0 orp56(γ)= 0,c4(γ) and c5(γ) are linearlydependent.Thustherankof ψ(γ) isatmost2,whichisacontradiction.

Therefore we mayassumep12 and p13 are relatively prime.Since ψ2 = 0,we havep12p24+ p13p34= 0 and p12p25+ p13p35= 0. This implies thatp12 dividesp34 andp35,and similarly p13 dividesp24 andp25. Then thereexists γ in P2k suchthat

p12(γ) = 0 and p13(γ) = 0.

This meansp12,p13,p24,p25,p34,andp35 allvanishat γ.Henceψ(γ)∈ L(d),whichisacontradiction.

(v) Ifσ≤ (1,2)(3,6)(4,5) thenr < 3,and (vi) Ifσ≤ (1,4)(2,3)(5,6) thenr < 3.

(11)

Thesecasesaresymmetric,so itisenoughtoprove (v).Consider

ψ(x : y : z) =

⎢⎢

⎢⎢

⎢⎢

⎢⎣

0 p12 p13 p14 p15 p16

0 0 0 0 p25 p26

0 0 0 0 p35 p36 0 0 0 0 p45 p46

0 0 0 0 0 0

0 0 0 0 0 0

⎥⎥

⎥⎥

⎥⎥

⎥⎦ .

Wemodifyψ bytheoperationsinSection3.5.FirstapplyR6,5(u) toψ foranewvariableu.Ifp46+up45= 0, applyD5(1/(p46+ up45)) andthen R5,6(−p45) toobtainamatrixoftheform

⎢⎢

⎢⎢

⎢⎢

⎢⎣

0 p12 p13 p14 0 0 0 0 m2456 p26+ up25

0 0 0 0 m3456 p36+ up35 0 0 0 0 0 p46+ up45

0 0 0 0 0 0

0 0 0 0 0 0

⎥⎥

⎥⎥

⎥⎥

⎥⎦ .

Hencebyselectingacorrectvalueforu wewouldbe doneifV (m2456,m3456) V (p45).Wemayassume V (m2456, m3456)⊆ V (p45).

Similarly,wemayalsoassume

V (m2356, m3456)⊆ V (p35) and V (m2356, m2456)⊆ V (p25).

Therefore,

V (m2356, m3456, m2456)⊆ V (p25, p35, p45) =∅.

Thus,{m2356,m3456,m2456} isaregularsequenceink[x,y,z].Ifp45andp46arenotrelativelyprime,thereexists γ suchthatm2356(γ)= 0,andp45(γ)= p46(γ)= 0.Hence,wemayassumep45and p46 arerelatively prime, whichleadsacontradictionas wehave

p45m2356+ p25m3456− p35m2456= 0.

(vii) Ifσ≤ (1,6)(2,3)(4,5) thenr < 2.

Toprovethiscase,consider

ψ(x : y) =

⎢⎢

⎢⎢

⎢⎢

⎢⎣

0 0 p13 p14 p15 p16

0 0 p23 p24 p25 p26

0 0 0 0 p35 p36 0 0 0 0 p45 p46

0 0 0 0 0 0

0 0 0 0 0 0

⎥⎥

⎥⎥

⎥⎥

⎥⎦ .

AgainbyapplyingRi,j(u) and Di(v) for someu,v wemayassumethat

(12)

V (m124356)⊆ V (p13, p23) and V (m123456)⊆ V (p14, p24).

Hence{m124356,m123456} mustbearegularsequenceink[x,y].Howeverthisisimpossiblebecausethedeterminant of

⎢⎣

gcd(p13, p14) p15 p16 gcd(p23, p24) p25 p26

0 gcd(p35, p45) gcd(p36, p46)

⎥⎦

dividesbothm124356andm123456.

(viii) If σ≤ (1,6)(2,5)(3,4) then r < 2.

It isenoughtoconsiderarootofm123456 toprovethiscase. 2

Note thatintheaboveproof thelast two casesproveConjecture5when N ≤ 6 andr≤ 2. Inthe rest of thepaper we will generalize these ideas to prove the conjecture for r≤ 2. To do this we examine the dimensionsofthese varieties.

3.7. Orbitdimensions andproofof second mainresult

Wenowintroducenotationfordimensionsofthesevarieties.Inthissubsection,forσ∈ P(N),iftherank of σ iss,thenweobtaintwosequencesofnumbersi1,. . . ,is andj1,. . . ,js satisfyingthefollowing:

σ = (i1, j1)(i2, j2) . . . (is, js)

with i1< i2<· · · < is andia< ja forall1≤ a≤ s.In[18],Melnikovgivesaformulaforthedimensionof aBorelorbitBσ forσ inP(N ) asfollows:

• ft(σ):= #{jp| p< t,jp< jt} + #{jp| p< t,jp< it} for2≤ t≤ s,

• dim(Bσ)= N s+

s t=1

(it− jt)

s t=2

ft(σ).

Wedefine anewsubsetofRP(N ):

• DP(N ) isthesetofallσ inRP(N ) such thatdim(Bσ)= dim(Bσ)− 1 wheneverσ isapermutation obtainedbyapplying asinglemoveoftypeItoσ.

For instance, the following is the Hasse diagram of DP(8) (Fig. 3). Note that in the Hasse diagram of DP(8) all movesareoftypeV. Thisisgenerallythe case,whichwewillprovebelow.Beforewedoso,we will proveaneasierresultthatwill introducethenotationandargument stylethatwillbe necessary.

Fixσ∈ DP(N).Weusetheourconventionforσ atthebeginningofthissubsectionwhichimpliesi1= 1.

For q∈ {1,. . . ,n},letσ be theresultof applyingthemoveoftypeI thatdeletestheqth transposition of σ,sothat

σ= (1, j1) . . . (iq−1, jq−1)(iq+1, jq+1) . . . (in, jn) =

⎜⎝

1 i2 . . . iq−1 iq iq+1 . . . in

j1 j2 . . . jq−1 jq jq+1 . . . jn

⎠ .

(13)

Fig. 3. Hasse diagram of DP(8).

ThenbyMelnikov’sformulawehave

dim(Bσ) = N n +

n t=1

(it− jt)

n t=2

ft(σ) , and

dim(Bσ) = N (n− 1) +

n−1



t=1

(it− jt)

n−1



t=2

ft).

Tosimplifyourcalculation,wewriteft(σ)= ft1(σ)+ ft2(σ) for2≤ t≤ n,where ft1(σ) = #{jp| p < t, jp< jt} and ft2(σ) = #{jp| p < t, jp< it}, andweusethenotation:

ft,ql ) =

⎧⎪

⎪⎩

ftl) if t≤ q − 1

0 if t = q

ft−1l ) if t≥ q + 1 forl = 1,2.

Lemma3.If N = 2 and thetransposition(1,N ) appears in σ,thenσ /∈ DP(N).

Proof. If (1,N ) appears in σ and σ ∈ DP(N), let q = 2 and σ be the result of deleting the second transpositionfromσ.Since thei’s areincreasingandia< jaforall1≤ a≤ n,wehavei2= 2,so

(14)

σ =

⎜⎝

1 2 i3 . . . in N j2j3 . . . jn

⎠ .

Thus 3≤ j2≤ N − 1.Letj2= N− b for some1≤ b≤ N − 3.Then

σ =

⎜⎝

1 2 . . . in N N− b . . . jn

⎠ ,

and anynumberbetweenN− b andN has toappearasaj or ani thatisbigger thanj2. Therefore,

 n



t=2

ft1(σ)− ft,21 )

 +

 n



t=2

ft2(σ)− ft,22 )



= b− 1.

Hence,dim(Bσ)− dim(Bσ)= N + 2− N + b− (b− 1)= 3,so σ /∈ DP(N). 2 Now weprovethemain propositionof thissubsection.

Proposition 4.If σ∈ DP(N), thenjp< jt forallp< t, andtherefore wecannot apply amoveof type III to σ.Conversely,ifσ∈ RP(N) and we cannotapply amoveof typeof IIItoσ,then σ∈ DP(N).

Proof. Assumethatσ∈ DP(N).Wewillprovethefollowing statementbyinductiononk:

jn−k< . . . < jn−1< jn and∀ (p < n − k), jp< jn−k. (∗) Suppose k = 0.To prove(), we needto show that∀p< n,jp < jn.Let σ be obtainedby deletingnth transpositionofσ.

σ =

⎜⎝

1 i2 . . . in−1 in j1 j2. . . jn−1 jn

⎠ .

Since σ∈ DP(N),wehave

1 = dim(Bσ)− dim(Bσ) = N + (in− jn)



fn1(σ) + fn2(σ)



. (1)

Since thetotalnumberof possiblej except jn isn− 1, andany numberbetweenin and jn hastoappear as j, wehavefn2(σ) = n− 1 − (jn− in− 1). Bytheequation (1),fn1(σ)= n− 1,so that∀p< n,jp < jn

is true.Thereforejn= N .

Now assumethestatement() istruefork.Thenwe canvisualiseσ asfollows:

σ =

⎜⎝

1 < i2 < . . . < in−k−1 < in−k < in−k+1 < . . . < in j1 j2 . . . jn−k−1 jn−k < jn−k+1 < . . . < jn

⎟⎠

Weneedto prove() fork + 1, thatis,

jn−k−1 < . . . < jn−1< jn and∀ (p < n − k − 1), jp < jn−k−1.

(15)

By the second part of the inductive hypothesis for k, we have jn−k−1< jn−k so the first part of () is already true,and we only need to show thatthe second partholds. Inother words, it is enoughto show thatfn1−k−1(σ)= n− k − 2.Letσ beobtainedbydeleting(n− k − 1)thtranspositionofσ.Thenwehave

n t=n−k

ft1(σ)− ft,n1 −k−1) = k + 1.

Letw := #{ip| in−k−1 < ip< jn−k−1}.Then

fn−k−12 (σ) = n− (k + 2) − (jn−k−1− in−k−1− 1 − w), and

n t=n−k

ft2(σ)− ft,n2 −k−1) = k + 1− w.

Bythefactthatdim(Bσ)− dim(Bσ)= 1,wehavefn−k−11 (σ)= n− k − 2.Thusthefirstclaimisproved.

Conversely,given σ∈ RP(N), supposethatσ istheresultof applyingthemoveof typeI thatdeletes theq-thtranspositionfromσ. Notethatfq1(σ)= q− 1 andn

t=q+1ft1(σ)− ft,q1 )= n− q. Hence,

n t=2

ft1(σ)− ft,q1 ) = n− 1.

Then,

dim(Bσ)− dim(Bσ) = N + (iq− jq)− (n − 1) −

n t=2

ft2(σ)− ft,q2 )

 .

Wealsohavethedifference ft2(σ)− ft2)= 0 whent∈ {1,. . . ,q− 1}.Therefore,

n t=2

ft2(σ)− ft,q2 ) =

n t=q

#{jp| p < t, jp< it}

n t=q+1

#{jp| p < t, p = q, jp < it}

= #{jp| jp< iq} + #{it| jq< it}.

Let F = #{jp | jp < iq} and G = #{it | jq < it}. Note that numbers between iq and jq must appear as jl for l < q or as is where s > q. Let a = #{jp | iq < jp < jq} and b = #{it | iq < it < jq}.Then a+ b= jq− iq− 1. LetA = #{jp | iq < jp} and B = #{it | it< jq}.We haveA− a+ B− b− 1= n.

Therefore,A+ B = n+ jq− iq.

σ =

⎜⎜

⎜⎜

⎜⎜

 B 

i1, . . . , iq. . . b

  G . . . , in

j1, . . .

   F

. . . ja q, . . . , jn

  

A

⎟⎟

⎟⎟

⎟⎟

Referenties

GERELATEERDE DOCUMENTEN

By asking at most |M| more questions, such that each vertex in Μ is incident to three edges asked for, the seeker divides the set Μ into two subsets Bj and Τ , consisting of

Since the charged black hole is essentially a point charge, it is easy to calcu- late the radial component of the electric field as a function of r, so that we can calculate

We show that the conjectures by Matthews and Sumner (every 4-connected claw-free graph is Hamiltonian), by Thomassen (every 4-connected line graph is Hamiltonian) and by

mum rank, Path cover number, Zero forcing set, Zero forcing number, Edit distance, Triangle num- ber, Minimum degree, Ditree, Directed tree, Inverse eigenvalue problem, Rank,

The practice of seeking the consent of State Governments has effectively deadlocked the nomination process for sites ear-marked for WH nomination such as South Australia's Lake

Voor de literatuur op dit gebied kan verwezen worden naar onder andere de studie van Sheffold (lit. Mede met het oog op het toenemende belang van

In onze huidige ziekenhuizen wordt dit model bedrijfskundig toegepast in bijvoorbeeld team- verpleging om de organisatie te optimaliseren, doch de patient wordt