• No results found

University of Groningen Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Photophysics of nanomaterials for opto-electronic applications

Kahmann, Simon

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Kahmann, S. (2018). Photophysics of nanomaterials for opto-electronic applications. Rijksuniversiteit

Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Symbols and Abbreviations

α . . . absorption coefficient β . . . couplig strength

Γ . . . origin in reciprocal lattice; also tunnelling probability

γr . . . inverse localisation radius in the Miller-Abrahams model

δi p . . . in-plande deformation mode

²0 . . . vacuum permittivity

²h . . . permittivity of a host

²r . . . relative permittivity

²p . . . permittivity of a particle

λ . . . reorganisation energy in the Marcus theory; also wavelength µ∞ . . . mobility in the limit of infinite temperature

µGD M . . . charge carrier mobility in the Gaussian disorder model

ν0 . . . maximum hopping rate

νa . . . asymmetric stretch mode

νM ar cus

i j . . . hopping frequency according to the Marcus theory

νMi l l er

i j . . . hopping frequency according to the Miller-Abrahams model

νf . . . final vibrational wavefunction

νi . . . initial vibrational wavefunction

νi j . . . hopping frequency

νs . . . symmetric stretch mode

π-bond . . . covalent bond with highest electron density in the plane above and

under-neath the participating atoms Σ . . . energetic disorder

σ-bond . . . covalent bond with highest electron density between the participating atoms σi , j . . . absorption crosss section for transition from state i to state j

τav . . . average PL lifetime

τD . . . PL lifetime of neat donor

τD A . . . PL lifetime of the donor in blend with the acceptor

τi . . . PL lifetime component i

φi . . . wavefunction of an atomic orbital

ΨMO . . . wavefunction of a molecular orbital

~a . . . graphene direct lattice vector

SYMB OL S AND AB BR

(3)

a0 . . . lattice constant of graphene

aCC . . . distance between carbon atoms in graphene

~

C . . . translational vector for the construction of CNTs dt . . . tube diameter

e . . . elementary charge Ebi nX . . . exciton binding energy

Ebul k . . . bulk band gap

EC . . . Coulomb energy

Econ f . . . confinement energy

EC T . . . charge transfer state energy

EF . . . Fermi energy

EF R . . . energy of a Fano resonance

Eg . . . band gap energy

EQDg . . . quantum dot band gap

Eg as . . . band gap in gas phase

Ei j . . . energy separation between site i and site j

Eop t . . . optical energy gap

Et r ans . . . transport energy gap

F . . . electric field F F . . . fill factor

h . . . Planck’s constant

ħ . . . reduced Planck’s constant

Ii j . . . overlap integral in Marcus theory

JSC . . . short circuit current density

~

k . . . k-vector parallel to the CNT tube axis ~

k . . . k-vector perpendicular to the CNT tube axis

LD . . . diffusion length

m∗ . . . exciton reduced mass

me . . . free electron mass

me . . . effective electron mass

m

h . . . effective hole mass

Mi j . . . van Hove transition in metallic CNTs

Mn . . . number average molar mass

Mw . . . mass average molar mass

Nt . . . density of hopping sites in the Gaussian disorder model

P+ . . . polarisation energy of a positive charge carrier

P− . . . polarisation energy of a negative charge carrier

q . . . Fano shape parameter

R0 . . . nuclear coordinate of an excited state

Simon Kahmann 142 P HO T OP H YS IC S OF NAN OM A TE R IALS F OR OPT O-EL ECTR ON IC

(4)

rB . . . Bohr radius

rC . . . Coulomb radius

ri j . . . distance between site i and site j

S0 . . . ground state

S1 . . . first singlet excited state

Si j . . . van Hove transition in semiconducting CNTs

Sn . . . n-th singlet excited state

T1 . . . first triplet excited state

Tn . . . n-th triplet excited state

VOC . . . open circuit voltage

2D-PL . . . two-dimensional photoluminescence AFM . . . atomic force microscopy

AL . . . . absorption layer AO . . . atomic orbital BDT . . . 1,4-benzenedithiol BTD . . . 2,1,3-benzothidiazole CB . . . conduction band

CELIV . . . charge extraction by linear increase of voltage CNT . . . carbon nanotube

CQD . . . colloidal quantum dot CTS . . . . charge transfer state D-A . . . . donor-acceptor

D-mode . . . Raman defect mode of CNTs DFT . . . density functional

DGU . . . density gradient ultracentrifugation DOS . . . density of states

DPP . . . diketopyrrolopyrrole

DPP-TT-T . . . . . diketopyrrolopyrrole-thieno[3,2-bi]thiophene EA . . . electron affinity

EDT . . . 1,2-ethanedithiol EQD . . . epitaxial quantum dot

ES-VRH . . . Efros-Shklovskii variable range hopping FET . . . . filed effect transistor

FFT . . . . fast Fourier transformation

FRET . . . . fluorescence resonance energy transfer FT . . . . Fourier transformation

FTIR . . . Fourier transform infrared FWHM . . . . full width at half maximum

SYMB OL S AND AB BR

(5)

GDM . . . . Gaussian disorder model GSB . . . . ground state bleach H . . . HOMO orbital

H-i . . . i-th orbital below the HOMO level HMDT . . . . Bis(trimethylsilyl)amine

HiPCO . . . . high pressure carbon monoxide fabricated CNTs HOMO . . . . highest occupied molecular orbital

HRTEM . . . high resolution transmission electron microscopy

HRSTEM . . . . high resolution scanning transmission electron microscopy ILS . . . instrument response function

IP . . . . ionisation potential IR . . . . infrared

IRAV . . . infrared active vibration ISC . . . . intersystem crossing ITO . . . . indium tin oxide

KPFM . . . Kelvin probe force microscopy LUMO . . . lowest unoccupied molecular orbital L . . . LUMO orbital

L+i . . . i-th orbital above the LUMO level

MDMO-PPV . . . . poly[2-methoxy-5-(3’,7’-dimethyloctyloxy)-1,4-phenylenevinylene] MeCN . . . acetonitrile

MEG . . . multiple exciton generation

MEH-PPV . . . . . poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylvene] MeOH . . . methanol

MIR . . . . mid infrared MO . . . . molecular orbital MoOx . . . molybdenum oxide

MPA . . . 1,3-mercaptopropionic acid MWCNT . . . . multi walled carbon nanotube

N2200 . . . poly[N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5’-(2,2’-bithiophene)

NC . . . nanocrystal NIR . . . . near infrared

NNH . . . nearest neighbour hopping NP . . . nanoparticle

OA . . . oleic acid OAm . . . oleylamine

OLED . . . organic light emitting diode OPV . . . organic photovoltaics

Simon Kahmann 144 P HO T OP H YS IC S OF NAN OM A TE R IALS F OR OPT O-EL ECTR ON IC

(6)

P3HT . . . . poly-(3-hexylthiophene)

PA . . . . poly-acetylene; also photoabsorption PC . . . poly-carbozole

PCBM . . . phenyl-C61-butyric acid methyl ester

PCE . . . . power conversion efficiency

PCDTBT . . . . poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2,1,3-ben-zothiadiazole)] poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophene-diyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophene-diyl]

PCPDTBT . . . . . poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b’]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)]

PIA . . . . photoinduced absorption PF . . . . polyfuran PF12 . . . . poly(9,9-didodecylfluorene-2,7-diyl PFO . . . poly(9,9-octyllfluorene-2,7-diyl PL . . . . photoluminescence PP . . . poly-phenylene PPV . . . . poly-phenylenevinylene PSBTBT . . . poly[(4,4’-bis(2-ethylhexyl)dithieno[3,2-b:2’,3’-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] PT . . . polythiophene PTB7 . . . . poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl]-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl) PTB7-th . . . . poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b’]dithiophene- 2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxy-late-2-6-diyl)] QD . . . quantum dot

QDSC . . . quantum dot solar cell QW . . . . quantum well

QWR . . . quantum wire QY . . . quantum yield

RBM . . . radial breathing mode of CNTs SAD . . . . selected area diffraction SC . . . semiconductor

Si-PCPDTBT . . . . poly[(4,4’-bis(2-ethylhexyl)dithieno[3,2-b:2’,3’-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]

SSH . . . . Su-Schriffer-Heeger

STS . . . . scanning tunnelling microscopy SWCNT . . . single walled cabon nanotube

SYMB OL S AND AB BR

(7)

TA . . . . transient absorption

TBAI . . . tetrabutylammonium iodide TRPL . . . . time resolved photolomunescence UDFT . . . unrestricted DFT

UDFT-BS . . . unrestricted broken symmetry DFT UV . . . ultraviolet

VB . . . valence band VHS . . . van Hove singularity VRH . . . variable range hopping

Simon Kahmann 146 P HO T OP H YS IC S OF NAN OM A TE R IALS F OR OPT O-EL ECTR ON IC

Referenties

GERELATEERDE DOCUMENTEN

In conclusion, the excited states interaction of films of polymer wrapped single walled carbon nanotubes with a polythiophene and a polyfluorene as wrapping agent were

EQE spectra of Schottky-type solar cells (ar- chitecture illustrated in the inset) comprising an absorption layer of either neat PbS_BDT or the hybrid

Figure 8.3: PIA spectra of films of small (a), medium (b) and large (c) CQDs capped with different ligands (1.6 eV excitation).. Peak positions for each spectrum and their

The investigation of their excited states through photoluminescence and transient absorption spectroscopy in Chapter 7 reveals a favourable charge transfer from the D-A polymer

In Hoofdstuk 4 zijn de fotogeïnduceerde absorptiespectra van twee vergelijkbare polymeren en mengsels van deze polymeren met de elektronenacceptor PCBM onderzocht.. Alle

A careful comparison of positive peaks in the PIA spectrum in Figure 6.3 does not offer an accep- table agreement with trion peaks, even when assuming that some of the peaks might

Brabec, “Exploring the Limiting Open-Circuit Voltage and the Voltage Loss Mechanism in Planar CH 3 NH 3 PbBr 3 Perovskite Solar Cells,” Adv. Energy

The ground work for getting where I am now, at least in academia, started almost ten years ago and I have to sincerely thank Peter Hartmann and Hans-Dieter Schnabel for being