• No results found

University of Groningen Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Photophysics of nanomaterials for opto-electronic applications

Kahmann, Simon

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Kahmann, S. (2018). Photophysics of nanomaterials for opto-electronic applications. Rijksuniversiteit

Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Appendix

Additional data for chapter 4

Table A1: Low-lying vertical electronic transitions energy and oscillator strength computed at the

TD-UDFT or TD-TD-UDFT-BS level (depending on the most stable solution) for singly charged (i.e. polaron) 2xPCPDTBTnaggregates

Transition Aggregate n=2 (osc. strength) n=3 n=4

S1 0.9296 (0.73) 0.8468 (1.23) 0.6284 (0.05) S2 0.9972 (0.02) 0.9967 (0.016) 0.7254 (2.45) S3 1.2000 (0.004) 1.1182 (0.008) 0.7973 (0.046) S4 1.4782 (0.33) 1.2582 (0.021) 0.9397 (0.24) P HO T OP H YS IC S OF NAN OM A TE R IALS F OR OPT O-EL ECTR

(3)

Additional data for chapter 5

(b) (a)

Figure A1: Additional characterisation of the organic solar cells. The light intensity dependent VOCdisplays

a slope of 1e/kBT for the ternary and PTB7-th:PC70BM cell, whereas the PDCBT:PC70BM exhibits a factor

of 1.2 (a). The latter indicates a significant contribution of trap mediated recombination. The photo-CELIV curves allow for extraction of the charge carrier mobility of the films (b). The corresponding values are 1.3, 2.8 and 4.1 ·10−4cm2V−1s−1for the PDCBT- and PTB7-th binary and the ternary cell.

N

o

rm

.

P

L

in

te

n

s.

0

0.2

0.4

0.6

0.8

1

1.2

Energy / eV

1.4

1.6

1.8

2

PDCBT PCBM PDCBT:PCBM

Figure A2: PL spectra of the PDCBT:PC70BM binary. The emission profile varies strongly for different

sam-ple areas, indicating a heterogeneous film.

Simon Kahmann 133

(4)

Additional data for chapter 6

(b) (a)

Figure A3: Absorption spectrum of PF12 wrapped CNTs in solution and a film of neat PF12 (a). CNT S11

absorption region for PF12-CNT and P3DDT-CNT samples in toluene solution (b). The peaks are shifted to slightly lower energy for the P3DDT sample.

T/

T

/

1

0

-3

0

0.5

1

1.5

2

2.5

Energy / eV

0.1

0.2

0.3

0.4

0.5

4

4

P3DDT

3 eV

2.3 eV

2 eV

1.6 eV

Figure A4: MIR PIA spectra of neat P3DDT upon excitation at different energy.

P HO T OP H YS IC S OF NAN OM A TE R IALS F OR OPT O-EL ECTR ON IC S

(5)

T/

T

/

1

0

-3

0

2

4

6

Energy / eV

0.5

1

1.5

P3DDT-PCBM

3 eV

2.3 eV

1.6 eV

2 eV

Figure A5: PIA spectra of a P3DDT:PCBM blend upon excitation at different energy.

T/

T

/

1

0

-3

−1

0

1

2

Energy / eV

0.2

0.4

0.6

0.8

1

P3DDT-CNT

3 eV 2.3 eV 1.6 eV

Figure A6: PIA spectra of P3DDT wrapped CNTs upon excitation at different energy.

T/

T

/

1

0

-3

0

1

2

3

Energy / eV

0.2

0.4

0.6

0.8

1

P3DDT-CNT; excess P3DDT

3 eV 2.3 eV 1.6 eV

Figure A7: PIA spectra of P3DDT wrapped CNTs in presence of excess polymer upon excitation at different

energy.

Simon Kahmann 135

(6)

0 0.5 0.2 0.4

T/

T

/

1

0

-3

0

1

2

3

4

5

6

Energy / eV

0.5

1

1.5

2

neat PF12

410 nm

532 nm

Figure A8: PIA spectra of neat PF12 upon above and below polymer band gap excitation.

T/

T

/

1

0

-3

0

0.5

1

1.5

Energy / eV

0.2

0.4

0.6

0.8

1

PF12:PCBM

3 eV

1.6 eV

2.3 eV

Figure A9: PIA spectra of a PF12:PCBM blend upon excitation at different energy.

T/

T

/

1

0

-3

−0.2

0

0.2

0.4

0.6

Energy / eV

0.2

0.4

0.6

0.8

1

PF12-CNT

2.3 ev

3.0 eV

1.6 eV

Figure A10: PIA spectra of PF12 wrapped CNTs upon excitation at different energy.

P HO T OP H YS IC S OF NAN OM A TE R IALS F OR OPT O-EL ECTR

(7)

Discussion of the trion peaks

The position of the trion absorption can be determined using the function∆E = A/d + B/d2, where A and B are empirically found coefficients and∆E the separation of the respective S11

and trion energy.[1,2]The diameter of the respective tubes was determined from their (n,m) in-dices using the table given by Qin[3]and the determined trion energies are denoted in Table A2. A careful comparison of positive peaks in the PIA spectrum in Figure 6.3 does not offer an accep-table agreement with trion peaks, even when assuming that some of the peaks might be eclipsed by S11bleaches of larger diameter tubes.

Table A2: S11transition energy and connected (n,m) indices used to determine the SWCNT diameter and

trion energy for A = 0.85 and B = 0.48[1]and alternatively 0.65 and 0.49[2]

S11/ eV n m d / nm Et r i on/ eV alt. Et r i on/ eV 1.166 7 5 0.818 0.990 1.006 1.093 7 6 0.882 0.935 0.954 1.028 8 6 0.953 0.886 0.905 0.970 10 5 1.036 0.843 0.862 0.940 8 7 1.018 0.810 0.829 0.908 9 7 1.088 0.789 0.808 0.866 10 3 1.096 0.748 0.767 0.847 12 5 1.223 0.712 0.730

Table A3: Excited state energy above the ground state and composition in terms of one-particle excitations

with corresponding coefficients for the excited states of P3DDT:CNT. The symbols H, H-i, L and L+i denote the HOMO, the i-th molecular orbital below H, LUMO and the i-th unoccupied orbital above L respectively

Excited state energy 1.03 eV 1.07 eV

Excitation (coefficient) H-17→L (0.17858) H-7→L+10 (0.11186) H-16→L (-0.14579) H-6→L (0.11536) H-8→L (0.38280) H-3→L+1 (-0.23568) H-6→L (0.28747) H-2→L (0.10334) H-3→L (-0.16789) H-2→L+1 (-0.19456) H-3→L+2 (0.19062) H-1→L+1 (0.41368) H-2→L (0.13341) H-1→L+4 (-0.23726) H-1→L+1 (-0.14016) H-1→L+4 (0.10149) H-1→L+6 (-0.11204) H→L+6 (-0.10018) Simon Kahmann 137 APP

(8)

Additional data for chapter 8

Table A4: Peak position and width for the Gaussian fits of the trap distributions for the experimentally

determined PIA spectra. Values are given in meV

Size Ligand Position Width Position Width Separation

Large TBAI 113 34 160 84 47 BDT 118 36 176 29 58 EDT 119 20 172 31 53 OA 122 33 172 80 50 Medium TBAI 189 68 278 114 89 BDT 193 55 274 156 81 EDT 185 63 258 143 73 OA 229 101 323 100 94 Small TBAI 195 59 310 183 115 BDT 251 77 367 190 116 EDT 218 80 307 182 88 OA 240 78 337 175 97

Table A5: Absorption peaks of molecular vibrations for pristine OA, PbS_OA and PIA of PbS_OA with

asso-ciated groups.[4–6]Abbreviations areν for stretch, δ for deformation, i p for in plane, a for asymmetric and s for symmetric vibration. Values are given in meV

OA PbS_OA PIA vibration

372 372 372 ν(=CH) 366 366 365 νa(=CH3) 362 362 361 νa(=CH2) 356 368 355 νs(=CH3) 353 353 353 νs(=CH2) 212 212 - ν(C=O) 206 - 202 ν(C=C) - 180 192 νa(COO−)a 182 182 183 δi p(OH) 178 176 177 δ(CH2) - 174 - νs(COO−)a 159 157 - ν(CO)

aThe COOvibrations are broad; numbers given are thus approximate values.

P HO T OP H YS IC S OF NAN OM A TE R IALS F OR OPT O-EL ECTR

(9)

Table A6: Absorption peaks of molecular vibrations for pristine BDT, PbS_BDT and PIA of PbS_BDT with

associated ring modes.[7–9]Values are given in meV

BDT PbS_BDT PIA vibrationa 194 194 194 8a, Ag 183 182 183 19a, B1u 171 172 - 19b, B2u 156 156 - 14, B2u 146 147 - 9a, Ag 138 137 138 18b, B2u 137 136 136 1, Agb 134 132 - 1, Agb 125 125 126 18a, B1u 101 100 - 17b, B3u

aWilson classification[10];bPreviously suggested to be Fermi split.[9]

Simon Kahmann 139

(10)

Bibliography

[1] S. M. Santos, B. Yuma, S. Berciaud, J. Shaver, M. Gallart, P. Gilliot, L. Cognet, B. Lounis, All-Optical Trion Generation in Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 107, 187401 (2011).

[2] J. S. Park, Y. Hirana, S. Mouri, Y. Miyauchi, N. Nakashima, K. Matsuda, Observation of nega-tive and posinega-tive trions in the electrochemically carrier-doped single-walled carbon nano-tubes, J. Am. Chem. Soc. 134, 14461 (2012).

[3] L.-C. Qin, Determination of the chiral indices (n,m) of carbon nanotubes by electron dif-fraction., Phys. Chem. Chem. Phys. 9, 31 (2007).

[4] M. Kobayashi, F. Kaneko, K. Sato, M. Suzuki, Vibrational Spectroscopic Study on Polymor-phism and Order-Disorder Phase Transition in Oleic Acid, J. Phys. Chem. 90, 6371 (1986). [5] N. Wu, L. Fu, M. Su, M. Aslam, K. C. Wong, V. P. Dravid, Interaction of Fatty Acid Monolayers

with Cobalt Nanoparticles, Nano Lett. 4, 383 (2004).

[6] P. Tandon, G. Förster, R. Neubert, S. Wartewig, Phase Transitions in Oleic Acid as Studied by X-ray Diffraction and FT-Raman Spectroscopy, J. Mol. Struct. 524, 201 (2000).

[7] J. Kestell, R. Abuflaha, M. Garvey, W. T. Tysoe, Self-Assembled Oligomeric Structures from 1,4-Benzenedithiol on Au(111) and the Formation of Conductive Linkers Between Gold Na-noparticles, J. Phys. Chem. C 119, 23042 (2015).

[8] S. W. Han, S. J. Lee, K. Kim, Self-Assembled Monolayers of Aromatic Thiol and Selenol on Silver: Comparative Study of Adsorptivity and Stability, Langmuir 17, 6981 (2001).

[9] S. H. Cho, S. H. Han, D.-J. Jang, K. Kim, M. S. Kim, Raman Spectroscopic Study of 1,4-Benzenedithiol Adsorbed on Silver, J. Phys. Chem. 99, 10594 (1995).

[10] E. B. Wilson, The Normal Modes and Frequencies of Vibration of the Regular Plane Hexagon Model of the Benzene Molecule, Phys. Rev. 45, 706 (1934).

P HO T OP H YS IC S OF NAN OM A TE R IALS F OR OPT O-EL ECTR

Referenties

GERELATEERDE DOCUMENTEN

Despite the cascade-like alignment of the HOMO/LUMO energy levels, charge carrier transport occurs solely through the fullerene and the narrow band gap PTB7-th, which exhibits a

In conclusion, the excited states interaction of films of polymer wrapped single walled carbon nanotubes with a polythiophene and a polyfluorene as wrapping agent were

EQE spectra of Schottky-type solar cells (ar- chitecture illustrated in the inset) comprising an absorption layer of either neat PbS_BDT or the hybrid

Figure 8.3: PIA spectra of films of small (a), medium (b) and large (c) CQDs capped with different ligands (1.6 eV excitation).. Peak positions for each spectrum and their

The investigation of their excited states through photoluminescence and transient absorption spectroscopy in Chapter 7 reveals a favourable charge transfer from the D-A polymer

In Hoofdstuk 4 zijn de fotogeïnduceerde absorptiespectra van twee vergelijkbare polymeren en mengsels van deze polymeren met de elektronenacceptor PCBM onderzocht.. Alle

high resolution scanning transmission electron microscopy ILS.. instrument

Brabec, “Exploring the Limiting Open-Circuit Voltage and the Voltage Loss Mechanism in Planar CH 3 NH 3 PbBr 3 Perovskite Solar Cells,” Adv. Energy